
Evolutionary tabu search for flexible due-date satisfaction in fuzzy job shop scheduling

Camino R. Velaa, Sezin Afsara, Juan José Palaciosa, Inés González-Rodrı́guezb, Jorge Puentea

aDepartment of Computing, University of Oviedo, (Spain)
bDept. of Mathematics, Statistics and Computing, University of Cantabria, (Spain)

Abstract

We consider the job shop scheduling problem with fuzzy sets modelling uncertain durations and flexible due dates. With the goal
of maximising due-date satisfaction under uncertainty, we first give a new measure of overall due-date satisfaction in this setting.
Then, we define a neighbourhood structure for local search, analyse its theoretical properties and provide a neighbour-estimation
procedure. Additionally, a tabu search procedure using the neighbourhood is combined with a genetic algorithm, so the resulting
memetic algorithm, guided by the defined due-date satisfaction measure, is run on a set of benchmarks. The obtained results
illustrate the potential of our proposal.

Keywords: Scheduling, Fuzzy Sets, Metaheuristics, Due dates, Tabu search
2010 MSC: 90B40, 90B99, 68T20, 68T37

1. Introduction

Scheduling problems are pervasive in a growing number of
application domains. One of the most relevant problems in this
family is the job shop, since it is considered to be a good model
for many practical applications as well as posing a challenge
due to its complexity [1].

Even though the most common objective is to find solutions
with minimum makespan, due-date satisfaction is receiving in-
creasing attention in recent years [2, 3]. On-time fulfilment
emerges as a primary goal in modern pull-oriented supply chain
systems and keeping job due dates is a prerequisite for serving
customers within the promised delivery time and avoiding out-
of-stocks or delay-compensation costs. Hence the importance
of considering due-date satisfaction measures that help compa-
nies increase their logistic service and create competitive ad-
vantage.

Traditionally, it has been assumed that scheduling takes place
in static and certain environments. However, for many real-
world scheduling problems design variables are subject to per-
turbations or changes, causing optimal solutions to the original
“ideal” problem to be of little or no use in practice. It is also
common to handle all constraints as sharp, while in some cases
there is certain flexibility and constraints are better expressed in
terms of preference, so it is possible to satisfy them to a certain
degree.

A source of uncertainty in scheduling is activity durations.
Within the great diversity of approaches to this issue, fuzzy sets
and possibility theory provide an interesting framework, with
a tradeoff between the expressive power of probability and its

Email addresses: crvela@uniovi.es (Camino R. Vela),
afsarsezin@uniovi.es (Sezin Afsar), palaciosjuan@uniovi.es
(Juan José Palacios), gonzalezri@unican.es (Inés
González-Rodrı́guez), puente@uniovi.es (Jorge Puente)

associated computational complexity and knowledge demands.
Fuzzy sets can also be used to model flexibility or gradeness in
certain management constraints such as due dates [4]. In fact,
in one of the earliest works considering flexible due dates, it is
argued that scheduling over long horizons under strict tempo-
ral constraints may lead to rejecting an efficient schedule even
when the violation of these constraints is insignificant, while in
practice, constraints are often relaxable to some extent or sub-
ject to preferences [5]. For instance, when due dates are agreed
between the manufacturer and the customer, it is contemplated
that the product may not be delivered on time subject to penal-
ties for the manufacturer, usually dependent on the tardiness
and often proportional to the contract prices [6]. Even in the
absence of tardiness penalties, there may be a due time which
the customer feels is the most satisfactory delivery time and af-
ter which the customer’s satisfaction decreases (with unwanted
consequences for the manufacturer’s reputation). Fuzzy sets
provide a suitable and popular framework for representing such
flexibility and preferences in temporal constraints, as shown by
the abundant references in two recent reviews on fuzzy shop
scheduling [7, 8].

In the literature we find some successful applications of
fuzzy due dates to real-world problems. Perhaps the earliest
example [9] is the building of a course schedule in a French
“Grand École” where flexible constraints (such as ending dates
for some courses) are modelled using fuzzy sets. In [6], fuzzy
due dates are used to model gradual penalisation and decreas-
ing satisfaction degrees for completion times in a Just-In-Time
production planning approach for One-of-a-Kind product Man-
ufacturing (OKM) systems, in an approach specifically de-
signed for the computer-integrated manufacturing system of a
Blower Works manufacturer in China. A real-life production
scheduling problem from an apparel manufacturer is consid-
ered in [10] The problem arises in a fabric cutting department

Preprint submitted to Computers and Operations Research March 2, 2020

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina
Following Elsevier Sharing Policy, this work is lincensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

https://creativecommons.org/licenses/by-nc-nd/4.0/
Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines Gonzalez
Texto escrito a máquina
Author's copy of
C. R. Vela, S. Afsar, J.J. Palacios, I. González-Rodríguez, J. Puente,
Evolutionary tabu search for flexible due-date satisfaction in fuzzy job shop scheduling,
Computers & Operations Research (2020)
DOI of published final version: 10.1016/j.cor.2020.104931

Ines
Texto escrito a máquina

https://doi.org/10.1016/j.cor.2020.104931
Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

feeding sewing assembly lines downstream, where fabric cut-
ting jobs belonging to different production orders have to be
processed on one of the parallel spreading tables so that de-
mand from downstream sewing lines can be timely fulfilled.
Trapezoidal fuzzy sets are used to model due dates determined
by the factory manager for different production orders, repre-
senting the managerial preference regarding different values of
production order completion time. A genetic algorithm is used
to generate just-in-time fabric-cutting schedules. Experimen-
tal results on two sets of real production data demonstrate that
the genetically optimized schedules improve the internal satis-
faction of downstream production departments and reduce the
production cost simultaneously. Fuzzy due dates are also used
in [11] to represent a decision maker (in this case, a produc-
tion manager) satisfaction degree with respect to job comple-
tion times in a multiobjective single machine scheduling prob-
lem. This models a real-world situation arising in a pottery
manufacturing company where the single machine is in fact a
kiln and meeting due dates is important because further pro-
cessing of the products is carried out after their firing in the
kiln. A genetic algorithm combined with tabu search is applied
to find a schedule that maximise two different aggregated due-
date satisfaction grades. In [12], the problem under considera-
tion is a job shop scheduling problem which involves batching
and lot-sizing in a printing company from the UK that involves
18 machines grouped into 7 work centres. Fuzzy sets are used
to represent due dates that are flexible and allow the decision
maker to express his/her attitude toward the tardiness of jobs:
jobs are classified into three groups according to their prior-
ity and the the fuzzy job due dates represent the corresponding
tolerance to a delay with respect to the originally set due date.
Also, triangular fuzzy numbers are used to model uncertain pro-
cessing times that stem from staff-operated machines. A fuzzy
rule-based system is used to decide on the lot sizing, whereas
the fuzzy job shop problem is solved with a genetic algorithm.
More recently, [13] tackles a single machine scheduling prob-
lem that arises from a cable manufacturing system where cables
are produced in different sizes and colours using raw materials
of copper and plastic cover on a single machine/system. Fuzzy
due dates model increasing penalties associated to the tardiness
with respect to an original ideal due date and a greedy algorithm
hybridised with variable neighbourhood search and simulated
annealing is proposed to solve the resulting method.

