
Engineering Computation 1

Numerical Solution of
Ordinary Differential

Equations

Engineering Computation 2

Ordinary Differential Equations

Most fundamental laws of Science are based on models that explain
variations in physical properties and states of systems described
by differential equations.

Several examples of laws appear in C&C PT 7.1 and are applied in
Ch. 28 --

• Newton's 2nd law:

• Fourier's heat law:

• Fick's diffusion law

• Faraday's law:

velocity(v), force (F), and mass (m)

heat flux (q), temperature (T), and
thermal conductivity (k ')

mass flux (j), concentration (c) and
diffusion coefficient (D)

voltage drop (ΔV), inductance (L)
and current (i)

dv F
dt m

=

dTq k '
dx

= −

dcj D
dx

= −

i
diV L
dt

Δ =

Engineering Computation 3

Differential Equation Basics

ODE's Ordinary Differential Equations
Only one independent variable, i.e., x as in y(x):
2

2
2

d y y g(x)
dx

+ ω =

dy f (y, t)
dt

=

1-dimensional problem in space x

time-dynamics problem

PDE's Partial Differential Equations
More than one independent variable, i.e., x and y as in T(x,y):

2 2

2 2
T T 0

x y
∂ ∂

+ =
∂ ∂
2 2

2
2 2
u uc 0

t x
∂ ∂

= =
∂ ∂

Laplace Equation

Wave Equation u = u(x,t)

Engineering Computation 4

Auxiliary Conditions

Auxiliary Conditions
Because we are integrating an indefinite integral, we need
additional information to obtain a unique solution. Note that an
nth order equations generally requires n auxiliary conditions.

• Initial Value Problem (IV)
Information at a single value of the independent variable, typically
at the beginning of the interval:

y(0) = yo

• Boundary Value Problem (BV)
Information at more that one value of the independent variable,
typically at both ends of the interval:

y(0) = yo and y(1) = yf

Engineering Computation 5

Outline of our Study of ODE's

I. Single-Step Methods for IV Problems (C&C Ch. 25)
a. Euler
b. Heun and Midpoint/Improved Polygon
c. General Runge-Kutta
d. Adaptive step-size control

II. Stiff ODEs (C&C 26.1)

III. Multi-Step Methods for IV Problems (C&C 26.2)
a. Non-Self-Starting Heun
b. Newton-Cotes
c. Adams

IV. Boundary Value (BV) Problems (C&C Ch. 27.1 & 27.2)
a. Solution Methods

1. Shooting Method
2. Finite Difference Method

b. Eigenvalue Problems { [A] – λ [I] } {x} = {0}

Engineering Computation 6

ODE's: One-step methods

One-Step Methods for IV Problems
Consider the generic first-order initial value (IV) ODE problem:

dy f (x, y)
dx

= where (xo,yo) are given
and we wish to find y = y(x)

The independent variable x
may be space x,

or time t.

Engineering Computation 7

ODE's: One-step methods

We can solve higher-order IV ODE's
by transforming to a set of 1st-order ODE's,

2

2
d y dy 5y 0

dxdx
+ + =

Now solve a SYSTEM of two linear, first order ordinary
differential equations:

dy z
dx

= dzand z 5y
dx

= − −

dy dzLet z & substitute z 5y 0
dx dx

= → + + =

Engineering Computation 8

ODE's: first order IV problem - One-step methods

The basic approach to numerical solution is stepwise:
Start with (xo,yo) => (x1,y1) => (x2,y2) => etc.
Next Value = Previous Value + slope × step size

yi+1 = yi + φi × h

h = xi+1 – xi = step size

Key to the various one-step methods is how the slope is obtained.
This slope represents a weighted average of the slope over the
entire interval and may not be the tangent at (xi, yi)

dy f (x, y)
dx

= where (xo,yo) are given and we
wish to find y = y(x).

Engineering Computation 9

Using an estimate of the slope to guess f(xi+1)

Predicted

h

x i x i+1 x

y

True

h

y

Engineering Computation 10

Euler's Method

Given (xi,yi), need to determine (xi+1,yi+1)

xi+1 = xi + h yi+1 = yi + φi h

Estimate the slope as φi = f(xi,yi)

yi+1 = yi + f(xi,yi) h

Analysis Local Error for the Euler Method
Taylor series of true solution: yi+1 = yi + yi' h + yi" h2/2 + …

where yi' = f(xi,yi) = fi
Euler rule:

Truncation error:

Global Error: Ea = G(n,h) O (h2) = O (h)

i 1 i iŷ y f h+ = +

The slope at the beginning of the step
is applied across the entire interval

2
2

a i 1 i 1 i
hˆE y y y " O(h)
2+ += − = =

(local)

Engineering Computation 11

Euler's Method: Graphic example

True solution

Euler's method solution
y(xi+1) = y(xi) + y'(xi)h

y' = - 2x3 + 12x2 - 20x + 8.5
y(xo) = a

a

x

y

h
xo x1

y1

Matlab demo

Engineering Computation 12

Error Analysis
1. Truncation Error (Truncating Taylor Series)

[large step size large errors]
2. Rounding Error (Machine precision)

[very small step size roundoff errors]

Two kinds of Truncation Error:
Local – error within one step due to application of the

numerical method
Propagation – error due to previous local errors.

Global Truncation Error = Local + Propagation

Generally if the local truncation error is O (hn+1) then, as with
numerical quadrature formulas, the global truncation error is
O(hn). (Proof is more difficult.)

General Error Notes:
1. For stable systems, error is reduced by decreasing h
2. If method is O (hn) globally, then it is exact for (n-1)th order

polynomial in x

Engineering Computation 13

Improved One-Step Methods
Heun's Method (simple predictor-corrector)

Notes: 1. Local Error O (h3) and Global Error O (h2)
2. Corrector step can be iterated using εa as stop criterion
3. If derivative is only f(x) and not f(x,y), then the predictor

has no effect and

Predict: yi+1
o = yi + f(xi,yi)h

Estimate the avg. slope as:

Correct: xi+1 = xi + h

o
i i i 1 i 1f (x , y) f (x , y)f

2
+ ++

=

i i 1
i 1 i

f (x) f (x)y y h
2

+
+

+
= +

which is the Trapezoid Rule.

i+1 iy = y + f h

Engineering Computation 14

Euler's Method: Graphic example

True solution

Heun's method solution
y(xi+1) = y(xi) + h [y'(xi)+y'(xi+1)]/2

y' = - 2x3 + 12x2 - 20x + 8.5
y(xo) = a

a

x

y

h
xo x1

y1

Matlab demo

Engineering Computation 15

Midpoint Method (Improved Polygon, Modified Euler)

i 1/ 2 i i i
hy y f (x , y)
2+ = +

• Predict yi+1/2 with a half step:

• Estimate the slope:

slope = f(xi+1/2,yi+1/2) with i+1/2 i
hx = x +
2

• Correct yi+1: yi+1 = yi + f(xi+1/2,yi+1/2) h

Note: Local Error O (h3) and Global Error O (h2)
Error same order as Heun.

