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Numerical Solution of 
Ordinary Differential 

Equations
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Ordinary Differential Equations

Most fundamental laws of Science are based on models that explain 
variations in physical properties and states of systems described 
by differential equations.

Several examples of laws appear in C&C PT 7.1 and are applied in
Ch. 28 --

• Newton's 2nd law:

• Fourier's heat law:

• Fick's diffusion law

• Faraday's law:

velocity(v), force (F), and mass (m)

heat flux (q), temperature (T), and 
thermal conductivity (k ')

mass flux (j), concentration (c) and 
diffusion coefficient (D)

voltage drop (ΔV), inductance (L) 
and current (i)

dv F
dt m

=

dTq k '
dx

= −

dcj D
dx

= −

i
diV L
dt

Δ =
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Differential Equation Basics

ODE's Ordinary Differential Equations
Only one independent variable, i.e., x as in y(x):
2

2
2

d y y g(x)
dx

+ ω =

dy f (y, t)
dt

=

1-dimensional problem in space x

time-dynamics problem 

PDE's Partial Differential Equations
More than one independent variable, i.e., x and y as in T(x,y):

2 2

2 2
T T 0

x y
∂ ∂

+ =
∂ ∂
2 2

2
2 2
u uc 0

t x
∂ ∂

= =
∂ ∂

Laplace Equation

Wave Equation u = u(x,t)
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Auxiliary Conditions

Auxiliary Conditions
Because we are integrating an indefinite integral, we need 
additional information to obtain a unique solution.  Note that an 
nth order equations generally requires n auxiliary conditions.

• Initial Value Problem  (IV)
Information at a single value of the independent variable, typically 
at the beginning of the interval:

y(0) = yo

• Boundary Value Problem  (BV)
Information at more that one value of the independent variable, 
typically at both ends of the interval:

y(0) = yo and  y(1) = yf
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Outline of our Study of ODE's

I.  Single-Step Methods for IV Problems (C&C Ch. 25)
a.  Euler
b.  Heun and Midpoint/Improved Polygon
c.  General Runge-Kutta
d.  Adaptive step-size control

II.  Stiff ODEs (C&C 26.1)

III.  Multi-Step Methods for IV Problems (C&C 26.2)
a.  Non-Self-Starting Heun
b.  Newton-Cotes
c.  Adams

IV.  Boundary Value (BV) Problems (C&C Ch. 27.1 & 27.2)
a.  Solution Methods

1. Shooting Method
2. Finite Difference Method

b.  Eigenvalue Problems { [A] – λ [I ] } {x} = {0}
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ODE's: One-step methods

One-Step Methods for IV Problems
Consider the generic first-order initial value (IV) ODE problem:

dy f (x, y)
dx

= where (xo,yo) are given 
and we wish to find y = y(x)

The independent variable x 
may be space x, 

or time t.
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ODE's: One-step methods

We can solve higher-order IV ODE's
by transforming to a set of 1st-order ODE's, 

2

2
d y dy 5y 0

dxdx
+ + =

Now solve a SYSTEM of two linear, first order ordinary 
differential equations:

dy z
dx

= dzand      z 5y
dx

= − −

dy dzLet   z   & substitute   z 5y 0
dx dx

= → + + =
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ODE's: first order IV problem - One-step methods

The basic approach to numerical solution is stepwise:
Start with (xo,yo) => (x1,y1) => (x2,y2) => etc.
Next Value  =  Previous Value + slope × step size

yi+1 =   yi +    φi × h

h  =  xi+1 – xi   =  step size

Key to the various one-step methods is how the slope is obtained.
This slope represents a weighted average of the slope over the 
entire interval and may not be the tangent at (xi, yi)

dy f (x, y)
dx

= where (xo,yo) are given and we 
wish to find y  =  y(x).
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Using an estimate of the slope to guess f(xi+1 )

Predicted

h

x i x i+1 x

y

True

h

y
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Euler's Method

Given (xi,yi), need to determine (xi+1,yi+1)

xi+1 = xi + h yi+1 = yi + φi h

Estimate the slope as φi = f(xi,yi)

yi+1 = yi +  f(xi,yi) h

Analysis Local Error for the Euler Method
Taylor series of true solution:      yi+1 = yi + yi' h + yi" h2/2 + …

where yi' = f(xi,yi) = fi
Euler rule:

Truncation error:

Global Error:     Ea = G(n,h) O (h2)  =  O (h)  

i 1 i iŷ y f h+ = +

The slope at the beginning of the step 
is applied across the entire interval

2
2

a i 1 i 1 i
hˆE y y y " O(h )
2+ += − = =

(local)
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Euler's Method: Graphic example

True solution

Euler's method solution
y(xi+1) = y(xi) + y'(xi)h

y' = - 2x3 + 12x2 - 20x + 8.5
y(xo) = a

a

x

y

h
xo x1

y1

Matlab demo
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Error Analysis
1.  Truncation Error  (Truncating Taylor Series)

[large step size  large errors]
2.  Rounding Error  (Machine precision)

[very small step size  roundoff errors]

Two kinds of Truncation Error:
Local – error within one step due to application of the 

numerical method
Propagation – error due to previous local errors.

Global Truncation Error = Local + Propagation

Generally if the local truncation error is O (hn+1) then, as with 
numerical quadrature formulas, the global truncation error is 
O(hn).  (Proof is more difficult.)

General Error Notes:
1. For stable systems, error is reduced by decreasing h
2. If method is O (hn) globally, then it is exact for (n-1)th order 

polynomial in x
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Improved One-Step Methods
Heun's Method  (simple predictor-corrector)

Notes: 1.  Local Error O (h3) and Global Error O (h2)
2.  Corrector step can be iterated using εa as stop criterion
3.  If derivative is only f(x) and not f(x,y), then the predictor 

has no effect and

Predict: yi+1 
o = yi + f(xi,yi)h

Estimate the avg. slope as:

Correct: xi+1 = xi + h

o
i i i 1 i 1f (x , y ) f (x , y )f

2
+ ++

=

i i 1
i 1 i

f (x ) f (x )y y h
2

+
+

+
= +

which is the Trapezoid Rule.

i+1 iy   =  y  + f h
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Euler's Method: Graphic example

True solution

Heun's method solution
y(xi+1) = y(xi) + h [y'(xi)+y'(xi+1)]/2

y' = - 2x3 + 12x2 - 20x + 8.5
y(xo) = a

a

x

y

h
xo x1

y1

Matlab demo
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Midpoint Method (Improved Polygon, Modified Euler)

i 1/ 2 i i i
hy y f (x , y )
2+ = +

• Predict yi+1/2 with a half step:

• Estimate the slope:

slope = f(xi+1/2,yi+1/2)   with i+1/2 i
hx  = x  + 
2

• Correct  yi+1:       yi+1 =  yi + f(xi+1/2,yi+1/2) h 

Note: Local Error O (h3)  and Global Error O (h2) 
Error same order as Heun.