The variant of job shop scheduling problem with fuzzy dura-
tions and, optionally, fuzzy due dates, is called fuzzy job shop.
Most contributions in the literature concentrate on minimising
the project’s makespan, but some authors have addressed the
maximisation of due-date satisfaction, either on its own or in a
multiobjective setting, combined with makespan [7].

Metaheuristics are widely recognised as efficient approaches
for many hard optimisation problems [14]. Hybrid metaheuris-
tic approaches combining different algorithmic techniques have
proved very successful in tackling complex problems of com-
binatorial nature [15]. Among these, memetic algorithms
(MAs) benefit from the interplay between their global and local
search components while they try to exploit specific or heuristic
knowledge of the problem at hand [16, 17]. Several metaheuris-

tic approaches, including hybrid ones, have been proposed for
the fuzzy job shop [7, 18].

In this paper, we intend to advance in the study of the fuzzy
job shop scheduling problem, and in particular, in metaheuristic
local search methods to maximise due-date satisfaction when
uncertain task durations and flexible due dates are fuzzy sets.

1.1. Related work
In the development of solving approaches, local search meth-

ods, either on their own or combined with other metaheuris-
tics, provide some of the most competitive solutions to dif-
ferent variants of the job shop problem. In particular, tabu
search is a component of most of the state-of-the-art methods
for makespan minimisation: it is combined with scatter search
for the flexible job shop scheduling problem [19], with a genetic
algorithm for the flexible job shop with setup times [20], with
a genetic algorithm and heuristic seeding for the fuzzy flexi-
ble job shop problem [21] and with simulated annealing for the
classical job shop problem [22]. Some theoretical and exper-
imental analysis of the landscape of the solution space for the
job shop scheduling problem is presented in [23], trying to shed
some light into the success of tabu search for this problem.

The state-of.the-art methods for the deterministic job shop
with total weighted tardiness, probably the most used objec-
tive related to due-date satisfaction in classical job shop, are
also metaheuristics incorporating local search: the Genetic Lo-
cal Search from [24] which combines a genetic algorithm with
an iterated local search, the Hybrid Shifting Bottleneck with
Tabu Search approach proposed in [25], the Hybrid Genetic Al-
gorithm with Tabu Search from [26], and the Extended GRASP
algorithm presented in [27].

When scheduling takes place in uncertain environments,
fuzzy sets, in particular fuzzy numbers, have been used to
model uncertain processing times. After the seminal papers
[5, 28], many variants of fuzzy job shop have appeared in the
literature, and many contributions have been proposed for solv-
ing all these variants (cf. the reviews in [7, 8, 18]). The simu-
lated annealing algorithm from [29] and the genetic algorithm
from [30] constitute two landmarks in the application of meta-
heuristic methods to the fuzzy job shop. Currently, some of the
most competitive methods for fuzzy makespan minimisation in
job shop problems are the genetic algorithm from [31] and the
memetic algorithm from [18].

For problems with fuzzy durations and fuzzy due dates, the
degree to which a job’s fuzzy completion time satisfies the flex-
ible due-date measured as a degree of subsethood (called agree-
ment index after [30]) has provided the basis for the most typ-
ical objective functions. Maximising the minimum agreement
index has been the objective function of different metaheuris-
tics: random-key genetic algorithm [31], scatter search method
[32], hybrid discrete imperialist competition algorithm [33] and
memetic algorithm [34]. There are also methods aimed at max-
imising the average agreement index: the memetic algorithm
from [34], the co-evolutionary method from [35], here for a
fuzzy job shop with multi-process routes, and the multiobjec-
tive genetic algorithm from [36], which also attempts to min-
imise the number of tardy jobs. There are also several multi-

2

objective approaches that attempt to maximise the minimum or
the average agreement index together with minimising of the
makespan: with a fuzzy decision making approach [37, 38], a
lexicographical approach [39] or a Pareto-front approximation
approach [40–42].

The state-of-the-art methods for agreement index maximisa-
tion depend on the test bed and also on the actual objective func-
tion considered. For the classical benchmark from [37] and [30]
and minimum agreement index maximisation, the most com-
petitive methods are the hybrid discrete imperialist competition
method from [33] and the memetic algorithm from [34]. For the
same objective function, on harder instances, the memetic algo-
rithm from [43] outperforms the memetic algorithm from [34]
and also provides significantly better results than two multi-
meme algorithm hybridised with local search. In [39] and [34]
minimum and average agreement index values are reported for
another set of instances. In fact, almost full due-date satisfac-
tion is reached with these methods, suggesting there is no room
for improvement in this area. However, in [34] and [43] new re-
sults on fuzzy instances built from harder classical determinis-
tic job shop instances make it clear that the problem of due-date
satisfaction is far from being solved.

2. The fuzzy job shop problem

The classical job shop scheduling problem, JSP in short,
consists in scheduling a set of jobs {J1, . . . ,Jn} on a set
{M1, . . . ,Mm} of physical resources or machines, subject to a
set of constraints. There are precedence constraints, so each
job J j, j = 1, . . . ,n, consists of m j ≤ m tasks {θ j1, . . . ,θ jm j} to
be sequentially scheduled. Also, there are capacity constraints,
whereby each task θ jk requires the exclusive use of one of the
machines with a processing time p jk. Non-preemption and no-
recirculation are assumed, meaning that the execution of a task
cannot be interrupted and two tasks in the same job cannot re-
quire the same machine. Additionally, each job J j has a due
date d j by which it is desirable that the job be completed. A so-
lution to this problem is a schedule s, i.e. an allocation of start-
ing time s jk for each task θ jk, which is feasible (in the sense that
all precedence and resource constraints hold) as well as optimal
according to some criterion, in our case, maximal due-date sat-
isfaction.

2.1. Fuzzy durations and flexible due dates

In real-life applications, it is difficult, if not impossible, to
foresee in advance the exact time it will take to process a task.
It is reasonable however to have some incomplete knowledge
about the duration, possibly based on previous experience. The
crudest representation of such uncertain knowledge would be
a human-originated confidence interval and, if some values ap-
pear to be more plausible than others, then a natural extension
is a fuzzy interval or fuzzy number. The simplest model is a tri-
angular fuzzy number or TFN, denoted â = (a1,a2,a3), given
by an interval [a1,a3] of possible values and a modal value
a2 ∈ [a1,a3], so its membership function takes the following

a1 a3

â = (a1, a2, a3)

Figure 1: Membership function of a triangular fuzzy number â.

triangular shape, illustrated in Figure 1:

µâ(x) =





x−a1

a2−a1 : a1 ≤ x≤ a2

x−a3

a2−a3 : a2 < x≤ a3

0 : x < a1 or a3 < x

(1)

Triangular fuzzy numbers (or, more generally, fuzzy intervals)
are widely used in scheduling as a model for uncertain process-
ing times [4, 7, 18].

The sum and maximum of fuzzy numbers, needed to handle
them in the job shop, are usually defined by extending the corre-
sponding operations on real numbers. The resulting addition is
pretty straightforward, so for any pair of TFNs â and b̂ we have
â + b̂ = (a1 + b1,a2 + b2,a3 + b3). Computing the extended
maximum is not that simple and the set of TFNs is not even
closed under this operation. Hence, it is common in the fuzzy
scheduling literature to approximate the maximum of two TFNs
as max(â, b̂) ≈ (max{a1,b1},max{a2,b2},max{a3,b3}). Be-
sides its extended use, several arguments can be given in favour
of this approximation (cf. [18]).