Matlab demo

Engineering Computation 16

General Runge-Kutta (RK) Methods
Employing single-step

yi+1 = yi + φ(xi ,yi, h) h
Increment function or slope, φ(xi ,yi,h), is a weighted average:

φ = a1k1i + a2k2i + … + ajkji + … + ankni (nth order method)
where: aj = weighting factors (that sum to unity)

kji = slope at point xji such that xi < xji < xi+1

k1i = f (xi ,yi)
k2i = f (xi + p1h, yi + q11k1ih)
k3i = f (xi + p2h, yi + q21k1ih + q22k2ih)

•
•
•

kni = f (xi + pn-1h, yi + qn-1,1k1ih + qn-1,2k2ih + . . . + qn-1,n-1kn-1,ih)

Engineering Computation 17

Runge-Kutta (RK) Methods

First-order Runge-Kutta Method: Euler's Method
yi+1 = yi + k1 h k1 = f(xi ,yi) a1=1
Has a global truncation error, O (h)

Second-order Runge-Kutta Methods:
Assume a2 = 1/2; Heun's w/ Single Corrector: no iteration

k1 = f(xi ,yi)
k2 = f(xi + h, yi + hk1)

Assume a2 = 1; Midpoint (Improved Polygon)
yi+1 = yi + k2 h same k1

Assume a2 = 2/3; Ralston's Method (minimum bound on Et)
same k1

All have global truncation error, O (h2)

()1 1
i 1 i 1 22 2y y k k h+ = + +

()1 1
2 i i 12 2k f x h, y hk= + +

()1 2
i 1 i 1 23 3y y k k h+ = + + ()3 3

2 i i 14 4k f x h, y hk= + +

Engineering Computation 18

Classical Fourth-order Runge-Kutta Method

Classical Fourth-order Runge-Kutta Method
Employing single-step:

yi+1 = yi + (1/6) [k1 + 2k2 + 2k3 + k4] h

where k1 = f(xi , yi) Euler step
k2 = f(xi + h/2 , yi + k1h/2) Midpoint
k3 = f(xi + h/2 , yi + k2h/2) Better midpoint
k4 = f(xi + h , yi + k3h) Full step

1. Global truncation error, O (h4)
2. If the derivative, f, is a function of only x, this

reduces to Simpson's 1/3 Rule.

yi+1 = yi + h (k1 + 2k2 + 2k3 + k4)/6 where k2 = k3
Matlab demo

Engineering Computation 19

Examples of Frequently Encountered, Simple ODE's

2. Exponential decay
discharge of a capacitor,
decomposition of material in a river,
wash-out of chemicals in a reactor, and
radioactive decay

1. Exponential growth
unconstrained growth of biological organisms,
positive feedback electrical systems, and
chemical reactions generating their own catalyst)

dy = λ y
dt

with solution y(t) = y0 e λ t

dy = -λ y
dt

with solution y(t) = y0 e - λ t

Engineering Computation 20

Classical Fourth-order Runge-Kutta Method -- Example
Numerical Solution of the simple differential equation

y’ = + 2.77259 y with y(0) = 1.00; Solution is y = exp(+2.773 x) = 16x

Step sizes vary so that all methods use the same number of
functions evaluations to progress from x = 0 to x = 1.

4th-order
Exact Heun Runge- h * ki

x Solution Euler w/o iter Kutta for R-K
0.000 1.000 1.000 1.000 1.000
0.125 1.414 1.347 1.386
0.250 2.000 1.813 1.933 2.347
0.375 2.828 2.442 3.013
0.500 4.000 3.288 3.738 3.945 5.564
0.625 5.657 4.427 5.469
0.750 8.000 5.962 7.227 9.260
0.875 11.31 8.028 11.89
1.000 16.00 10.81 13.97 15.56 21.95

h = 0.125 0.25 0.5

Engineering Computation 21

Classical Fourth-order Runge-Kutta Method – Example (cont.)
4th-order

Exact Heun Runge- h * ki
x Solution Euler w/o iter Kutta for R-K

0.0000 1.0000 1.0000 1.0000
0.0625 1.1892 1.1733 0.6931
0.1250 1.4142 1.3766 1.4066 0.9334
0.1875 1.6818 1.6151 1.0166
0.2500 2.0000 1.8950 1.9786 1.9985 1.3978
0.3125 2.3784 2.2234 1.3853
0.3750 2.8284 2.6087 2.7832 1.8653
0.4375 3.3636 3.0608 2.0317
0.5000 4.0000 3.5911 3.9149 3.9940 2.7935
0.5625 4.7568 4.2134 2.7684
0.6250 5.6569 4.9436 5.5068 3.7279
0.6875 6.7272 5.8002 4.0604
0.7500 8.0000 6.8053 7.7460 7.9820 5.5829
0.8125 9.5137 7.9846 5.5327
0.8750 11.314 9.3683 10.8958 7.4502
0.9375 13.454 10.992 8.1147
1.0000 16.000 12.896 15.326 15.952 11.157

h = 0.0625 0.125 0.25 Matlab demo

Engineering Computation 22

Classical Fourth-order Runge-Kutta Method

In each case, all three RK methods used the same number
of function evaluations to move from 0.00 to 1.00.

Which was able to provide the more accurate estimate of
y(1)?

Engineering Computation 23

Higher-Order ODEs and Systems of Equations (C&C 25.4,
p.711)
• An nth order ODE can be converted into a system of n, coupled 1st-

order ODEs.
• Systems of first order ODEs are solved just as one solves a single

ODE.

Consider the 4th-order ODE:
f(x) = y'''' + a(x) y''' + b(x) y'' + c(x) y' + d(x) y

Let: y''' = v3; y'' = v2; and y' = v1

Write this 4th order ODE as a system of four coupled 1st order ODEs:

1

1 2

2 3

3 3 2 1

y v
v vd
v vdx
v f (x) a(x)v b(x)v c(x)v d(x)y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠

Engineering Computation 24

Higher-Order ODEs and Systems of Equations (C&C 25.4,
P. 711)

Given the initial conditions @ x = 0:
y(0); v1 = y'(0); v2 = y''(0); v3 = y'''(0),

a numerical scheme can be used to integrate this system forward in

time.