Matlab demo
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General Runge-Kutta (RK) Methods
Employing single-step

yi+1 =  yi + φ(xi ,yi, h) h
Increment function or slope, φ(xi ,yi,h), is a weighted average:

φ = a1k1i + a2k2i + … + ajkji + … + ankni (nth order method)
where: aj = weighting factors (that sum to unity)

kji = slope at point xji such that xi < xji < xi+1

k1i = f (xi ,yi)
k2i = f ( xi + p1h,  yi + q11k1ih) 
k3i = f ( xi + p2h,  yi + q21k1ih + q22k2ih)

•
•
•

kni = f ( xi + pn-1h, yi + qn-1,1k1ih + qn-1,2k2ih + . . . + qn-1,n-1kn-1,ih)
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Runge-Kutta (RK) Methods

First-order Runge-Kutta Method:   Euler's Method
yi+1 =  yi + k1 h       k1 = f(xi ,yi) a1=1
Has a global truncation error, O (h) 

Second-order Runge-Kutta Methods:  
Assume a2 = 1/2;  Heun's  w/ Single Corrector: no iteration

k1 = f(xi ,yi)
k2 = f( xi + h, yi + hk1)

Assume a2 = 1;  Midpoint (Improved Polygon)
yi+1 =  yi + k2 h same k1

Assume a2 = 2/3;  Ralston's Method (minimum bound on Et)
same k1

All have global truncation error, O (h2) 

( )1 1
i 1 i 1 22 2y y k k h+ = + +

( )1 1
2 i i 12 2k f x h, y hk= + +

( )1 2
i 1 i 1 23 3y y k k h+ = + + ( )3 3

2 i i 14 4k f x h, y hk= + +
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Classical Fourth-order Runge-Kutta Method

Classical Fourth-order Runge-Kutta Method
Employing single-step:

yi+1 =  yi + (1/6) [ k1 + 2k2 + 2k3 + k4 ] h

where k1 = f(xi , yi) Euler step
k2 = f(xi + h/2 , yi + k1h/2) Midpoint
k3 = f(xi + h/2 , yi + k2h/2) Better midpoint
k4 = f(xi + h , yi + k3h) Full step

1.  Global truncation error, O (h4) 
2.  If the derivative, f, is a function of only x, this

reduces to Simpson's 1/3 Rule.

yi+1 = yi + h (k1 + 2k2 + 2k3 + k4)/6 where k2 = k3
Matlab demo
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Examples of Frequently Encountered, Simple ODE's

2.  Exponential decay
discharge of a capacitor, 
decomposition of material in a river, 
wash-out of chemicals in a reactor, and 
radioactive decay

1.  Exponential growth
unconstrained growth of biological organisms, 
positive feedback electrical systems, and 
chemical reactions generating their own catalyst)

dy = λ y
dt

with solution       y(t) = y0 e λ t

dy = -λ y
dt

with solution       y(t) = y0 e - λ t



Engineering Computation 20

Classical Fourth-order Runge-Kutta Method -- Example
Numerical Solution of the simple differential equation

y’ = + 2.77259 y  with y(0) = 1.00;  Solution is y = exp( +2.773 x) = 16x

Step sizes vary so that all methods use the same number of 
functions evaluations to progress from x = 0 to x = 1.

4th-order
Exact Heun Runge- h *  ki

x Solution Euler w/o iter Kutta for R-K
0.000 1.000 1.000 1.000 1.000
0.125 1.414 1.347 1.386
0.250 2.000 1.813 1.933 2.347
0.375 2.828 2.442 3.013
0.500 4.000 3.288 3.738 3.945 5.564
0.625 5.657 4.427 5.469
0.750 8.000 5.962 7.227 9.260
0.875 11.31 8.028 11.89
1.000 16.00 10.81 13.97 15.56 21.95

h = 0.125 0.25 0.5
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Classical Fourth-order Runge-Kutta Method – Example (cont.)
4th-order

Exact Heun Runge- h *  ki
x Solution Euler w/o iter Kutta for R-K

0.0000 1.0000 1.0000 1.0000
0.0625 1.1892 1.1733 0.6931
0.1250 1.4142 1.3766 1.4066 0.9334
0.1875 1.6818 1.6151 1.0166
0.2500 2.0000 1.8950 1.9786 1.9985 1.3978
0.3125 2.3784 2.2234 1.3853
0.3750 2.8284 2.6087 2.7832 1.8653
0.4375 3.3636 3.0608 2.0317
0.5000 4.0000 3.5911 3.9149 3.9940 2.7935
0.5625 4.7568 4.2134 2.7684
0.6250 5.6569 4.9436 5.5068 3.7279
0.6875 6.7272 5.8002 4.0604
0.7500 8.0000 6.8053 7.7460 7.9820 5.5829
0.8125 9.5137 7.9846 5.5327
0.8750 11.314 9.3683 10.8958 7.4502
0.9375 13.454 10.992 8.1147
1.0000 16.000 12.896 15.326 15.952 11.157

h = 0.0625 0.125 0.25 Matlab demo
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Classical Fourth-order Runge-Kutta Method

In each case, all three RK methods used the same number 
of function evaluations to move from 0.00 to 1.00.

Which was able to provide the more accurate estimate of 
y(1)?
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Higher-Order ODEs and Systems of Equations (C&C 25.4, 
p.711)
• An nth order ODE can be converted into a system of n, coupled 1st-

order ODEs.
• Systems of first order ODEs are solved just as one solves a single 

ODE.

Consider the 4th-order ODE:
f(x) = y'''' + a(x) y''' + b(x) y'' + c(x) y' + d(x) y

Let: y''' = v3;  y'' = v2;  and  y' = v1

Write this 4th order ODE as a system of four coupled 1st order ODEs:

1

1 2

2 3

3 3 2 1

y v
v vd
v vdx
v f (x) a(x)v b(x)v c(x)v d(x)y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠
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Higher-Order ODEs and Systems of Equations (C&C 25.4, 
P. 711)

Given the initial conditions @ x = 0:  
y(0);  v1 = y'(0);  v2 = y''(0);  v3 = y'''(0),  

a numerical scheme can be used to integrate this system forward in 

time.