Finally, it is possible to compute the expected value of a TFN
â as

E[â] =
1
4
(a1 +2a2 +a3). (2)

Notice that the expected value is linear with respect to addition
and multiplication by a scalar quantity [44].

Regarding due dates, there is often certain flexibility. Con-
sider the case where there is a preferred delivery date d1, but
some delay may be allowed up to a later date d2. Satisfying the
due-date constraint thus becomes a matter of degree. A fuzzy
set d̃ = (d1,d2) can be used to model such gradual satisfaction
level with a decreasing membership function:

µd̃(x) =





1 : x≤ d1

x−d2

d1−d2 : d1 < x≤ d2

0 : d2 < x

(3)

This expresses a flexible threshold “less than”, representing the
satisfaction level sat(t) = µd̃(t) for the ending date t of the
job [4], depicted in Figure 2.

2.2. The disjunctive graph model representation
For the deterministic job shop with makespan minimisation

as objective, the disjunctive graph representation provides the
basis for many heuristic solving methods [45]. Consequently,
variants of the model that cope, among others, with crisp due-
date tardiness or lateness and with uncertain durations have

3

d1 d2

d̃

Figure 2: Membership function of a flexible due date d̃.

been proposed [1–3, 46]. Here we build on these to provide
a model for the fuzzy job shop with flexible due dates.

A disjunctive graph is a directed graph G = (V,A∪D) repre-
senting a problem instance. Each node in the set V either rep-
resents a task or is a start 0 node or an end node e j, 1 ≤ j ≤ n,
corresponding to dummy tasks with null processing times. Arcs
in A are called conjunctive arcs and represent job-precedence
constraints, including directed arcs from node 0 to the first task
of each job and arcs from the last task of each job j to the corre-
sponding end node e j. Arcs in D are called disjunctive arcs and
represent resource constraints, so D is partitioned into subsets
Dk, D = ∪k=1,...,mDk, where Dk includes an arc for each pair
of tasks requiring machine Mk. All arcs are weighted with the
processing time of the task at the source node (a TFN in our
case).

Finding a solution to the fuzzy JSP essentially consists in es-
tablishing partial task processing orders on all machines, rep-
resented by a linear processing order σ or an acyclic sub-
graph G(σ) of G, G(σ) = (V,A ∪ R(σ)), where R(σ) =
∪k=1...mRk(σ), Rk(σ) being a hamiltonian selection of Dk. This
is often referred to as solution graph. A feasible schedule (start-
ing and completion times of all tasks) may be easily computed
by simply propagating constraints in G(σ) using the sum and
maximum of TFNs.

In the deterministic case, critical paths (longest paths from
the start node to an end node) play an important role in the de-
sign of heuristic methods. Extending the notion of criticality
to the problem with fuzzy durations is not trivial, with diverse
proposals co-existing in the literature (cf. [4, 29]). Here we fol-
low [46] and, given a solution graph G(σ), consider three par-
allel solution graphs Gi(σ), i = 1,2,3, with identical structure
to G(σ) but where the cost of any arc (x,y) is pi

x, the i-th com-
ponent of the processing time p̂x for the task at the source node
x. Weights in each parallel graph Gi(σ) are deterministic, so a
critical path in Gi(σ) for a job j is the longest path from node
0 to node e j. The set of critical paths in G(σ) is defined as the
union of critical paths in Gi(σ), i = 1,2,3. Critical nodes and
arcs are those in a critical path. Unlike the deterministic case,
the union set of critical paths from 0 to e j for all j = 1, . . . ,n is
not a tree.

Let σ be a task processing order and for every task x with
processing time p̂x, let PMx(σ) and SMx(σ) denote respectively
the tasks preceding and succeeding x in the machine sequence
provided by σ (in R(σ)), and let PJx and SJx denote respec-
tively the predecessor and successor tasks of x in the job se-
quence (in A). We define the head r̂x(σ) of task x as the starting

time of x, a TFN given by:

r̂x(σ) = max{r̂PJx(σ)+ p̂PJx , r̂PMx(σ)(σ)+ p̂PMx(σ)}, (4)

where r̂s(σ) = 0. It corresponds to the length of a longest path
in G(σ) from 0 to x. We also define the tail of task x relative to
j, denoted q̂x, j(σ) , as:

q̂x, j(σ) = max{q̂SJx, j(σ)+ p̂SJx , q̂SMx(σ), j(σ)+ p̂SMx(σ)}, (5)

where q̂e j ,l(σ) = 0 if l = j and −∞ otherwise and
q̂SMx(σ), j(σ) = −∞ if x is the last task to be processed in its
machine. The tail represents the time left after x until a job is
completed, i.e., the length of a longest path in G(σ) from the
successors of x to the job’s end node. Notice that the tail of a
task x w.r.t. j needs to be computed even if x does not belong to
job J j and it is trivial, −∞, when there is no path from x to e j.
When there is no confusion regarding the processing order, we
may simply write r̂x and q̂x, j.

Let ĉx(σ) and ĉ j(σ) denote respectively the completion
times of a task x and job j (or simply ĉx and ĉ j). Clearly,
ĉx = r̂x + p̂x and ĉ j = r̂e j . For each parallel graph Gi(σ), ri

x
is the length of the longest path from node 0 to node x and
qi

x, j + pi
x is the length of the longest path from node x to node

e j if this path exists. Hence, for all i, ri
x + pi

x, j +qi
x is the length

of the longest path from node 0 to node e j through node x in
Gi(σ); it is a lower bound of the i-th component of ĉ j, being
equal to ci

j if node x belongs to a critical path in Gi(σ) for J j.
The following properties ensue trivially from the definition.

Proposition 1. If an arc v = (x,y) is critical for some job J j,
then ∃i such that ri

x + pi
x = ri

y. A task x is critical for some job
J j if and only if ∃i such that ri

x + pi
x +qi

x, j = ci
j.

2.3. Due-date satisfaction for fuzzy schedules

The schedule obtained from a task processing order σ is
fuzzy in the sense that the starting and completion times of all
tasks are TFNs, interpreted as possibility distributions on the
values that the times may take. In particular, every job’s com-
pletion time is no longer a real number but a TFN ĉ, so the de-
gree to which ĉ satisfies a due-date constraint d̃ may no longer
be measured by direct evaluation of µd̃ .

The most common approach to this problem is to use the
so-called agreement index or AI [7], which essentially corre-
sponds to the degree of subsethood of the completion time into
the due date. However, treating both the due date and the com-
pletion time equally can be objected to since they have very dif-
ferent meanings, with one of them modelling uncertainty while
the other one models flexibility. Also, fuzzy schedules can be
seen as predictive or a-priori schedules, found when the dura-
tion of tasks is not exactly known and a set of possible scenar-
ios must be taken into account [38]. At this stage, the degree of
due-date satisfaction can only be approximated; only after tasks
have been executed according to the ordering provided by the
schedule and real durations are known can the actual due-date
satisfaction degree be measured. The agreement index thus cor-
responds to an estimate of the due-date satisfaction degree that

4

would be obtained after execution, but it tends to be excessively
optimistic (and innacurate) since it ignores the information pro-
vided by the portion of ĉ outside the support of the due date
d̃.