1

1 2

2 3

3 3 2 1

dy / dx v
dv / dx v
dv / dx v
dv / dx f (x) a(x)v b(x)v c(x)v d(x)y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠

Engineering Computation 25

Example: Harmonically Driven Oscillator

Example: Single-degree-of-freedom, undamped, harmonically
driven oscillator (see also C&C 28.4, p. 797)

ODE is 2nd order:
2

2
2

d x P(t)x
mdt

+ ω =
2

2
d xm kx P(t)
dt

+ = or

2T π
=

ω = natural period

m = mass
k = spring constant
P(t) = forcing function = P sin(γt)

i.e., harmonically driven

k
m

ω = = circular frequency

Engineering Computation 26

Example: Harmonically Driven Oscillator

= (homogeneous soln.) + (particular soln.)

2
2

2
d x P(t)x

mdt
+ ω =

Analytical solution:

Initial conditions: x(0) = 0 and dx (0) 0
dt

=

2 2 2 2
P Px(t) sin(t) sin(t)

m() m()
− γ

= ω + γ
ω ω − γ ω − γ

Engineering Computation 27

Example: Harmonically Driven Oscillator

with x(0) = 0

with v(0) = 0

2
2

2
d x P(t)x

mdt
+ ω =

Recast the 2nd-order ODE as two 1st-order ODEs):

dx v f (t, x, v)
dt

= =

2dv Psin(t) x g(t, x, v)
dt m

γ
= − ω =

Engineering Computation 28

Example: Harmonically Driven Oscillator – Euler Method

We can solve these two 1st-order ODE's sequentially.
Let m = 0.25, k = 4π2, P = 20, γ = 8,
Thus g = 80 sin(8t) - 16π2x. Solve from t = 0 until t = 1.

For example, by the Euler method, with h = 0.01:

2
2

2
d x P(t)x

mdt
+ ω = dx v f (t, x, v)

dt
= =

2dv Psin(t) x g(t, x, v)
dt m

γ
= − ω =

t x v
t0 = 0 x0 = 0 v0 = 0
t1 = t0 + h = 0.01 x1 = x0 + f(t0,x0,v0)h = 0 v1 = v0 + g(t0,x0,v0)h = 6.39

t2 = t1 + h = 0.02 x2 = x1 + f(t1,x1,v1)h = 0.0639 v2 = v1 + g(t1,x1,v1)h = 12.75

...
tn = tn-1 + h xn = xn-1 + f(tn-1,xn-1,vn-1)h vn = vn-1 + g(tn-1,xn-1,vn-1)hMatlab demo

Engineering Computation 29

Adaptive Step-size Control (C&C 25.5, p. 710)

Goal: with little additional effort estimate (bound) magnitude of
local truncation error at each step so that step size can be
reduced/increased if local error increases/decreases.

1. Repeat analysis at each time step with step length h and h/2.
Compare results to estimate local error. (C&C 25.5.1) Use
Richardson extrapolation to obtain higher order result.

2. Use a matched pair of Runge-Kutta formulas of order r and
r+1 which use common values of ki, and yield estimate or
bound local truncation error.

C&C 25.5.2 discuss 4th-5th-order Runge-Kutta-Fehlberg pair.

Engineering Computation 30

A 2nd – 3rd order RK pair yielding local truncation error estimate:
2nd-order Midpoint Method O(h2):

k1 = f(xi ,yi); k2 = f(xi + 1/2h, yi + 1/2hk1)
yi+1 = yi + k2 h

Third-order RK due to Kutta O(h3) (C&C 25.3.2)
k3 = f(xi + h, yi +h(2k2– k1))
yi+1* = yi + h(k1 +4k2+ k3)

Estimate of truncation error for midpoint formula is
Ei = yi+1 – yi+1* = – h(k1 - 2k2+ k3)

This is a central difference estimate of (const.) h3 y'''
which describes the local truncation error for midpoint method.

Use more accurate values yi+1*, but Ei provides estimate of the local
error that can be used for step-size control.

Engineering Computation 31

Stiff Differential Equations (C&C 26.1, p. 719)

A stiff system of ODE’s is one involving rapidly changing
components together with slowly changing ones. In many cases,
the rapidly varying components die away quickly, after which the
solution is dominated by the slow ones.

Even simple first-order ODE’s can be stiff. C&C gives the example:

1000 3000 2000 tdy y e
dt

−= − + −

With initial conditions y(0) = 0 and with solution

1000() 3 0.998 2.002t ty t e e− −= − −
Fast term Slow term

Engineering Computation 32

Stiff Differential Equations

In the solution

We would need a very small time step h = Δt to capture the

behavior of the rapid transient and to preserve a stable and accurate

solution, and this would then make it very laborious to compute the

slowly evolving solution.

the middle term damps out very quickly and after it does, the slow

solution closely follows the path:

1000() 3 0.998 2.002t ty t e e− −= − −

() 3 2 ty t e−≈ −

Matlab demo

Engineering Computation 33

Stiff Differential Equations
A stability analysis of this equation provides important insights. For
a solution to be stable means that errors at any stage of computation
are not amplified but are attenuated as computations proceed. To
analyze for stability, we consider the homogeneous part of the ODE

Assume some small error exists in the initial condition y0 or in an
early stage of the solution. Then we see that after n steps,

Euler's method yields

dy ay
dt

= − with solution 0() aty t y e−=

1 (1)i
i i i i i

dyy y h y ay h y ah
dt+ = + = − = −

0 (1)n
ny y ah= − Bounded iff |(1-ah) | < 1, i.e., h < 2/a

Matlab demo

Engineering Computation 34

Stiff Differential Equations

Euler’s method is known as an explicit method because the derivative
is taken at the known point i. An alternative is to use an implicit
approach, in which the derivative is evaluated at a future step i+1.
The simplest method of this type is the backward Euler method that
yields

1
1 1 1 1

i i
i i i i i

dy yy y h y ay h y
dt ah

+
+ + += + = − ⇒ =

+
Because 1/(1+ah) will remain bounded for any (positive) value
of h, this method is said to be unconditionally stable.

Implicit methods always entail more effort than explicit
methods, especially for nonlinear equations or sets of ODE’s, so
the stability is gained at a price. Moreover, accuracy still
governs the step size.