1

1 2

2 3

3 3 2 1

dy / dx v
dv / dx v
dv / dx v
dv / dx f (x) a(x)v b(x)v c(x)v d(x)y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠
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Example: Harmonically Driven Oscillator

Example: Single-degree-of-freedom, undamped, harmonically 
driven oscillator (see also C&C 28.4, p. 797) 

ODE is 2nd order:
2

2
2

d x P(t)x
mdt

+ ω =
2

2
d xm kx P(t)
dt

+ = or

2T π
=

ω =  natural period

m  = mass
k  = spring constant
P(t)  =  forcing function  = P sin(γt)

i.e., harmonically driven

k
m

ω = = circular frequency
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Example: Harmonically Driven Oscillator

=  (homogeneous soln.)  +  (particular soln.)

2
2

2
d x P(t)x

mdt
+ ω =

Analytical solution:

Initial conditions: x(0) = 0   and dx (0) 0
dt

=

2 2 2 2
P Px(t) sin( t) sin( t)

m( ) m( )
− γ

= ω + γ
ω ω − γ ω − γ
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Example: Harmonically Driven Oscillator

with  x(0)  =  0

with  v(0)  =  0

2
2

2
d x P(t)x

mdt
+ ω =

Recast the 2nd-order ODE as two 1st-order ODEs):

dx v f (t, x, v)
dt

= =

2dv Psin( t) x g(t, x, v)
dt m

γ
= − ω =
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Example: Harmonically Driven Oscillator – Euler Method

We can solve these two 1st-order ODE's sequentially.
Let m = 0.25, k = 4π2, P = 20, γ = 8, 
Thus g = 80 sin(8t) - 16π2x. Solve from t = 0 until t = 1.

For example, by the Euler method, with h = 0.01: 

2
2

2
d x P(t)x

mdt
+ ω = dx v f (t, x, v)

dt
= =

2dv Psin( t) x g(t, x, v)
dt m

γ
= − ω =

t x v
t0 = 0 x0 = 0 v0 = 0
t1 = t0 + h = 0.01 x1 = x0 + f(t0,x0,v0)h = 0 v1 = v0 + g(t0,x0,v0)h = 6.39

t2 = t1 + h = 0.02 x2 = x1 + f(t1,x1,v1)h = 0.0639 v2 = v1 + g(t1,x1,v1)h = 12.75

... ... ...
tn = tn-1 + h xn = xn-1 + f(tn-1,xn-1,vn-1)h vn = vn-1 + g(tn-1,xn-1,vn-1)hMatlab demo
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Adaptive Step-size Control  (C&C 25.5, p. 710)

Goal: with little additional effort estimate (bound) magnitude of 
local truncation error at each step  so that step size can be 
reduced/increased if local error increases/decreases.

1. Repeat analysis at each time step with step length h and h/2. 
Compare results to estimate local error.   (C&C 25.5.1)  Use 
Richardson extrapolation to obtain higher order result.

2. Use a matched pair of Runge-Kutta formulas of order r and 
r+1 which use common values of ki, and yield estimate or 
bound local truncation error.

C&C 25.5.2 discuss  4th-5th-order Runge-Kutta-Fehlberg pair.
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A 2nd – 3rd order RK pair yielding local truncation error estimate:
2nd-order Midpoint Method O(h2):

k1 =  f(xi ,yi);  k2 = f(xi + 1/2h,  yi + 1/2hk1)
yi+1 = yi + k2 h 

Third-order RK due to Kutta  O(h3)  (C&C  25.3.2)
k3 = f(xi + h, yi +h(2k2– k1) )
yi+1*  = yi + h(k1 +4k2+ k3)

Estimate of truncation error for midpoint formula is
Ei = yi+1 – yi+1*  =  – h(k1 - 2k2+ k3)

This is a central difference estimate of  (const.) h3 y'''
which describes the local truncation error for midpoint method.

Use more accurate values yi+1*,  but Ei provides estimate of the local 
error that can be used for step-size control.
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Stiff Differential Equations (C&C 26.1, p. 719)

A stiff system of ODE’s is one involving rapidly changing 
components together with slowly changing ones.  In many cases, 
the rapidly varying components die away quickly, after which the
solution is dominated by the slow ones. 

Even simple first-order ODE’s can be stiff. C&C gives the example:

1000 3000 2000 tdy y e
dt

−= − + −

With initial conditions y(0) = 0 and with solution

1000( ) 3 0.998 2.002t ty t e e− −= − −
Fast term            Slow term
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Stiff Differential Equations 

In the solution

We would need a very small time step h = Δt to capture the 

behavior of the rapid transient and to preserve a stable and accurate 

solution, and this would then make it very laborious to compute the 

slowly evolving solution.

the middle term damps out very quickly and after it does, the slow 

solution closely follows the path: 

1000( ) 3 0.998 2.002t ty t e e− −= − −

( ) 3 2 ty t e−≈ −

Matlab demo
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Stiff Differential Equations 
A stability analysis of this equation provides important insights. For 
a solution to be stable means that errors at any stage of computation 
are not amplified but are attenuated as computations proceed. To
analyze for stability, we consider the homogeneous part of the ODE 

Assume some small error exists in the initial condition y0 or in an 
early stage of the solution.  Then we see that after n steps, 

Euler's method yields 

dy ay
dt

= − with solution 0( ) aty t y e−=

1 (1 )i
i i i i i

dyy y h y ay h y ah
dt+ = + = − = −

0 (1 )n
ny y ah= − Bounded iff |(1-ah) | < 1, i.e., h < 2/a

Matlab demo
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Stiff Differential Equations 

Euler’s method is known as an explicit method because the derivative 
is taken at the known point i.  An alternative is to use an implicit
approach, in which the derivative is evaluated at a future step i+1.  
The simplest method of this type is the backward Euler method that 
yields 

1
1 1 1 1

i i
i i i i i

dy yy y h y ay h y
dt ah

+
+ + += + = − ⇒ =

+
Because 1/(1+ah) will remain bounded for any (positive) value 
of h, this method is said to be unconditionally stable.  