We propose instead an alternative measure that takes into ac-
count the different nature of fuzzy completion times and fuzzy
due dates and also considers all possible realisations of the job
completion time.

Definition 1. Let ĉ be a fuzzy job completion time and let d̃ be
a flexible due date. The expected satisfaction degree (ESD) of
d̃ by ĉ is defined as

ESD(ĉ, d̃) = µd̃(E[ĉ]). (6)

The ESD corresponds to the degree to which the expected com-
pletion time E[ĉ] satisfies the due date d̃. This estimate ranges
between 0, when the due date is not expected to be satisfied at
all, and 1, when it is expected that the due date is fully satisfied.
It is illustrated in Figure 3. In the case that the completion time
is crisp (absence of uncertainty), ESD becomes the usual mea-
sure of flexible due-date satisfaction given by the membership
function.

0 2 4 6 8 10

ĉ

d̃

E[ĉ]

ESD(ĉ, d̃)

Figure 3: ESD(ĉ, d̃).

Having built a schedule from σ , the expected satisfaction de-
gree ESD(ĉ j(σ), d̃ j), denoted ESD j for short, measures to what
degree the job’s flexible due date d̃ j is satisfied in this schedule,
j = 1, . . . ,n. The overall value of due-date satisfaction for the
schedule can be obtained as the average expected satisfaction
degree

ESDavg(σ) =
1
n ∑

j=1,...,n
ESD j, (7)

a value that needs to be maximised. Accordingly, an optimal
task ordering is one that yields a schedule with maximal value
of ESDavg.

Definition 2. Let Σ be the set of feasible task processing or-
ders. A task processing order σ0 ∈ Σ is said to be optimal for
ESDavg if and only if ESDavg(σ0)=max{ESDavg(σ) : σ ∈ Σ}.

The resulting job shop problem, with fuzzy processing times
and fuzzy due dates, and where the objective is to maximise the
aggregated expected satisfaction degree ESDavg can be denoted
J|p̂ j, d̃ j|ESDavg according to the three-field notation from [47].

2.4. Example

To illustrate the FJSP with due date satisfaction, consider a
problem of n = 3 jobs and m = 2 machines with the follow-
ing matrices for fuzzy processing times, machine allocation and

fuzzy due dates:

p̂ =



(3,4,7) (1,2,3)
(4,5,6) (2,3,4)
(1,2,6) (1,2,5)


ν =




1 2
2 1
2 1


 d̃ =




(4,6)
(10,12)
(10,12)




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

J1 θ11 θ12

J2 θ21 θ22

J3 θ31 θ32

time units

Figure 4: Gantt chart of the schedule represented by the task linear order
θ11 θ21 θ31 θ22 θ12 θ32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

J1 d̃1 ĉ1

J2 d̃2 ĉ2

J3 d̃3 ĉ3

time units

Figure 5: Due dates of jobs and completion times for example of Figure 4

Figure 4 shows the Gantt chart (adapted to TFNs follow-
ing [29]) of the schedule given by the task processing ordering
σ = (θ11 θ21 θ31 θ22 θ12 θ32), using different colours for tasks
in different machines. It depicts the scheduled starting times of
tasks in each job each job computed following (4): for J1, ŝ11 =
(0,0,0), ŝ12 = (5,7,12); for J2, ŝ21 = (0,0,0), ŝ22 = (4,5,7),
and for J3, ŝ31 = (4,5,6), ŝ32 = (6,8,12). Figure 5 shows the
completion times of jobs ĉ1 = (6,9,15), ĉ2 = (6,8,11) and
ĉ1 = (7,10,17) and the corresponding due-dates. It turns out
that ESD1 = 0, ESD2 = 1 and ESD3 = 0.5, so, ESDavg = 0.5.

The solution graph for this example can be seen in Figure 6.

θ11 θ12 e1

0 θ21 θ22 e2

θ31 θ32 e3

(3, 4, 7)

(2, 3, 4)(4, 5, 6)
(1, 2, 6)

(3, 4, 7) (1, 2, 3)

(4, 5, 6) (2, 3, 4)

(1, 2, 6) (1, 2, 5)

Figure 6: Solution graph G(σ) for the processing order σ =
(θ11 θ21 θ31 θ22 θ12 θ32) corresponding to the Gantt chart of Figure 4.
c1(σ) = (6,9,15), c2(σ) = (6,8,11) and c3(σ) = (7,10,17)

5

θ11 θ12 e1

0 θ21 θ22 e2

θ31 θ32 e3

3

24
1

3 1

4 2

1 1

G1. Critical path for job J3 = (s θ21 θ22 θ32 e3). C1
3 = 7

θ11 θ12 e1

0 θ21 θ22 e2

θ31 θ32 e3

4

35
2

4 2

5 3

2 2

G2. Critical path for job J3 = (s θ21 θ22 θ32 e3). C2
3 = 10

θ11 θ12 e1

0 θ21 θ22 e2

θ31 θ32 e3

7

46
6

7 3

6 4

6 5

G3. Critical path for job J3 = (s θ21 θ31 θ32 e3). C3
3 = 17

Figure 7: Parallel graphs corresponding to the graph in Figure 6, with critical
paths in red.

Finally, Figure 7 shows the parallel solutions graphs corre-
sponding to the solution graph of figure 6 with the critical paths
to job J3 highlighted; it is easy to check that the set of those
critical paths is not a tree in this example.

2.5. MILP model

We finish this section on the fuzzy job shop problem with
flexible due date satisfaction by modelling it as a mixed integer
linear program. This will allow us to use a commercial solver,
IBM ILOG CPLEX, to try to solve it.

Let J denote the set of job indices, that is, J = {1, . . . ,n},
let M denote the set of machine indices, M = {1, . . . ,m}, let M j
denote the set of indices of the machines required to process the
tasks of job J j, let nl denote the number of tasks that need to be
processed in the l-th machine, l ∈M, and let W be a sufficiently
large number. Then, a MILP formulation for the fuzzy job shop
with flexible due date satisfaction can be given as follows:

(P1)

max
1
n ∑

j∈J
ESD j (8)

s.t.

∑
i, j∈J
i6= j

xi jl = nl−1 ∀l ∈M j ∩Mi (9)

∑
i∈J
i 6= j

xi jl ≤ 1 ∀ j ∈ J, l ∈M j ∩Mi (10)

∑
j∈J
j 6=i

xi jl ≤ 1 ∀i ∈ J, l ∈M j ∩Mi (11)

sk
jl ≥ sk

il + pk
il−W · (1− xi jl) ∀k ∈ {1,2,3},

i, j ∈ J, l ∈M j ∩Mi (12)

sk
θ ≥ sk

PJθ
+ pk

PJθ
∀k ∈ {1,2,3},θ ∈Θ (13)

0≤ s1
θ ≤ s2

θ ≤ s3
θ ∀θ ∈Θ (14)

xi jl ∈ {0,1} ∀i, j ∈ J, l ∈M j ∩Mi (15)

Here, the binary decision variable xi jl takes value 1 if job i
immediately precedes job j on machine l and is 0 otherwise.
Note that xi jl is defined if a task of job j and a task of job
i are processed on machine l, i.e., if l ∈ M j ∩Mi. Constraint
(9) ensures that exactly nl tasks are processed in each machine
l ∈ M j ∩Mi, while constraints (10) and (11) ensure that each
task has at most one immediate predecessor and one immediate
successor in its machine. According to constraint (12), there
is no overlap in the processing of two consecutive tasks in a
machine. Lastly, constraint (13) enforces the right task order
within jobs and (14) ensures that the three components s1

x ,s
2
x ,s

3
x

of each task starting time actually define a TFN ŝx = (s1
x ,s

2
x ,s

3
x).