Engineering Computation 35

Systems of Stiff Differential Equations
What to do?
Need to be aware of the potential for encountering stiff ODE’s.
Use special codes for solving stiff differential equations which
are generally implicit multistep methods.
For example, MATLAB has some methods specifically designed
to solve stiff ODE’s, e.g., ode23S.

Engineering Computation 36

Predictor-Corrector Multi-Step Methods for ODE's
• Utilize valuable information at previous points.
• For increased accuracy, use a predictor that has truncation of

same order as corrector. In addition iterate corrector to
minimize truncation error and improve stability.

Non-Self Starting (NSS) Heun Method
O (h3)-Predictor – yi+1

o = yi-1
m + f(xi,yi

m) 2h
Higher order predictor than the self-starting Heun.
This is an open integration formula (midpoint).

O (h3)-Corrector –
ii 1

m j 1
j m i i i 1 i 1f (x , y) f (x , y)y y h

2+

−
+ ++

= +

Notes: 1. Corrector is applied iteratively for j=1, ..., m
2. yi

m is fixed (from previous step iterations)
3. This is a closed integration formula (Trapezoid)

Engineering Computation 37

Multi-step methods
Two general schemes solving ODE's:
1. Newton-Cotes Formulas

n 1
n 1

i n k i k
k 0

i 1 n 1
n 1

i n 1 k i k 1
k 0

y h c f O(h) open predictor
y

y h c f O(h) closed corrector

−
+

− −
=

+ −
+

− + − +
=

⎧
+ +⎪

⎪= ⎨
⎪ + +⎪
⎩

∑

∑

with ck from Table 21.4, and from Table 21.2 of C&C.

2. Adams Formulas (Generally more stable)
n 1

n 1
k i k

k 0
i 1 i n 1

n 1
k i k 1

k 0

open predictor
h f O(h)

Adams - Bashforth
y y

closed corrector
h f O(h)

Adams - Moulton

−
+

−
=

+ −
+

− +
=

⎧
β +⎪

⎪= + ⎨
⎪ β +⎪
⎩

∑

∑
with βk and determined from Tables 26.1 and 26.2, respectively.

kc

kβ

Engineering Computation 38

Popular Multi-Step Methods

1. Heun non-self starting –– Newton-Cotes with n=1

2. Milne's –– Newton-Cotes with n=3 (but use Hamming’s
corrector for better stability properties)

3. 4th-Order Adams
• Predictor 4th-Order Adams-Bashforth
• Corrector 4th-Order Adams-Moulton

If predictor and corrector are of same order, we can obtain
estimates of the truncation error during computation.

Engineering Computation 39

Improving Accuracy and Efficiency (use of modifiers)
1. provide criterion for step size adjustment (Adaptive Methods)
2. employ modifiers determined from error analysis

For Non-self-Starting (NSS) Heun:
• Final Corrector Modifier

()m 0
c i 1 i 1

1 ˆE y y
5 + += − −

m 0
m m i 1 i 1
i 1 i 1

ˆy yy y
5

+ +
+ +

−
← −

• Predictor Modifier (excluding 1st step)

()m 0
p i i

4 ˆE y y
5

= − ()0 0 m 0
i 1 i 1 i i

4ˆ ˆ ˆy y y y
5+ +← + −

with = unmodified from previous step

= unmodified from previous step

0
iŷ
m
iy

0
i+1ŷ
m
i+1y

Engineering Computation 40

General Predictor-Corrector Schemes
Errors cited are local errors. Global errors order h smaller.

Predictors:

Euler:
= yi + hƒ(xi, yi) + O(h2)

Midpoint (same as Non-Self-Starting Heun):
= yi-1 + 2hƒ(xi, yi) + O(h3)

Adams-Bashforth 2nd-Order:
= yi + h/2{3ƒ(xi, yi) –ƒ(xi-1, yi-1)} + O(h3)

Adams-Bashforth 4th-Order:
= yi + h/24{55ƒ(xi, yi) –59ƒ(xi-1, yi-1) +37ƒ(xi-2, yi-2) –9ƒ(xi-3, yi-3) } + O(h5)

Hamming (and Milne's Method):
= yi-3 + 4h/3{2ƒ(xi, yi) –ƒ(xi-1, yi-1) +ƒ(xi-2, yi-2)} + O(h5)

1ŷi+

1ŷi+

1ŷi+

1ŷi+

1ŷi+

Engineering Computation 41

Correctors:
• refine value of yi+1 given a
• more stable numerically – no spurious solutions which go out

of control

Adams-Moulton 2nd-Order closed (Non-self starting Heun):
yi+1 = yi + h/2{ƒ(xi+1,) +ƒ(xi, yi)} + O(h3)

Adams-Moulton 4th-Order closed (relatively stable):
yi+1 = yi + h/24{9ƒ(xi+1,) –19ƒ(xi, yi) – 5ƒ(xi-1, yi-1) + ƒ(xi-2, yi-2) } + O(h5)

Milne's (N.C. 3-point, Simpson's 1/3 Rule, not always stable!!!):
yi+1 = yi-1 + h/3{ƒ(xi+1,) + 4ƒ(xi, yi) +ƒ(xi-1, yi-1)} + O(h5)

Hamming (modified Milne, stable):
yi+1 = 9/8 yi – 1/8 yi-2 + 3h/8{ƒ(xi+1,) + 2ƒ(xi, yi) +ƒ(xi-1, yi-1)} + O(h5)

1ŷi+

1ŷi+

1ŷi+

1ŷi+

1ŷi+

Engineering Computation 42

Predictor-Corrector solution

Example: Undamped, harmonically driven oscillator
2

2
d xm kx P(t)
dt

+ =

2T π
=

ω
= natural period

m = mass
k = spring constant
P(t) = forcing function = P sin(γ t)
γ = driving frequency

k
m

ω = = circular frequency

Analytical solution:

Initial conditions: x(0) = 0 and dx (0) 0
dt

=

2 2 2 2
P Px(t) sin(t) sin(t)

m() m()
− γ

= ω + γ
ω ω − γ ω − γ

Engineering Computation 43

Predictor-Corrector solution: Undamped, harmonic oscillator
2

2
d xm kx P(t)
dt

+ =

Recast 2nd-order ODE as two 1st-order ODE's:

Let m = 0.25, k = 4π2, P = 20, γ = 8,
thus: g = 80 sin(8t) - 16π2x

Use 4th-ord. Adams Method to solve from t=0 until t=1 w/ h=0.1

with x(0) = 0

with v(0) = 0

dx v f (t, x, v)
dt

= =

2dv Psin(t) x g(t, x, v)
dt m

γ
= − ω =

Engineering Computation 44

Predictor-Corrector solution: Undamped, harmonic oscillator
2

2
d xm kx P(t)
dt

+ =

First, we need start-up values. Use 4th-order RK to get 4 points:

0.49490.86920.3
5.14010.53240.2
2.62340.10380.1
0.00000.00000.0

y(t)x(t)t

Engineering Computation 45

Predictor-Corrector solution: Undamped, harmonic oscillator

Second, the Adams-Bashforth 4th-order predictor is:

Example :

We apply this predictor to both x and v:

x(0.4) = x(0.3) + [55(0.4949) - 59(5.1401) + 37(2.6234) - 9(0.0)] =

= 0.1235

v(0.4) = v(0.3) + (0.1/24) [55 g(0.3, 0.8692, 0.4949)

– 59 g(0.2, 0.5324, 5.1401)

+ 37 g(0.1, 0.1038, 2.6234) – 9 g(0,0,0)] = – 11.2492

where dv/dt = g(t, x, v) = 80 sin 8t – 16π2 x

{ } 5
i 1 i i i i 1 i 1 i 2 i 2 i 3 i 3

hy y 55f (x , y) 59f (x , y) 37 f (x , y) 9f (x , y) O(h)
24+ − − − − − −= + − + − +

Engineering Computation 46

Predictor-Corrector solution: Undamped, harmonic oscillator

Third, the Adams-Moulton 4th-order corrector is:

We apply the corrector to both x and v to obtain the 1st iteration:

x(0.4) = x(0.3) + (0.1/24) [9 (-11.2492) + 19(0.4949)

– 5(5.1401) + (2.6234)] = 0.8169

v(0.4) = v(0.3) + (0.1/24) [9 g(0.4, 0.1235, -11.2492)

+ 19 g(0.3,...) ...] = -6.7435

where dv/dt = g(t, x, v) = 80 sin 8t – 16π2 x

We then can iterate until convergence:

x(0.4) = 0.8169, 0.842862, 0.843847, 0.843834,...

v(0.4) = -6.7435, -10.84973, -11.00371, -11.00949,...

Do the Second and Third tasks for each successive step.

{ } 5
i 1 i i 1 i 1 i i i 1 i 1 i 2 i 2

hy y 9f (x , y) 19f (x , y) 5f (x , y) f (x , y) O(h)
24+ + + − − − −= + + − + +

Engineering Computation 47

Numerical Methods for ODE's

Advantages of Runge-Kutta [such as O(h4) formula]
· simple to apply
· self-starting (single-step)
· easy to change step size
· always stable (all h)
· can use matched pairs of different order to estimate local

truncation error

Advantages of Predictor-Correctors
[such as Adams-Moulton Formula of O(h4)]
• without iteration is twice as efficient as Runge-Kutta 4th-Order

• local truncation error is easily estimated from difference so we
can adjust step sizes and apply modifiers

For same step sizes, error terms are reasonably similar.

Engineering Computation 48

Summary

Single-step
Euler
Heun
Mid-point
RK4

Multi-step (predictor-corrector)
Non-self-starting Heun
Milne (Newton-Cotes n=3)
Adams (Adams-Bashford, Adams-Moulton)

Stiffness - stability

Adaptive methods – local error estimates – modifiers
Half step
RK Fehlberg

Engineering Computation 49

Outline of our Study of ODE's
I. Single-Step Methods for I.V. Problems (C&C Ch. 25)

a. Euler
b. Heun and Improved Polygon
c. General Runge-Kutta
d. Adaptive step-size control

II. Stiff ODEs (C&C 26.1)

III. Multi-Step Methods for I.V. Problems (C&C 26.2)
a. Non-Self-Starting Heun
b. Newton-Cotes
c. Adams

IV. Boundary Value Problems (C&C Ch. 27.1 & 27.2)
a. Solution Methods

1. Shooting Method
2. Finite Difference Method

b. Eigenvalue Problems { [A] – l [I] } {x} = {0}

Engineering Computation 50

ODE's – Boundary Value Problems

Recall: Unique solution to an nth-order ODE
requires n given conditions

Conditions for a 2nd-order ODE (requires 2 given conditions):
Initial value problem

y(xo) = yo
y'(xo) = y'o

Boundary value problem
y(xo) = yo
y(xf) = yf

Beam Equation:

Engineering Computation 51

Beam Equation

Sailboat mast deflection problem
4

4
d v f (z)

EIdz
= (Euler-Bernoulli Law of Bending)

at the base of mast: v(0) = 0; v'(0) = 0;
at the top of mast: v''(L) = 0; v'''(L) = 0

where: E = Modulus of Elasticity (material property)
I = Moment of Inertia (geometry of material)

f(z) = wind pressure at height z
v(x) = deflection (displacement) from vertical

z = height
E I v'' = moment
E I v''' = shear (applied force)

Engineering Computation 52

ODE's – Boundary Value Problem

Solve for the steady-state
temperature distribution in the rod

For a given TL and TR < TL

TL TR

Ta

(C&C 27.1)

()
2

2 a
d T h T T
dx

′= −

Engineering Computation 53

ODE's – Boundary Value Problem – Shooting Method

Solve =
2

2
d y f (x, y, y ')
dx

=

1. Convert 2nd-Order ODE to two 1st-Order ODE's
dy z
dx

=
dz f (x, y, z)
dx

=

given y(xo) = yo and y(xf) = yf

2. Given initial condition, y(xo) = yo,
estimate (best guess) the initial condition z(xo) = zo

(1)

3. Solve ODE using the assumed initial values from x = xo to x = xf
using stepping methods. Because we estimated the initial
conditions for z(xo); will find y(xf) ≠ yf

Engineering Computation 54

ODE's – Boundary Value Problem – Shooting Method

4. Re-estimate initial condition z(xo) = zo
(2), and again solve the

assumed initial value ODE from x = xo to x = xf.

Because we estimated the I.C. z(xo), y(xf) ≠ yf.