Implicit methods always entail more effort than explicit 
methods, especially for nonlinear equations or sets of ODE’s, so 
the stability is gained at a price.  Moreover, accuracy still 
governs the step size.
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Systems of Stiff Differential Equations 
What to do?
Need to be aware of the potential for encountering stiff ODE’s.
Use special codes for solving stiff differential equations which
are generally implicit multistep methods.  
For example, MATLAB has some methods specifically designed 
to solve stiff ODE’s, e.g., ode23S.
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Predictor-Corrector Multi-Step Methods for ODE's 
• Utilize valuable information at previous points.
• For increased accuracy, use a predictor that has truncation of 

same order as corrector.  In addition iterate corrector to 
minimize truncation error and improve stability.  

Non-Self Starting (NSS) Heun Method
O (h3)-Predictor – yi+1

o =  yi-1
m + f(xi,yi

m) 2h
Higher order predictor than the self-starting Heun.
This is an open integration formula (midpoint).

O (h3)-Corrector –
ii 1

m j 1
j m i i i 1 i 1f (x , y ) f (x , y )y y h

2+

−
+ ++

= +

Notes: 1. Corrector is applied iteratively for j=1, ..., m
2. yi

m is fixed (from previous step iterations)
3. This is a closed integration formula (Trapezoid)
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Multi-step methods
Two general schemes solving ODE's:
1.  Newton-Cotes Formulas

n 1
n 1

i n k i k
k 0

i 1 n 1
n 1

i n 1 k i k 1
k 0

y h c f O(h ) open predictor
y

y h c f O(h ) closed corrector

−
+

− −
=

+ −
+

− + − +
=

⎧
+ +⎪

⎪= ⎨
⎪ + +⎪
⎩

∑

∑

with ck from Table 21.4, and      from Table 21.2 of C&C.

2.  Adams Formulas  (Generally more stable)
n 1

n 1
k i k

k 0
i 1 i n 1

n 1
k i k 1

k 0

open predictor
h f O(h )       

Adams - Bashforth
y y

closed corrector
h f O(h )

Adams - Moulton

−
+

−
=

+ −
+

− +
=

⎧
β +⎪

⎪= + ⎨
⎪ β +⎪
⎩

∑

∑
with βk and      determined from Tables 26.1 and 26.2, respectively.

kc

kβ
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Popular Multi-Step Methods

1. Heun non-self starting  –– Newton-Cotes with n=1

2. Milne's –– Newton-Cotes with n=3 (but use Hamming’s
corrector for better stability properties)

3. 4th-Order Adams 
• Predictor  4th-Order Adams-Bashforth
• Corrector 4th-Order Adams-Moulton

If predictor and corrector are of same order, we can obtain 
estimates of the truncation error during computation.
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Improving Accuracy and Efficiency (use of modifiers)
1. provide criterion for step size adjustment  (Adaptive Methods)
2. employ modifiers determined from error analysis

For Non-self-Starting (NSS) Heun:
• Final Corrector Modifier

( )m 0
c i 1 i 1

1 ˆE y y
5 + += − −

m 0
m m i 1 i 1
i 1 i 1

ˆy yy y
5

+ +
+ +

−
← −

• Predictor Modifier (excluding 1st step)

( )m 0
p i i

4 ˆE y y
5

= − ( )0 0 m 0
i 1 i 1 i i

4ˆ ˆ ˆy y y y
5+ +← + −

with       = unmodified        from previous step

= unmodified        from previous step

0
iŷ
m
iy

0
i+1ŷ
m
i+1y



Engineering Computation 40

General Predictor-Corrector Schemes
Errors cited are local errors.  Global errors order h smaller.

Predictors:

Euler: 
= yi + hƒ(xi, yi) + O(h2)

Midpoint (same as Non-Self-Starting Heun):
= yi-1 + 2hƒ(xi, yi) + O(h3)

Adams-Bashforth 2nd-Order:
= yi + h/2{3ƒ(xi, yi) –ƒ(xi-1, yi-1)} + O(h3)

Adams-Bashforth 4th-Order:
= yi + h/24{55ƒ(xi, yi) –59ƒ(xi-1, yi-1) +37ƒ(xi-2, yi-2) –9ƒ(xi-3, yi-3) } + O(h5)

Hamming (and Milne's Method):
= yi-3 + 4h/3{2ƒ(xi, yi) –ƒ(xi-1, yi-1) +ƒ(xi-2, yi-2)} + O(h5)

1ŷi+

1ŷi+

1ŷi+

1ŷi+

1ŷi+
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Correctors:
• refine value of yi+1 given a  
• more stable numerically – no spurious solutions which go out 

of control 

Adams-Moulton 2nd-Order closed (Non-self starting Heun):
yi+1 = yi + h/2{ƒ(xi+1, ) +ƒ(xi, yi)} + O(h3)

Adams-Moulton 4th-Order closed (relatively stable):
yi+1 = yi + h/24{9ƒ(xi+1, ) –19ƒ(xi, yi) – 5ƒ(xi-1, yi-1) + ƒ(xi-2, yi-2) } + O(h5)

Milne's (N.C. 3-point, Simpson's 1/3 Rule, not always stable!!!):
yi+1 = yi-1 + h/3{ƒ(xi+1, ) + 4ƒ(xi, yi) +ƒ(xi-1, yi-1)} + O(h5)

Hamming (modified Milne, stable): 
yi+1 = 9/8 yi – 1/8 yi-2 + 3h/8{ƒ(xi+1, ) + 2ƒ(xi, yi) +ƒ(xi-1, yi-1)} + O(h5)

1ŷi+

1ŷi+

1ŷi+

1ŷi+

1ŷi+
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Predictor-Corrector solution

Example: Undamped, harmonically driven oscillator
2

2
d xm kx P(t)
dt

+ =

2T π
=

ω
=  natural period

m  = mass
k  = spring constant
P(t)  =  forcing function  = P sin(γ t)
γ = driving frequency

k
m

ω = = circular frequency

Analytical solution:

Initial conditions: x(0) = 0   and dx (0) 0
dt

=

2 2 2 2
P Px(t) sin( t) sin( t)

m( ) m( )
− γ

= ω + γ
ω ω − γ ω − γ
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Predictor-Corrector solution: Undamped, harmonic oscillator
2

2
d xm kx P(t)
dt

+ =

Recast 2nd-order ODE as two 1st-order ODE's:

Let m = 0.25, k = 4π2, P = 20, γ = 8, 
thus:       g = 80 sin(8t) - 16π2x

Use 4th-ord. Adams Method to solve from t=0 until t=1 w/ h=0.1

with  x(0)  =  0

with  v(0)  =  0

dx v f (t, x, v)
dt

= =

2dv Psin( t) x g(t, x, v)
dt m

γ
= − ω =
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Predictor-Corrector solution: Undamped, harmonic oscillator
2

2
d xm kx P(t)
dt

+ =

First, we need start-up values.  Use 4th-order RK to get 4 points:

0.49490.86920.3
5.14010.53240.2
2.62340.10380.1
0.00000.00000.0

y(t)x(t)t



Engineering Computation 45

Predictor-Corrector solution: Undamped, harmonic oscillator

Second, the Adams-Bashforth 4th-order predictor is:

Example :

We apply this predictor to both x and v:

x(0.4) = x(0.3) + [55(0.4949) - 59(5.1401) + 37(2.6234) - 9(0.0)] = 

= 0.1235

v(0.4) = v(0.3) + (0.1/24) [55 g(0.3, 0.8692, 0.4949) 

– 59 g(0.2, 0.5324, 5.1401) 

+ 37 g(0.1, 0.1038, 2.6234) – 9 g(0,0,0)] = – 11.2492

where dv/dt = g(t, x, v) = 80 sin 8t – 16π2 x

{ } 5
i 1 i i i i 1 i 1 i 2 i 2 i 3 i 3

hy y 55f (x , y ) 59f (x , y ) 37 f (x , y ) 9f (x , y ) O(h )
24+ − − − − − −= + − + − +
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Predictor-Corrector solution: Undamped, harmonic oscillator

Third, the Adams-Moulton 4th-order corrector is:

We apply the corrector to both x and v to obtain the 1st iteration:

x(0.4) = x(0.3) + (0.1/24) [9 (-11.2492) + 19(0.4949)  

– 5(5.1401) + (2.6234)]  =  0.8169

v(0.4) = v(0.3) + (0.1/24) [9 g(0.4, 0.1235,  -11.2492) 

+ 19 g(0.3,...) ...]     =  -6.7435 

where dv/dt = g(t, x, v) = 80 sin 8t – 16π2 x

We then can iterate until convergence:

x(0.4) =  0.8169, 0.842862, 0.843847, 0.843834,...

v(0.4) = -6.7435, -10.84973, -11.00371, -11.00949,...

Do the Second and Third tasks for each successive step.

{ } 5
i 1 i i 1 i 1 i i i 1 i 1 i 2 i 2

hy y 9f (x , y ) 19f (x , y ) 5f (x , y ) f (x , y ) O(h )
24+ + + − − − −= + + − + +
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Numerical Methods for ODE's

Advantages of Runge-Kutta [such as O(h4) formula]
· simple to apply
· self-starting (single-step)
· easy to change step size
· always stable (all h)
· can use matched pairs of different order to estimate local 

truncation error

Advantages of Predictor-Correctors 
[such as Adams-Moulton Formula of O(h4)]
• without iteration is twice as efficient as Runge-Kutta 4th-Order

• local truncation error is easily estimated from difference so we
can adjust step sizes and apply modifiers

For same step sizes, error terms are reasonably similar.
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Summary

Single-step
Euler
Heun
Mid-point
RK4

Multi-step (predictor-corrector)
Non-self-starting Heun
Milne (Newton-Cotes n=3)
Adams (Adams-Bashford, Adams-Moulton)

Stiffness - stability

Adaptive methods – local error estimates – modifiers
Half step
RK Fehlberg
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Outline of our Study of ODE's
I.  Single-Step Methods for I.V. Problems (C&C Ch. 25)

a.  Euler
b.  Heun and Improved Polygon
c.  General Runge-Kutta
d.  Adaptive step-size control

II.  Stiff ODEs (C&C 26.1)

III.  Multi-Step Methods for I.V. Problems (C&C 26.2)
a.  Non-Self-Starting Heun
b.  Newton-Cotes
c.  Adams

IV.  Boundary Value Problems (C&C Ch. 27.1 & 27.2)
a.  Solution Methods

1. Shooting Method
2. Finite Difference Method

b.  Eigenvalue Problems { [A] – l [I ] } {x} = {0}
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ODE's – Boundary Value Problems

Recall:  Unique solution to an nth-order ODE 
requires n given conditions

Conditions for a 2nd-order ODE (requires 2 given conditions):
Initial value problem

y(xo)  = yo
y'(xo) = y'o

Boundary value problem
y(xo)  = yo
y(xf)  = yf

Beam Equation:
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Beam Equation

Sailboat mast deflection problem  
4

4
d v f (z)

EIdz
= (Euler-Bernoulli Law of Bending)

at the base of mast: v(0) = 0;  v'(0) = 0;
at the top of mast:     v''(L) = 0;  v'''(L) = 0

where: E  = Modulus of Elasticity (material property)
I   = Moment of Inertia (geometry of material)

f(z)  = wind pressure at height z
v(x)  = deflection (displacement) from vertical

z  = height
E I v'' = moment
E I v''' = shear (applied force)
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ODE's – Boundary Value Problem 

Solve for the steady-state 
temperature distribution in the rod

For a given TL and TR < TL

TL TR

Ta

(C&C  27.1)

( )
2

2 a
d T h T T
dx

′= −
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ODE's – Boundary Value Problem – Shooting Method

Solve  =
2

2
d y f (x, y, y ')
dx

=

1. Convert 2nd-Order ODE to two 1st-Order ODE's 
dy z
dx

=
dz f (x, y, z)
dx

=

given y(xo) = yo and y(xf) = yf

2. Given initial condition, y(xo) = yo, 
estimate (best guess) the initial condition z(xo) = zo

(1)

3. Solve ODE using the assumed initial values from x = xo to x = xf
using stepping methods.  Because we estimated the initial 
conditions for z(xo); will find y(xf) ≠ yf
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ODE's – Boundary Value Problem – Shooting Method

4. Re-estimate initial condition  z(xo) = zo
(2), and again solve the 

assumed initial value ODE from x = xo to x = xf.

Because we estimated the I.C. z(xo), y(xf) ≠ yf. 