3. Tabu search to maximise ESDavg

Generally speaking, a local search starts from a given so-
lution and at each step it selects a promising element from a
neighbourhood structure to replace the current solution, until a
stopping criterion is met. In tabu search, the effectiveness and
efficiency of the exploration is improved by storing some his-
torical information of the search in a so-called tabu list.

Clearly, a key point of any local search is the definition of
a neighbourhood structure. It is also important to have an ef-
ficient means of selecting promising neighbours, in order to
keep the computational cost of the local search within reason-
able bounds. The next subsections describe, respectively, a new
neighbourhood structure for FJSP to maximise ESDavg (includ-
ing some properties thereof) and a procedure for ESDavg esti-
mation. Finally, a third subsection describes the evolutionary
tabu search algorithm that uses the neighbourhood structure and
the estimation procedure to solve the job shop problem.

3.1. Neighbourhood structure
For the classical job shop, a well-known neighbourhood,

which relies on the concept of critical path is that proposed

6

in [48], later extended to the fuzzy case in [46]. In this structure,
neighbours are obtained by reversing single critical arcs.

Based on these, we propose a new neighbourhood structure
for ESDavg maximisation. The intuition is that, for ESDavg to
increase in a neighbouring solution, it must be the case that
at least one of the expected satisfaction degree values ESD j
improves. This occurs only if the due date d j is not yet fully
satisfied and the completion time ĉ j(σ) of the corresponding
job is reduced or, equivalently, the length of the longest path
from the start node 0 to the end node e j in the solution graph is
reduced.

Let CPσ , j denote the set of critical paths for job J j, j =
1, . . . ,n in the solution graph G(σ). An improvement in ĉ j(σ)
(and hence in ESDavg) can only be obtained by reversing ma-
chine arcs belonging to paths in CPσ , j for some j = 1, . . . ,n.
Furthermore, since ESD j ≤ 1 for j = 1, . . . ,n, reducing the
completion time of a job such that ESD j = 1 (i.e., its due date
d̃ j is already fully satisfied) cannot improve ESDavg either.

Proposition 2. Let σ be a feasible processing order, let v be an
arc that is not critical for any job J j such that ESD j(σ)< 1 in
G(σ) and let σ(v) denote the processing order obtained from σ

after reversing arc v in G(σ). Then

∀ j, ESD j(σ(v))≤ ESD j(σ). (16)

PROOF. Let J j be a job such that ESD j(σ)< 1 (if ESD j(σ) =
1, it has reached its upper bound and the result follows trivially).
If v= (x,y) is not critical for j then, for all i∈ 1,2,3, the longest
paths from 0 to e j in Gi(σ) remain paths in Gi(σ(v)) too, so ∀i
ci

j(σ(v))≥ ci
j(σ). Therefore, E[c j(σ(v))]≥ E[c j(σ)] and, since

µd̃ is a decreasing function, ESD j(σ(v))≤ ESD j(σ).

This suggests the following definition:

Definition 3. (Neighbourhood NESD) Let σ ∈ Σ be a feasi-
ble operation processing order. The neighbourhood struc-
ture obtained from σ is given by NESD(σ) = {σ(v) : v ∈
R(σ) is critical for some 1≤ j ≤ n with ESD j(σ)< 1}.

The new neighbourhood NESD has two highly desirable
properties: feasibility and connectivity.

Theorem 1. Let σ ∈ Σ be a feasible task processing order; the
reversal of a critical arc v = (x,y) ∈ R(σ) produces a feasible
processing order, i.e., σ(v) ∈ Σ. In consequence, all neighbours
in NESD(σ) are feasible, that is, NESD(σ)⊂ Σ.

PROOF. If v = (x,y) is critical, by Proposition 1, ∃i,ri
y = ri

x +

pi
x. Suppose by contradiction that G(σ(v)) has a cycle. Since

G(σ) has no cycles and the only change in σ(v) w.r.t. σ has
been the processing order between x and y, having a cycle in
G(σ(v)) means that there must exist an alternative path from x
to y in G(σ). Given the definition of the head r̂y in (4), ∀i we
have ri

y ≥ ri
PJy

+ pi
PJy

. This, together with the existence of an
alternative path from x to y means that

∀i,ri
y ≥ ri

SJx
+ pi

SJx
+ pi

PJy ≥ ri
x + pi

x + pi
SJx

+ pi
PJy

But being critical, there is at least one component k where rk
y =

rk
x + pk

x, and for this k we have rk
x + pk

x ≥ rk
x + pk

x + pk
SJx

+ pk
PJy

,
which is absurd, because all task durations are strictly positive.

Feasibility means that the local search is automatically lim-
ited to the subspace of feasible task orders, thus avoiding fea-
sibility checks and repairing strategies for neighbours. This in-
creases the efficiency of the local search procedure and avoids
the loss of feasible solutions that is usually encountered with
feasibility checking procedures (cf. [49]).

To prove connectivity, we require two preliminary results.

Lemma 1. Let σ ∈ Σ be a feasible task processing order and
let G(σ) = (V,A∪R(σ)) be its solution graph. If σ is not op-
timal for ESDavg, then there exists at least one arc in R(σ) that
is critical for some j with ESD j < 1.

PROOF. By contradiction, suppose there are no critical arcs for
any job in R(σ). This means that all critical arcs for any j
in G(σ) belong to A. Therefore, for all i, every critical path
in Gi(σ) for any j belongs to A, that is, in each Gi(σ) there
exists a critical path to each end node e j where all arcs belong
to A. Clearly, the length of such path in Gi(σ), ci

j(σ), provides
a lower bound for the i-th component of the job’s completion
time for any other solution π: ∀i,ci

j(σ)≤ ci
j(π). Consequently,

ESD j(σ) ≥ ESD j(π),∀π . Since this is the case for every j,
∀π ∈ Σ,ESDavg(σ) ≥ ESDavg(π). Therefore, σ is optimal for
ESDavg.

Suppose instead that R(σ) contains critical arcs but for every
arc v ∈ R(σ) that is critical for some j it holds that ESD j(σ) =
1. Then, since this is an upper bound of ESD, it also holds that
σ is optimal for ESDavg.

Lemma 2. Given σ ∈ Σ a feasible task processing order,
G(σ) = (V,A∪R(σ)) its solution graph and σ0 an optimal pro-
cessing order, let

VESD(σ ,σ0) = {v = (x,y) ∈ R(σ) : v is critical

for some j with ESD j < 1,(y,x) ∈ R(σ0)} (17)

where R(σ0) denotes the transitive closure of R(σ0); i.e.,
VESD(σ ,σ0) is the set of critical arcs (x,y) in NESD(σ) such
that there exists a path from y to x in R(σ0). If VESD(σ ,σ0) = /0
then σ is optimal w.r.t. ESDavg.