5. Interpolate or extrapolate to find the "correct" z(xo) = zo

Given yf, (yf
(1), z0

(1)), and (yf
(2), z0

(2)):

()
(2) (1)

(1) (1)o o
o o f f(2) (1)

f f

z zz z y y
y y

−
= + −

−

If ODE is linear, zo is the correct solution

If ODE in nonlinear, iterate until yf
(h) ≈ yf

[This equation

is not in C&C

in general form]

Engineering Computation 55

Boundary Value Problem: Classical Shooting Method

Example: Single-degree-of-freedom, undamped, harmonically
driven oscillator (see also C&C 28.4, p. 797)

ODE is 2nd order:
2

2
2

d x P(t)x
mdt

+ ω =
2

2
d xm kx P(t)
dt

+ = or

2T π
=

ω = natural period

m = mass
k = spring constant
P(t) = forcing function = P sin(γ t)

k
m

ω = = circular frequency

Now, we are given boundary conditions:

x(0) = 0 and x(1) = 0.5

(that is, the initial condition v = dx/dt at t = 0 is unknown, v0)

Engineering Computation 56

Boundary Value Problem: Classical Shooting Method

Use the Shooting Method by employing a 4th-order RK
2

2
2

d x P(t)x
mdt

+ ω =

with x(0) = 0

with v(0) = v0

Recast the 2nd-order ODE as two 1st-order ODEs:

dx v f (t, x, v)
dt

= =

2dv Psin(t) x g(t, x, v)
dt m

γ
= − ω =

Let m = 0.25, k = 4π2, P = 20, γ = 8,
and thus g(t, x, v) = 80 sin(8t) - 16π2x.

Engineering Computation 57

Boundary Value Problem: Classical Shooting Method

Use 4th-ord. RK Method to solve from t=0 until t=1 w/ h=0.1.
1. Guess v(0) = 1.0
2. Find x(1) = 0.91687 (Note: not equal to 0.5)
3. Guess v(0) = 100
4. Find x(1) = 0.09332
5. Because our ODE is linear, we can always interpolate yields

the required initial value.

100 1.0v(0) (0.5 0.91687)
0.09332 0.91687

−
= − =

−
51.113

6. With v(0) = 51.113, check for x(1) = 0.5000 OK

Engineering Computation 58

Finite Difference Method

• The shooting method is inefficient for higher-order equations
with several boundary conditions.

• Finite Difference method has advantage of being direct (not
iterative) for linear problems, but requires the solution of
simultaneous algebraic equations.

• • • • • • •• •1 2 30 ii-1 i+1 n
n+1. . .

xo x f
Δx = h

x
. . .

Engineering Computation 59

Finite Difference Method

Approach:
1. Divide domain to obtain n interior discrete points

(usually evenly spaced @ h).
2. Write a finite difference expression for the ODE at each

interior point.
3. Use known values of y at x = xo and x = xf

4. Set up n linear equations with n unknowns. System is banded
and often symmetric, so solve with an efficient method.

Note: If higher-order FDD equations and/or centered
differences are used, you may need to employ
imaginary or "phantom" points outside of domain to
express B.C.'s (together with appropriate FD versions
of B.C.'s).

Engineering Computation 60

Finite Difference Method

Sailboat mast deflection problem
4

4
d v f (z)

EIdz
= (Euler-Bernoulli Law of Bending)

at the base of mast: v(0) = 0; v'(0) = 0;
at the top of mast: v''(L) = 0; v'''(L) = 0

where: E = Modulus of Elasticity (material property)
I = Moment of Inertia (geometry of material)

f(z) = wind pressure at height z
v(x) = deflection (displacement) from vertical

z = height
E I v'' = moment
E I v''' = shear (applied force)

Engineering Computation 61

Finite Difference Method

Sailboat mast deflection problem:
4

4
d v f (z)v

EIdz
′′′′= =

at the base (z = 0): v(0) = 0; v'(0) = 0;
at the top (z = L): v''(L) = 0; v'''(L) = 0

4
i 2 i 1 i i 1 i 2

4 4
d v v 4v 6v 4v vv ''''
dx h

− − + +− + − +
= ≈

3
i 2 i 1 i 1 i 2

3 3
d v v 2v 2v vv '''
dx 2h

− − + +− + − +
= ≈

2
i 1 i i 1

2 2
d v v 2v vv ''
dx h

− +− +
= ≈

i 1 i 1dv v vv '
dx 2h

−− += ≈

[dist. load,f(z)]/EI

(shear)/EI

(bending moment)/EI

(slope)

Engineering Computation 62

Finite Difference Method

Sailboat mast deflection problem:
4

4
d v f (z)

EIdz
=

at the base: v(0) = 0; v'(0) = 0;
at the top: v''(L) = 0; v'''(L) = 0

Mast with 11 Nodes

v(0)
given

Use equation:

Imaginary
Node

Use v'(0) to
get in terms

of v(1)

4

4
d v f (z)

E Idz
=

Imaginary Nodes

Use v''(L) = 0
to get in terms
of v(9) & (10)

Use v'''(L) = 0
to get in terms

of other v's

0 1 2 3 4 5 6 7 8 9 10

Engineering Computation 63

Finite Difference Method

@ pt. i: vi-2 – 4 vi-1 + 6 vi – 4 vi+1 + vi+2 = h4 f(xi)/EI

Using h = L/10, write the FD equations at points 1, 2, 9 and 10:

@ i = 1 v-1 – 4 v0 + 6 v1 – 4 v2 + v3 = h4 f(x1)/EI (1)

@ i = 2 v0 – 4 v1 + 6 v2 – 4 v3 + v4 = h4 f(x2)/EI (2)

@ i = 9 v7 – 4 v8 + 6 v9 – 4 v10 + v11 = h4 f(x9)/EI (3)

@ i = 10 v8 – 4 v9 + 6 v10 – 4 v11 + v12 = h4 f(x10)/EI (4)

We now need to eliminate v–1, v0, v11, and v12

with the four boundary conditions

4

4
d v f (z)

EIdz
=

Engineering Computation 64

Finite Difference Method
4

4
d v f (z)

EIdz
=

8 9 11 12
3

v 2v 2v v 0
2h

− + − +
=

9 10 11
2

v 2v v 0
h

− +
=

1 1v v 0
2h

−− =

Eliminating v–1, v0, v11, and v12 with the
four Boundary conditions

v(0) = 0: v0 = 0

v'(0) = 0: v-1 = v1

v''(L) = 0: v11 = 2v10 + v9

v'''(L) = 0: v12 = v8 - 4v9 + 4v10

Engineering Computation 65

Finite Difference Method
4

4
d v f (z)

EIdz
= We substitute these into equations (1) to (4) to

eliminate the unknowns at the “imaginary” points

v0 = 0 v-1 = v1
v11 = 2v10 + v9 v12 = v8 - 4v9 + 4v10

@ i = 1 7 v1 – 4 v2 + v3 = h4f(x1) / EI (1a)