5. Interpolate or extrapolate to find the "correct" z(xo) = zo

Given yf, (yf
(1), z0

(1) ), and (yf
(2), z0

(2)): 

( )
(2) (1)

(1) (1)o o
o o f f(2) (1)

f f

z zz z y y
y y

−
= + −

−

If ODE is linear, zo is the correct solution

If ODE in nonlinear, iterate until yf
(h) ≈ yf

[This equation

is not in C&C

in general form]
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Boundary Value Problem:  Classical Shooting Method

Example: Single-degree-of-freedom, undamped, harmonically 
driven oscillator (see also C&C 28.4, p. 797) 

ODE is 2nd order:
2

2
2

d x P(t)x
mdt

+ ω =
2

2
d xm kx P(t)
dt

+ = or

2T π
=

ω =  natural period

m  = mass
k  = spring constant
P(t)  =  forcing function  = P sin(γ t)

k
m

ω = = circular frequency

Now, we are given boundary conditions:  

x(0)  =  0    and    x(1)  =  0.5

(that is, the initial condition v = dx/dt at t = 0 is unknown, v0 )
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Boundary Value Problem:  Classical Shooting Method

Use the Shooting Method by employing a 4th-order RK
2

2
2

d x P(t)x
mdt

+ ω =

with  x(0)  =  0

with  v(0)  =  v0

Recast the 2nd-order ODE as two 1st-order ODEs:

dx v f (t, x, v)
dt

= =

2dv Psin( t) x g(t, x, v)
dt m

γ
= − ω =

Let m = 0.25, k = 4π2, P = 20, γ = 8, 
and thus g(t, x, v) = 80 sin(8t) - 16π2x.
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Boundary Value Problem:  Classical Shooting Method

Use 4th-ord. RK Method to solve from t=0 until t=1 w/ h=0.1.
1. Guess v(0) = 1.0
2. Find x(1) = 0.91687 (Note: not equal to 0.5)
3. Guess v(0) = 100
4. Find x(1) =  0.09332
5. Because our ODE is linear, we can always interpolate yields 

the required initial value.

100 1.0v(0)  (0.5 0.91687)
0.09332 0.91687

−
= − =

−
51.113

6. With v(0) = 51.113, check for x(1) = 0.5000         OK
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Finite Difference Method

• The shooting method is inefficient for higher-order equations 
with several boundary conditions.

• Finite Difference method has advantage of being direct (not 
iterative) for linear problems, but requires the solution of 
simultaneous algebraic equations.

• • • • • • •• •1 2 30 ii-1 i+1 n
n+1. . .

xo x f
Δx = h

x
. . .
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Finite Difference Method

Approach:
1. Divide domain to obtain n interior discrete points 

(usually evenly spaced @ h).
2. Write a finite difference expression for the ODE at each 

interior point.
3. Use known values of  y  at x = xo and x = xf

4. Set up n linear equations with n unknowns.  System is banded 
and often symmetric, so solve with an efficient method.

Note: If higher-order FDD equations and/or centered 
differences are used, you may need to employ 
imaginary or "phantom" points outside of domain to 
express B.C.'s (together with appropriate FD versions 
of B.C.'s).
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Finite Difference Method

Sailboat mast deflection problem  
4

4
d v f (z)

EIdz
= (Euler-Bernoulli Law of Bending)

at the base of mast: v(0) = 0;  v'(0) = 0;
at the top of mast:     v''(L) = 0;  v'''(L) = 0

where: E  = Modulus of Elasticity (material property)
I   = Moment of Inertia (geometry of material)

f(z)  = wind pressure at height z
v(x)  = deflection (displacement) from vertical

z  = height
E I v'' = moment
E I v''' = shear (applied force)
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Finite Difference Method

Sailboat mast deflection problem:   
4

4
d v f (z)v

EIdz
′′′′= =

at the base (z = 0): v(0) = 0;  v'(0) = 0;
at the top (z = L):     v''(L) = 0;  v'''(L) = 0

4
i 2 i 1 i i 1 i 2

4 4
d v v 4v 6v 4v vv ''''
dx h

− − + +− + − +
= ≈

3
i 2 i 1 i 1 i 2

3 3
d v v 2v 2v vv '''
dx 2h

− − + +− + − +
= ≈

2
i 1 i i 1

2 2
d v v 2v vv ''
dx h

− +− +
= ≈

i 1 i 1dv v vv '
dx 2h

−− += ≈

[dist. load,f(z)]/EI

(shear)/EI

(bending moment)/EI

(slope)
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Finite Difference Method

Sailboat mast deflection problem:   
4

4
d v f (z)

EIdz
=

at the base: v(0) = 0;  v'(0) = 0;
at the top:     v''(L) = 0;  v'''(L) = 0

Mast with 11 Nodes

v(0)
given

Use equation: 

Imaginary
Node

Use v'(0) to 
get in terms 

of v(1)

4

4
d v f (z)

E Idz
=

Imaginary Nodes

Use v''(L) = 0 
to get in terms 
of v(9) & (10)

Use v'''(L) = 0 
to get in terms 

of other v's

0 1 2 3 4 5 6 7 8 9 10
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Finite Difference Method

@ pt.  i: vi-2 – 4 vi-1 + 6 vi – 4 vi+1 + vi+2  =  h4 f(xi)/EI

Using  h = L/10,   write the FD equations at points 1, 2, 9 and 10:

@ i = 1 v-1 – 4 v0 + 6 v1 – 4 v2 + v3  =  h4 f(x1)/EI (1)

@ i = 2 v0 – 4 v1 + 6 v2 – 4 v3 + v4  =  h4 f(x2)/EI (2)

@ i = 9 v7 – 4 v8 + 6 v9 – 4 v10 + v11  =  h4 f(x9)/EI (3)

@ i = 10 v8 – 4 v9 + 6 v10 – 4 v11 + v12  =  h4 f(x10)/EI (4)

We now need to eliminate v–1, v0, v11, and v12

with the four boundary conditions

4

4
d v f (z)

EIdz
=
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Finite Difference Method
4

4
d v f (z)

EIdz
=

8 9 11 12
3

v 2v 2v v 0
2h

− + − +
=

9 10 11
2

v 2v v 0
h

− +
=

1 1v v 0
2h

−− =

Eliminating v–1, v0, v11, and v12 with the 
four Boundary conditions

v(0)  = 0: v0 = 0

v'(0) = 0: v-1 = v1

v''(L) = 0: v11 = 2v10 + v9

v'''(L) = 0: v12 = v8 - 4v9 + 4v10
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Finite Difference Method
4

4
d v f (z)

EIdz
= We substitute these into equations (1) to (4) to 

eliminate the unknowns at the “imaginary” points

v0 = 0 v-1 = v1
v11 = 2v10 + v9 v12 = v8 - 4v9 + 4v10

@ i = 1 7 v1 – 4 v2 + v3   =  h4f(x1) / EI (1a)