PROOF. From Lemma 1, we know that if σ is not optimal for
ESDavg there exists at least one arc in R(σ) critical for some j
such that ESD j < 1.

We now prove that if σ is not optimal for ESDavg, there exists
at least a critical arc for some j with ESD j(σ) < 1 such that
(y,x) ∈ R(σ0).

Indeed, let us suppose that for every job J j such that ESD j <
1 every critical arc for j, v = (x,y) ∈ R(σ) verifies that (x,y) ∈
R(σ0) (i.e. VESD(σ ,σ0) = /0, or equivalently, all critical arcs
belong to the transitive closure R(σ0)). For every j, the set
of critical arcs for j in G(σ) is the union of the set of critical
arcs for j across all parallel disjunctive graphs. Therefore, the

7

assumption means that for all j and for all i, all critical arcs
for j in Ri(σ) belong to the transitive closure Ri(σ0). Hence,
a critical path to e j such that ESD j < 1 , Pi

j, in Gi(σ) is also

critical for j in Gi(σ0) = (V,A∪ Ri(σ0)). Let Qi
j denote an

arbitrary critical path in Gi(σ0) ending in e j and let ‖Qi
j‖ de-

note its length. Since Pi
j is critical for j in Gi(σ0), it holds

∀ j,∀i, ci
j(σ) = ‖Pi

j‖ ≤ ‖Qi
j‖ = ci

j(σ0), that is, ∀ j,ESD j(σ) ≥
ESD j(σ0), so, ESDavg(σ) ≥ ESDavg(σ0). But, since σ0 is
optimal, ESDavg(σ) ≤ ESDavg(σ0). Both inequalities mean
that ESDavg(σ) = ESDavg(σ0) and, hence, σ is optimal w.r.t.
ESDavg.

Theorem 2. NESD verifies the connectivity property: for ev-
ery non-optimal task processing order σ we may build a finite
sequence of transitions of NESD leading from σ to a globally
optimal processing order σ0.

PROOF. Let σ0 be any optimal processing order and let the se-
quence {λk}k≥0 of processing orders be given by λ0 = σ and
λk+1 = λk(v) with v ∈ VESD(λk,σ0). The reversal of an arc in
VESD(λk,σ0) is a move from NESD so, by Theorem 1, ∀k λk ∈ Σ

(i.e., all task processing orders in the sequence are feasible so-
lutions). Let us prove that the above sequence is finite. For any
processing order σ ∈ Σ, we define

M(σ ,σ0) = {v = (x,y) ∈ R(σ) : (y,x) ∈ R(σ0)}

M(σ ,σ0) = {v = (x,y) ∈ R(σ) : (y,x) ∈ R(σ0)}

Clearly, VESD(λk,σ0)⊂M(σ ,σ0)⊂M(σ ,σ0). Let ‖M(σ ,σ0)‖
and ‖M(σ ,σ0)‖ denote their cardinalities. By definition of
λk, if ‖M(λk,σ0)‖> 0 then ‖M(λk+1,σ0)‖= ‖M(λk,σ0)‖−1.
Therefore, for k? = ‖M(σ ,σ0)‖, we have ‖M(λk? ,σ0)‖ = 0.
Since VESD(σ ,σ0) ⊆ M(σ ,σ0) ⊆ M(σ ,σ0), this implies that
VESD(λk? ,σ0) = /0 so, by Lemma 2, λk? is optimal for ESDavg.

Connectivity is important because it ensures the non-
existence of starting points from which a local search proce-
dure using the neighbourhood structure cannot reach a global
optimum. It also ensures asymptotic convergence in probabil-
ity to a global optimum. Additionally, it opens the possibility
of designing an exact branch and bound method for fuzzy job
shop.

3.2. ESD estimation procedure
For a feasible processing order σ , evaluating all the neigh-

bours in NESD(σ) may have a high computational cost. In the
worst case where all arcs in R(σ) are critical, the number of
neighbours |NESD(σ)| is |R(σ)| = ∑

m
k=1 |Rk(σ)|. In a FJSP

problem without reentrant jobs, the greatest possible value for
|Rk(σ)| is n; therefore, NESD(σ) contains at most nm neigh-
bours. In addition, evaluating a neighbour σ(v) obtained after
reversing an arc v in σ in the worst case means recalculating the
starting times of all tasks, with a computational cost in O(nm).
Hence the computational cost of evaluating all neighbours of a
solution is O(n2m2). However this cost can be reduced if an
upper bound of ESDavg can be easily evaluated that allows to
discard non-improving neighbours.

For a processing order σ and tasks x and y, let Pσ , j(x∨ y)
denote the set of all paths to end node e j in G(σ) containing x or
y, Pσ , j(x∧y) denote the set of all paths to e j in G(σ) containing
both x and y and let Pσ , j(¬x) denote de set of all paths to e j in
G(σ) not containing x. Also, for a given set Pj of paths to node
e j, let D[Pj] denote the TFN such that Di[Pj] is given by the
length of the longest path in Pj in the parallel graph Gi if Pj 6= /0
and −∞ otherwise, i = 1,2,3.

Proposition 3. Let σ be a task processing order and let σ(v) be
the order that results after reversing v = (x,y) an arc in G(σ).
Then, the completion time for job j in the new solution is given
by:

c j(σ(v)) = max{D[Pσ(v), j(x∨ y)],D[Pσ , j(¬x)]} (18)

PROOF. For every i = 1,2,3 it holds that ci
j(σ(v)) =

max{Di[Pσ(v), j(x ∨ y)],Di[Pσ(v), j(¬x ∧ ¬y)]}. Since the only
arcs that change from G(σ) to G(σ(v)) are (PMx(σ),x), (x,y),
(y,SMy(σ)), those paths to e j not containing x nor y remain
unchanged, i.e., ci

j(σ(v)) = max{Di[Pσ(v), j(x∨ y)],Di[Pσ , j(¬x∧
¬y)]}. Now, for every path to e j in G(σ) containing y but not
containing x, either it starts in y or it contains (PJy,y) so in any
case the subpath to y is identical in both G(σ) and G(σ(v)). If
the path to e j does not contain SMy, it is still a path to e j in
G(σ(v)) and if it does contain the arc (y,SMy), then substituting
(x,y) by (y,x),(x,SMy) we obtain a longer path to e j in G(σ(v)).
Therefore, Di[Pσ , j(¬x ∧ y)] ≤ Di[Pσ(v), j(x ∨ y)] and we may
rewrite the above expression as ci

j(σ(v)) = max{Di[Pσ(v), j(x∨
y)],Di[Pσ , j(¬x)]}.