@ i = 2 – 4 v1 + 6 v2 – 4 v3 + v4 = h4 f(x2)/ EI (2a)

@ i = 9 v7 – 4 v8 + 5 v9 – 2 v10 = h4f(x9) / EI (3a)

@ i = 10 v8 – 4 v9 + 2 v10 = h4f (x10)/ EI (4a)

Engineering Computation 66

Finite Difference Method

v f (x)1 1
v f (x)2 2
v f (x)3 3
v f (x)4 4

4v f (x)5 5
v f (x)6 6
v f (x)7 7
v f (x)8 8
v f (x)9 9
v10

7 -4 1
4 6 -4 1

1 4 6 4 1
1 -4 6 -4 1

1 -4 6 -4 1 h f
1 -4 6 -4 1 EI

1 -4 6 -4 1
1 -4 6 -4 1

1 -4 5 -2
1 -4 2

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥− ⎪ ⎪⎢ ⎥

− − ⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎪ ⎪ =⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥

⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭ f (x)10

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

Engineering Computation 67

Finite Difference Method

Once we have solved for all the vi, we can obtain secondary
results such as bending moments and shear forces by substituting
the finite-divided-difference operators and the values of the vi
into such equations as:

M = EI v''
V = EI v'''

For more refined results, we can use a smaller h and more
segments.

Engineering Computation 68

Merits of Different Numerical Methods for ODE Boundary Value
Problems

• Shooting method

Conceptually simple and easy.
Inefficient for higher-order systems w/ many boundary

conditions.
May not converge for nonlinear problems.
Can blow up for bad guess of initial conditions.

• Finite Difference method
Stable
Direct (not iterative) for linear problems.
Requires solution of simultaneous algebraic eqns.
More complex.

FD better suited for eigenvalue problems.

Engineering Computation 69

Engineering Applications of Eigenvalue Problems
Natural periods and modes of vibration of structures and dynamical systems.

(C&C Ex. 27.4, p. 761)

Application: determination of the natural frequencies of a system

Example: A mass-spring system with three identical (frictionless) masses connected by
three springs with different spring constants.

M M M

x1 x2 x3
3k 2k k

The displacement of each spring is measured relative to its own local coordinate
system with an origin at the spring's equilibrium position.

2
1

1 1 22
d xm 3kx 2k(x x)
dt

= − − −
2

2
2 1 2 32

d xm 2k(x x) k(x x)
dt

= − − − −
2

3
3 22

d xm k(x x)
dt

= − −

Engineering Computation 70

Engineering Applications of Eigenvalue Problems

If one assumes that x has the form:

xi = ai cos ω t ; d2x/dt2 = - ω2 ai cos ω t

Then, with λ = m ω2 / k , the governing equations become:

2

1 1 2 1 2 1
m a 5a 2a 5a 2a a

k
ω

− = − + ==> − = λ

2

2 1 2 3 1 2 3 2
m a 2a 3a a 2a 3a a a

k
ω

− = − + ==> − + − = λ

2

3 2 3 2 3 3
m a a a a a a

k
ω

− = − ==> − + = λ

Engineering Computation 71

Engineering Applications of Eigenvalue Problems

1 2 1 1 1

1 2 3 2 2 2

1 2 3 3 3

5a 2a a 5 2 0 a a
2a 32a a a 2 3 1 a a

a a a 0 1 1 a a

− = λ −⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥− + − = λ ==> − − = λ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− + = λ −⎣ ⎦ ⎩ ⎭ ⎩ ⎭

[A] {x} =λ {x}

1

2

3

5 2 0 a
or 2 3 1 a 0

0 1 1 a

− λ −⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥− − λ − =⎨ ⎬
⎢ ⎥ ⎪ ⎪− − λ⎣ ⎦ ⎩ ⎭

[A – I λ] {x} = 0

Engineering Computation 72

Engineering Applications of Eigenvalue Problems

For a non-trivial solution:

det [A – I λ] = 0 find
5 2 0

det 2 3 1 0
0 1 1

− λ −⎡ ⎤
⎢ ⎥− − λ − =
⎢ ⎥− − λ⎣ ⎦

(5 – λ) [(3 – λ)(1 – λ) – (–1)(–1)] – 2 [(–1)(0) – (–2)(1 – λ)] = 0

(5 – λ) [2 – 4 λ + λ2] – 2 [2 – 2 λ] = 0

6 – 18 λ + 9 λ2 – λ3 = 0

The three solutions of the cubic equation are the three eigenvalues:

λ1 = 6.29 λ2 = 2.29 λ3 = 0.42

Fast oscillation Slow oscillation

The determinant yields a cubic equation for λ:

Engineering Computation 73

Engineering Applications of Eigenvalue Problems

i 1i

i 2i

i 3i

5 2 0 a
2 3 1 a 0

0 1 1 a

− λ −⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥− − λ − =⎨ ⎬
⎢ ⎥ ⎪ ⎪− − λ⎣ ⎦ ⎩ ⎭

Because this is a homogeneous equation, we can only find
the relative values of the ai's. For λ1 = 6.29

The corresponding eigenvectors {ai} are found by solving:

1i

2i

3i

5 6.29 2 0 a
2 3 6.29 1 a 0

0 1 1 6.29 a

− −⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥− − − =⎨ ⎬
⎢ ⎥ ⎪ ⎪− −⎣ ⎦ ⎩ ⎭

2

1

a 0.645
a

= − 3

1

a 0.122
a

=

Engineering Computation 74

Engineering Applications of Eigenvalue Problems

Only the relative values of the ai's are significant. Thus setting
a1 = 1.00 we have:

2

1

a 0.645
a

= − 3

1

a 0.122
a

=

{ }1

for = 6.29

1.000
a 0.645

0.122

λ

⎧ ⎫
⎪ ⎪= −⎨ ⎬
⎪ ⎪
⎩ ⎭

Fast

{ }

2

2

 for = 2.29

0.74
a 1.000

0.77

λ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪−⎩ ⎭

{ }

2

2

for = 0.42

0.25
a 0.55

1.000

λ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

Slow

Engineering Computation 75

Engineering Applications of Eigenvalue Problems

Thus, there are 3 possible natural frequencies.