@ i = 2 – 4 v1 + 6 v2 – 4 v3 + v4  =  h4 f(x2)/ EI (2a)

@ i = 9 v7 – 4 v8 + 5 v9 – 2 v10 = h4f(x9) / EI (3a)

@ i = 10 v8 – 4 v9 + 2 v10 = h4f (x10)/ EI (4a)
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Finite Difference Method

v f (x )1 1
v f (x )2 2
v f (x )3 3
v f (x )4 4

4v f (x )5 5
v f (x )6 6
v f (x )7 7
v f (x )8 8
v f (x )9 9
v10

7 -4 1
4 6 -4 1

1 4 6 4 1
1 -4 6 -4 1

1 -4 6 -4 1 h f
1 -4 6 -4 1 EI

1 -4 6 -4 1
1 -4 6 -4 1

1 -4 5 -2
1 -4 2

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥− ⎪ ⎪⎢ ⎥

− − ⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎪ ⎪ =⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥

⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭ f (x )10

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭
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Finite Difference Method

Once we have solved for all the vi, we can obtain secondary 
results such as bending moments and shear forces by substituting
the finite-divided-difference operators and the values of the vi
into such equations as:

M  =  EI  v''
V  =  EI  v'''

For more refined results, we can use a smaller h and more 
segments.
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Merits of Different Numerical Methods for ODE Boundary Value 
Problems

• Shooting method

Conceptually simple and easy.
Inefficient for higher-order systems w/ many boundary 

conditions. 
May not converge for nonlinear problems.
Can blow up for bad guess of initial conditions.

• Finite Difference method
Stable 
Direct (not iterative) for linear problems.
Requires solution of simultaneous algebraic eqns.
More complex.

FD better suited for eigenvalue problems.
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Engineering Applications of Eigenvalue Problems
Natural periods and modes of vibration of structures and dynamical systems. 

(C&C Ex. 27.4, p. 761)

Application: determination of the natural frequencies of a system

Example: A mass-spring system with three identical (frictionless) masses connected by 
three springs with different spring constants.

M M M

x1 x2 x3
3k 2k k

The displacement of each spring is measured relative to its own local coordinate 
system with an origin at the spring's equilibrium position.

2
1

1 1 22
d xm 3kx 2k(x x )
dt

= − − −
2

2
2 1 2 32

d xm 2k(x x ) k(x x )
dt

= − − − −
2

3
3 22

d xm k(x x )
dt

= − −
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Engineering Applications of Eigenvalue Problems

If one assumes that x has the form: 

xi = ai cos ω t ; d2x/dt2 = - ω2 ai cos ω t

Then, with λ = m ω2 / k , the governing equations become:

2

1 1 2 1 2 1
m a 5a 2a 5a 2a a

k
ω

− = − + ==> − = λ

2

2 1 2 3 1 2 3 2
m a 2a 3a a 2a 3a a a

k
ω

− = − + ==> − + − = λ

2

3 2 3 2 3 3
m a a a a a a

k
ω

− = − ==> − + = λ
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Engineering Applications of Eigenvalue Problems

1 2 1 1 1

1 2 3 2 2 2

1 2 3 3 3

5a 2a a 5 2 0 a a
2a 32a a a 2 3 1 a a

a a a 0 1 1 a a

− = λ −⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥− + − = λ ==> − − = λ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− + = λ −⎣ ⎦ ⎩ ⎭ ⎩ ⎭

[A] {x} =λ {x}

1

2

3

5 2 0 a
or 2 3 1 a 0

0 1 1 a

− λ −⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥− − λ − =⎨ ⎬
⎢ ⎥ ⎪ ⎪− − λ⎣ ⎦ ⎩ ⎭

[A – I λ] {x} = 0
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Engineering Applications of Eigenvalue Problems

For a non-trivial solution:

det [A – I λ ] = 0   find
5 2 0

det 2 3 1 0
0 1 1

− λ −⎡ ⎤
⎢ ⎥− − λ − =
⎢ ⎥− − λ⎣ ⎦

(5 – λ) [(3 – λ)(1 – λ) – (–1)(–1)] – 2 [(–1)(0) – (–2)(1 – λ)] = 0

(5 – λ) [2 – 4 λ + λ2] – 2 [ 2 – 2 λ] = 0

6 – 18 λ + 9 λ2 – λ3 = 0

The three solutions of the cubic equation are the three eigenvalues:

λ1 = 6.29 λ2 = 2.29 λ3 = 0.42

Fast oscillation Slow oscillation

The determinant yields a cubic equation for λ:
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Engineering Applications of Eigenvalue Problems

i 1i

i 2i

i 3i

5 2 0 a
2 3 1 a 0

0 1 1 a

− λ −⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥− − λ − =⎨ ⎬
⎢ ⎥ ⎪ ⎪− − λ⎣ ⎦ ⎩ ⎭

Because this is a homogeneous equation, we can only find 
the relative values of the ai's.  For λ1 = 6.29 

The corresponding eigenvectors {ai} are found by solving:

1i

2i

3i

5 6.29 2 0 a
2 3 6.29 1 a 0

0 1 1 6.29 a

− −⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥− − − =⎨ ⎬
⎢ ⎥ ⎪ ⎪− −⎣ ⎦ ⎩ ⎭

2

1

a 0.645
a

= − 3

1

a 0.122
a

=
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Engineering Applications of Eigenvalue Problems

Only the relative values of the ai's are significant.  Thus setting 
a1 = 1.00 we have:

2

1

a 0.645
a

= − 3

1

a 0.122
a

=

{ }1

for  = 6.29

1.000
a 0.645

0.122

λ

⎧ ⎫
⎪ ⎪= −⎨ ⎬
⎪ ⎪
⎩ ⎭

Fast

{ }

2

2

   for  = 2.29

0.74
a 1.000

0.77

λ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪−⎩ ⎭

{ }

2

2

for  = 0.42

0.25
a 0.55

1.000

λ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

Slow
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Engineering Applications of Eigenvalue Problems

Thus, there are 3 possible natural frequencies.