Corollary 3. Let r̂′x and r̂′y denote respectively the heads of x
and y and let q̂′x, j and q̂′y, j denote the tails of x and y relative to
j after reversing arc v = (x,y) in G(σ). Then,

LB(ĉ j) =





max{r̂′x + p̂x + q̂′x, j, r̂
′
y + p̂y + q̂′y, j}

if Pσ(v), j(x∨ y) 6= /0
r̂e j(σ) otherwise

(19)

provides a lower bound for the completion time c j of job j
obtained after reversing (x,y) in the sense that for i = 1,2,3
LB(ĉ j)

i ≤ ci
j and hence E[LB(ĉ j)]≤ E[ĉ j]). Consequently,

UB j = ESD(LB(ĉ j), d̃ j) (20)

provides an upper bound for the expected satisfaction degree
for job j and

UB =
1
n ∑

j=1,...,n
UB j (21)

provides an upper bound for the average expected satisfaction
degree ESDavg.

This upper bound of ESDavg, inspired by the work of [50]
for the classical job shop with makespan minimisation, is cal-
culated in time O(n) provided that heads and tails of all tasks
are known. Notice however that for UB to be computed, not
only the starting time of each task must be known, but also its

8

tails relative to the n jobs. This means that, when evaluating
a neighbour, besides updating the starting times of all tasks it
is also necessary to update the tails of each of the nm tasks,
with an additional computational cost of O(n), so if UB is to
be calculated, the overall the computational cost of evaluating
a neighbour increases to O(n2m).

3.3. A hybrid evolutionary tabu search method

Tabu search (TS), originally proposed in [51], has been suc-
cessfully and extensively applied to several optimisation prob-
lems since then [52]. A key feature of tabu search is the use of a
short-memory structure called tabu list to allow the local search
to overcome local optima. The basic principle is to continue
the local search after encountering a local optimum by allow-
ing non-improving moves. The reversal or repetition of certain
previous moves is avoided by storing selected attributes of re-
cent moves as forbidden or tabu. Thus, the search does not enter
a cycling behaviour and follows new trajectories in the search
space. In our case, the tabu list structure and its updating strat-
egy follows [49]: for a given move it will store the arc that has
been reversed and it will behave as a FIFO list with dynamic
length, incorporating cycle-detection. There is also a long-term
memory mechanism that stores the best solution found so far.

Tabu restrictions are counterbalanced by the aspiration cri-
terion. In principle, a neighbour is tabu if it is generated by
reversing a tabu arc, but its tabu status is lifted if it is better than
the best neighbour found so far. The search stops after a maxi-
mum number of iterations without improvement or if a cycle is
detected.

A pseudocode description of the tabu search method used
herein can be seen in Algorithm 1. It differs from the stan-
dard TS template in that it incorporates a filtering mechanism
to lighten the computational load of neighbour evaluations, as
explained below.

3.3.1. Filtering mechanism for neighbour evaluation
At each iteration, a new solution needs to be selected from

the set of non-tabu neighbours together with those tabu neigh-
bours satisfying the aspiration criterion. This selection may be
based on neighbours’ quality estimates rather than on the ex-
act objective function values, in order to avoid the computa-
tional burden of evaluating all neighbours [26, 27, 50]. How-
ever, while estimates based on Taillard’s lower bound such as
the one proposed in Section 3.2 provide good surrogates of the
actual makespan, several authors have argued that this is not the
case for due-date related measures [26, 27].

Here we propose an alternative approach, combining esti-
mates as a filtering mechanism to avoid unnecessary evalua-
tions with exact evaluations of the filtered neighbours to se-
lect the best one. For any neighbour s′ and associated pro-
cessing order σ , the estimate of ESDavg(σ) is taken to be
the value UB(σ) from equation (21) in Corollary 3. We
abuse notation slightly and write UB(s′) and ESDavg(s′), iden-
tifying the solution with the induced task processing order.
Then, the neighbour selection mechanism is as follows. Let
s′1, . . . ,s

′
k be the generated neighbours in decreasing order of

the estimate, that is UB(s′1) ≥ UB(s′2) ≥ . . . ≥ UB(s′k). Start-
ing with s′1, the selection procedure evaluates neighbours fol-
lowing this order until a neighbour k∗ is found such that
max1≤l≤k∗{ESDavg(s′l)} ≥ UB(s′k∗+1) (or until all neighbours
have been evaluated). The best neighbour is selected from the
subset formed by the first k∗ neighbours {s′1, . . . ,s′k∗}, while
the remaining k− k∗ neighbours {s′k∗+1, . . . ,s

′
k} are discarded

without evaluating them. Notice that UB(s′k∗+1) is an upper
bound of ESDavg(s′k∗+1) and UB(s′k∗+1) ≥ UB(s′t) for the re-
maining neighbours k∗+ 1 ≤ t ≤ k, so it is also the case that
max1≤l≤k∗{ESDavg(s′l)} ≥UB(s′k∗+1) ≥ ESDavg(s′t) for all re-
maining neighbours k∗+ 1 ≤ t ≤ k. In consequence, the best
neighbour according to ESDavg must be in the filtered set of
k∗ ≤ k neighbours.

If the filtering mechanism is used, the upper bound UB(s′l)
needs to be computed for all neighbours s′l , l = 1, . . . ,k, while a
full evaluation of ESDavg is required for the first k∗ ≤ k neigh-
bours. The computational cost of the filtering mechanism will
then depend on k∗. Let us recall from Section 3.2 that, when
the filtering mechanism is used, the cost of evaluating a neigh-
bour is O(n2m) and the cost of computing UB is O(n). There-
fore, in the case where k∗ = 1 and only one neighbour needs
to be fully evaluated, the cost of using the filtering mechanism
will be in O(n2m)+O(n2m) = O(n2m), comparing favourably
with simply evaluating all neighbours without filter which had
a cost in O(n2m2). However, in the case where k∗ = nm and all
neighbours need to be fully evaluated after computing the up-
per bound, the overall cost of the filtering mechanism goes up
to O(n3m2). We conclude then that the computational cost of
using the filtering mechanism and its potential benefit depends
heavily on the value k∗. We will assess empirically the actual
impact of incorporating the filtering mechanism in Section 4.

3.3.2. Evolutionary tabu search
A problem encountered by all local search (single-solution

or trajectory-based) methods is that they tend to restrict them-
selves to a portion of the search of space, usually dependent on
the initial solution provided. This is also the case of tabu search,
despite the greater diversification obtained using tabus [52]. To
mitigate this problem, it is common to include some diversifi-
cation technique, such as multiple restarts. When the starting
points are provided by and evolved in a genetic algorithm, we
obtain a memetic algorithm (MA) [16].

Genetic algorithms (GAs) maintain a population of solutions
that evolve along generations by applying selection, reproduc-
tion and replacement operators. The use of a population of so-
lutions improves the chance of avoiding local optima at the cost
of being less capable of intensifying the search in promising
areas. In this way, they are complementary to tabu search and
this is why hybridising both methods can improve the equilib-
rium between intensification and diversification by obtaining a
synergetic behaviour.