Recall that the frequency is defined as

[A] {x} = λ {x}

[A – I λ] {x} = 0

det [A – I λ] = 0 ==> find λ

• If [A] is n x n, there are n eigenvalues λ i
and n eigenvectors {x}i

• If [A] is symmetric, the eigenvectors are orthogonal:

k
m
λ

ω =

{x}i
T {x}j = 0 if j ≠ i

= 1 if j = i

Engineering Computation 76

POWER METHOD for Eigenvector Analysis
(An iterative approach for solving for eigenvalues & eigenvectors)

Assume that a vector {y} can be expressed as a linear combination
of the eigenvectors:

{ }
n

1 1 2 2 n n i i
i 1

{y} = b {x } + b {x } + . . . + b {x } = b x
=
∑

Multiplying the above equation by [A] yields:

{ } { }
n n

i i i i i
i 1 i 1

[A] {y} = b [A] x = b x
= =

λ∑ ∑
Ordering the λ i so that | λ 1| > | λ 2| > | λ 3| > . . . > | λ n|

{ } { }
n

i i
1 1 1 i i

1 1i 2

Then [A] {y} = b x b x where 1
=

⎛ ⎞⎛ ⎞λ λ⎜ ⎟λ + <⎜ ⎟⎜ ⎟λ λ⎝ ⎠⎝ ⎠
∑

Engineering Computation 77

POWER METHOD for Eigenvector Analysis
Multiplying the equation by [A] again, we have:

Repeating this process m times:

{ } { }
2n

22 i
1 1 1 i i

1i 2

[A] {y} = b x b x
=

⎛ ⎞⎛ ⎞λ⎜ ⎟λ + ⎜ ⎟λ⎜ ⎟⎝ ⎠⎝ ⎠
∑

{ } { }
mn

mm i
1 1 1 i i

1i 2

[A] {y} = b x b x
=

⎛ ⎞⎛ ⎞λ⎜ ⎟λ + ⎜ ⎟λ⎜ ⎟⎝ ⎠⎝ ⎠
∑

i

1
Since 0 for all i 1 as m ==> ,

⎛ ⎞λ
==> ≠ ∞⎜ ⎟λ⎝ ⎠

then [A]m {y} λ1
m b1{x1}

Since we can only know the relative values of the elements of {x},
we may normalize {x}. If {x} is normalized such that the largest
element is equal to {1}, then is the first eigenvalue, λ1

Engineering Computation 78

POWER METHOD Numerical Example

Find the maximum eigenvector. Initial guess: {y}T = {1 1 1}

1 1

2 2

3 3

3 7 9 x x
9 4 3 x x
9 3 8 x x

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ = λ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

3 7 9 1 19 0.95
[A]{y} 9 4 3 1 16 20 0.80

9 3 8 1 20 1.00

⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= = ==>⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

Approx. eigen-
eigenvalue vector

Engineering Computation 79

POWER METHOD Numerical Example

Approximate error, εa:

2
3 7 9 0.95 0.92084

[A] {y} 9 4 3 0.80 18.95 0.77836
9 3 8 1.00 1.00

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

2nd iteration

i, j i 1, j

j i, j

(e e 0.92084 0.95max *100% *100% 4.2%
e 0.92084

−− −
= =

3
3 7 9 0.92084 0.92420

[A] {y} 9 4 3 0.77836 18.623 0.77331
9 3 8 1.00 1.00

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

3rd iteration

a
0.92084 0.95 *100% 0.75%

0.92084
−

ε = =

Engineering Computation 80

POWER METHOD Numerical Example

After 10 iterations:

0.92251
{x} 0.77301

1.00

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

a 0.00033%ε =18.622λ =

Engineering Computation 81

Engineering Applications of Eigenvalue Problems

1. Natural periods & modes of vibration of dynamic systems
and structures. Boundary-value problem from separation of
variables:

2

2 2
y(x, t) ym a force m(x) k(x)

t x
∂ ∂

∗ = ⇒ =
∂ ∂

If one assumes y(x,t) = exp(iωt) u(x)

then displacement function u(x) satisfies ODE:

– ω2 u(x) = [k(x)/m(x)] d2u/dx2

which may be written: a(x) d2u/dx2 + ω2 u(x) = 0

With a FD approximation of u,xx = d2u/dx2 this becomes:

[A] {ui} = – ω2 {ui}

Engineering Computation 82

Engineering Applications of Eigenvalue Problems

2. Buckling loads and modes of structures (C&C 27.2.3, p. 762)

Deflection of vertically loaded beam with horizontally
constrained end:

EI y'' – Py = 0; y(0) = 0; y(L) = 0.

Is there deflection?

3. Directions and values of principal stresses.

4. Directions and values of principal moments of inertia.

5. Condition numbers linear systems of equations.

6. Stability criteria for numerical solution of PDE’s.

7. Other problems in which "principal values" are sought.

Engineering Computation 83

Engineering Applications of Eigenvalue Problems

Matrix Form of Eigenvalue Problem

[A] {x} = λ {x}

([A] – λ [I]) {x} = 0 but want {x} ≠ 0

Computation of Eigenvalues and Eigenvectors

1. Power and Inverse Power method for largest and smallest
eigenvalues. (C&C 27.2.5, p. 767)

2. Direct numerical algorithms: Jacobi, Given, Householder, and

QR factorization. (C&C 27.2.6, p. 770)

3. Use of characteristic polynomial for “toy” problems. (C&C
27.2.4, p. 765)

Engineering Computation 84

Engineering Applications of Eigenvalue Problems

Power Method for the largest Eigenvalue

Compute xt+1 = A xt / || xt ||

for larger and larger t to estimate largest λ(A).

Always works for Symmetric A.

Engineering Computation 85

Eigenvalue Problems: Power Method

Inverse Power Method for the smallest Eigenvalue

Compute xt+1 = B xt / || xt ||

for larger and larger t to estimate largest λ(B).

Here B = A-1. Eigenvalues of B are inverse of those of A.

BUT WE DO NOT COMPUTE A-1 ! (Don’t do it.)

Instead use LU decomposition of A.

Engineering Computation 86

Engineering Applications of Eigenvalue Problems

Shifting method for any Eigenvalue:

Suppose we want to compute eignvector whose eigenvalue is about δ.

Let B = (A – δ I)-1 and compute xt+1 = B xt / || xt ||

for larger and larger t to estimate largest λ[(A – δ I) -1].

This will compute the eignvalue nearest to δ !
But we DO NOT COMPUTE INVERSE. Use LU decomposition.

If A has eigenvector-value pairs (ei, λi),

(A – δ I) ei = A ei – δ I eI = λi ei– δ ei = (λi – δ) ei

Thus shifted matrix has same eignvectors ei as A with shifted
eigenvalues (λi – δ).

Hence (A – δ I)-1 has eigenvalues (λi – δ)-1.