Recall that the frequency is defined as

[A]  {x} =  λ {x}

[A – I λ]  {x} =  0

det [A – I λ]  =  0  ==> find  λ

• If [A] is n x n, there are n eigenvalues  λ i
and n eigenvectors {x}i

• If [A] is symmetric, the eigenvectors are orthogonal:

k
m
λ

ω =

{x}i
T {x}j =  0 if    j ≠ i

=  1 if    j = i
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POWER METHOD for Eigenvector Analysis
(An iterative approach for solving for eigenvalues & eigenvectors)

Assume that a vector {y} can be expressed as a linear combination 
of the eigenvectors:

{ }
n

1 1 2 2 n n i i
i 1

{y} =  b {x } + b {x } + . . . + b {x } = b x
=
∑

Multiplying the above equation by [A] yields:

{ } { }
n n

i i i i i
i 1 i 1

[A] {y}  = b [A] x   = b x
= =

λ∑ ∑
Ordering the λ i so that | λ 1| > | λ 2| > | λ 3| > . . . > | λ n|

{ } { }
n

i i
1 1 1 i i

1 1i 2

Then [A] {y}  = b x b x   where 1
=

⎛ ⎞⎛ ⎞λ λ⎜ ⎟λ + <⎜ ⎟⎜ ⎟λ λ⎝ ⎠⎝ ⎠
∑
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POWER METHOD for Eigenvector Analysis
Multiplying the equation by [A] again, we have:

Repeating this process m times:

{ } { }
2n

22 i
1 1 1 i i

1i 2

[A]  {y}  = b x b x   
=

⎛ ⎞⎛ ⎞λ⎜ ⎟λ + ⎜ ⎟λ⎜ ⎟⎝ ⎠⎝ ⎠
∑

{ } { }
mn

mm i
1 1 1 i i

1i 2

[A]  {y}  = b x b x   
=

⎛ ⎞⎛ ⎞λ⎜ ⎟λ + ⎜ ⎟λ⎜ ⎟⎝ ⎠⎝ ⎠
∑

i

1
Since 0  for all i 1 as m ==> ,

⎛ ⎞λ
==> ≠ ∞⎜ ⎟λ⎝ ⎠

then [A]m {y} λ1
m b1{x1} 

Since we can only know the relative values of the elements of {x}, 
we may normalize {x}.  If {x} is normalized such that the largest 
element is equal to {1}, then is the first eigenvalue, λ1
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POWER METHOD Numerical Example

Find the maximum eigenvector. Initial guess:  {y}T = {1  1  1}

1 1

2 2

3 3

3 7 9 x x
9 4 3 x x
9 3 8 x x

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ = λ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

3 7 9 1 19 0.95
[A]{y} 9 4 3 1 16 20 0.80

9 3 8 1 20 1.00

⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= = ==>⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

Approx. eigen-
eigenvalue vector
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POWER METHOD Numerical Example

Approximate error, εa:

2
3 7 9 0.95 0.92084

[A] {y} 9 4 3 0.80 18.95 0.77836
9 3 8 1.00 1.00

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

2nd iteration

i, j i 1, j

j i, j

(e e 0.92084 0.95max *100% *100% 4.2%
e 0.92084

−− −
= =

3
3 7 9 0.92084 0.92420

[A] {y} 9 4 3 0.77836 18.623 0.77331
9 3 8 1.00 1.00

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

3rd iteration

a
0.92084 0.95 *100% 0.75%

0.92084
−

ε = =
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POWER METHOD Numerical Example

After 10 iterations:

0.92251
{x} 0.77301

1.00

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

a 0.00033%ε =18.622λ =
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Engineering Applications of Eigenvalue Problems

1.  Natural periods & modes of vibration of dynamic systems 
and structures. Boundary-value problem from separation of 
variables:

2

2 2
y(x, t) ym a force m(x) k(x)

t x
∂ ∂

∗ = ⇒ =
∂ ∂

If one assumes  y(x,t) = exp(iωt) u(x)  

then displacement function u(x) satisfies ODE:

– ω2 u(x)  =  [k(x)/m(x)] d2u/dx2

which may be written:   a(x) d2u/dx2 + ω2 u(x)  =  0

With a FD approximation of u,xx = d2u/dx2 this becomes:  

[A] {ui}  =  – ω2 {ui}
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Engineering Applications of Eigenvalue Problems

2. Buckling loads and modes of structures (C&C 27.2.3, p. 762)

Deflection of vertically loaded beam with horizontally 
constrained end:  

EI y'' – Py = 0;  y(0) = 0;  y(L) = 0. 

Is there deflection?

3. Directions and values of principal stresses.

4. Directions and values of principal moments of inertia.

5. Condition numbers linear systems of equations.  

6. Stability criteria for numerical solution of PDE’s.

7. Other problems in which "principal values" are sought.
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Engineering Applications of Eigenvalue Problems

Matrix Form of Eigenvalue Problem

[A] {x}  =  λ {x}

( [A] – λ [I] ) {x}  = 0 but want {x} ≠ 0

Computation of Eigenvalues and Eigenvectors

1. Power and Inverse Power method for largest and smallest 
eigenvalues. (C&C 27.2.5, p. 767)

2. Direct numerical algorithms:  Jacobi, Given, Householder, and

QR factorization.  (C&C 27.2.6, p. 770)

3.  Use of characteristic polynomial for “toy” problems. (C&C 
27.2.4, p. 765)
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Engineering Applications of Eigenvalue Problems

Power Method for the largest Eigenvalue

Compute  xt+1 = A xt /  || xt ||

for larger and larger t to estimate largest λ(A).

Always works for Symmetric A.
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Eigenvalue Problems: Power Method

Inverse Power Method for the smallest Eigenvalue

Compute  xt+1 = B xt /  || xt ||

for larger and larger t to estimate largest λ(B).

Here B = A-1.  Eigenvalues of B are inverse of those of A.

BUT WE DO NOT COMPUTE A-1 !   (Don’t do it.)

Instead use LU decomposition of A.
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Engineering Applications of Eigenvalue Problems

Shifting method for any Eigenvalue:

Suppose we want to compute eignvector whose eigenvalue is about δ.

Let B = (A – δ I)-1 and compute  xt+1 = B xt /  ||  xt ||

for larger and larger t to estimate largest λ[ (A – δ I) -1].

This will compute the eignvalue nearest to δ !
But we DO NOT COMPUTE INVERSE. Use LU decomposition.

If A has eigenvector-value pairs (ei, λi),

(A – δ I) ei = A ei – δ  I eI = λi ei– δ ei = ( λi – δ ) ei

Thus shifted matrix has same eignvectors ei as A with shifted 
eigenvalues ( λi – δ ).

Hence (A – δ I)-1 has eigenvalues ( λi – δ )-1.