MAs combining different metaheuristics to exploit their
complementary search abilities have proved to be very pow-
erful in solving scheduling problems [18, 26, 53]. Thus, to
analyse the new objective function and the proposed neigbour-
hood together with the tabu search procedure, we shall use the

9

Input A FJSP instance and a feasible solution s
Output A schedule

best← s
tabuList← /0
badIter← 0
while badIter < maxIter and not in a cycle do

N = NESD(s)
Sort N in descending order using UB
iterESD←−∞

for each s′ ∈N do
if UB(s′)> iterESD then

v← arc reversed in s to form s′

if v /∈ tabuList or ESDavg(s′)> ESDavg(best) then
if ESDavg(s′)> iterESD then

iterESD← ESDavg(s′)
s∗← s′

v∗← arc reversed in s to form s∗

Update tabuList with v∗

if ESDavg(s∗)> ESDavg(best) then
best← s∗

badIter← 0
else

badIter← badIter+1
s← s∗

return The solution in best

Algorithm 1: Tabu search algorithm

MA framework proposed in [43] for the fuzzy job shop with
due date satisfaction. While keeping the genetic component,
we shall replace the objective function (based on aggreement
index), the neighbourhood structure and the simple hill climb-
ing method used in that work with ESDavg and the tabu search
using the neighbourhood NESD proposed here. For the sake
of a full and self-contained description of the hybrid solving
method, the pseudocode is given in Algorithm 2. We shall refer
to the new method as EATS (standing for Evolutionary Algo-
rithm with Tabu Search) in the following.

4. Experimental Results

The purpose of this experimental analysis is threefold. First,
to analyse the new objective function ESDavg as a more accurate
estimation of the average due-date satisfaction degree than the
average agreement index AIavg from the literature. Second, to
analyse the behaviour of the proposed EATS hybrid method.
Third, to compare it with the state of the art.

For the first purpose we shall measure the quality of ESDavg
and AIavg as predictive values under uncertainty of the actual
due-date satisfaction that will be obtained after executing the
project. To analyse the performance of EATS, after a para-
metric analysis to find the best configuration of operators and
parameters, we will evaluate the proposed neighbour filtering
mechanism and the synergy effect between the two components
of EATS. Finally, we will compare EATS with other existing
methods. On the one hand, we will compare its performance to
that of a commercial MILP solver in terms of ESDavg values.

Input A FJSP instance
Output A schedule

Generate random population P with size popSize
Compute ESDavg for each pi ∈ P
if pL > 0 then

Apply Tabu Search to best individual pbest ∈ P
Update genotype of pbest (lamarckism)

for i = 1, . . . , popSize such that pi 6= pbest do
Apply Tabu Search to pi ∈ P with probability pL
Update genotype of pi (lamarckism)

best← Best solution pbest ∈ P
iter← 0
while iter < maxIter do

P′← Apply selection operator to P
i← 1
for i < popSize do

(off 1,off 2)← Apply crossover to (p′i, p′i+1) with probability
pcross
if (p′i, p′i+1) not crossed then

(off 1,off 2)← (p′i, p′i+1)
Apply mutation to off 1 with probability pmutate
Apply mutation to off 2 with probability pmutate
Compute ESDavg for off 1 and off 2;
Apply Tabu Search to off 1 with probability pL
Update genotype of off 1 (lamarckism)
Apply Tabu Search to off 2 with probability pL
Update genotype of off 2 (lamarckism)
(p′i, p′i+1) ← Apply replacement operator in
(p′i, p′i+1,off 1,off 2)
i← i+2

if pL > 0 then
Apply Tabu Search to best individual p′best ∈ P′

Update genotype of p′best (lamarckism)
if Best solution p′best ∈ P′ is better than best then

best← p′best ∈ P′

iter← 0
else

iter← iter+1
P← P′

return The schedule obtained in best

Algorithm 2: Evolutionary Algorithm with Tabu Search(EATS)

On the other hand, direct comparisons with other metaheuris-
tic methods from the literature are not possible, since the ob-
jective function to measure due-date satisfaction is new to this
work. Instead, we propose indirect comparisons with a method
optimising AI as a measure of due-date satisfaction in terms of
the actual due-date satisfaction degree obtained by the solutions
provided by both algorithms under several scenarios of possible
realisations of task durations. To this end, we will consider the
MA from [43] which, to the best to our knowledge, constitutes
the state-of-the-art for AIavg maximisation.

Throughout this experimental study, we will use the set of
the hardest instances considered in [43]. Specifically, fuzzy
versions of well-known problems: FT10 (size 10× 10), FT20
(20×5), La21, La24, La25 (15×10), La27, La29 (20×10),
La38, La40 (15× 15), and ABZ7, ABZ8, ABZ9 (20× 15).
Experiments have been run on a PC with Intel Xeon Gold 6132

10

processor at 2.6 Ghz and 128 Gb RAM with Linux (CentOS
v6.9), using a C++ implementation.

4.1. ESD to measure due-date satisfaction

Under uncertainty, the actual due-date satisfaction may only
be known after executing the proposed schedule, when tasks
have real durations, that is, on a real scenario out of all the pos-
sible ones according to the fuzzy available knowledge. Both
AI and ESD try to predict the satisfaction degree of due dates
under all possible scenarios. In order to measure which met-
ric provides a better estimate, we conduct a preliminary set of
experiments inspired by the surrogate δ -robustness proposed
in [43] to measure the error of the estimate made by a predic-
tive schedule built from a random task processing order.

More precisely, let σ be the task processing order associated
to a fuzzy solution and let us suppose that tasks are executed
in this order so each task starts being processed at the earliest
possible instant. After execution, we know the exact process-
ing time pθ of each task θ , and p = {pθ : θ ∈ Θ} constitutes
a particular scenario of task durations. The executed schedule
corresponds to the crisp schedule we would obtain from σ us-
ing a semi-active schedule builder on the crisp problem instance
where task durations are given by p. Clearly, pθ must be in the
support of the fuzzy duration p̂θ and, more interestingly, the
resulting starting and completion times sθ (σ ,p) and cθ (σ ,p)
under scenario p are in the support of their counterparts of the
fuzzy schedule ŝθ (σ) and ĉθ (σ) for every task θ ∈ Θ. For this
scenario, it is possible to measure the actual due date satisfac-
tion for the j-th job:

sat j(σ ,p) = µd̃ j
(c j(σ ,p)), (22)

and the average due date satisfaction:

DDsat(σ ,p) =
1
n ∑

j=1,...,n
sat j(σ ,p). (23)

Now, the estimation errors made by AIavg and ESDavg for task
processing order σ under scenario p are given by:

δAI(σ ,p) = |AIavg(σ)−DDavg(σ ,p)|, (24)
δESD(σ ,p) = |ESDavg(σ)−DDavg(σ ,p)|. (25)

If instead of a single scenario of possible task realisations
we have K scenarios, it is still possible to measure the error
made both by AIavg and ESDavg under the k-th scenario pk, de-
noted δAI(σ ,pk) and δESD(σ ,pk), so the average estimation er-
ror across all K scenarios will be given by:

δAI(σ) =
1
K

K

∑
k=1

δAI(σ ,pk), (26)

δESD(σ) =
1
K

K

∑
k=1

δESD(σ ,pk). (27)

For this experimental analysis, we propose to generate a sam-
ple of K = 1000 crisp problem instances corresponding to K

scenarios of possible realisations of the fuzzy durations. To ob-
tain this sample, for each fuzzy instance we generate K = 1000
posible realisations by assigning a deterministic duration to
each task which is coherent with the original fuzzy value. Fol-
lowing [54], two samples are generated by Monte-Carlo simula-
tion according to two probability distributions: a uniform prob-
ability distribution in the support of the fuzzy duration (Sce-
nario Type I) and the probability distribution obtained for each
fuzzy duration after apply the pignistic transformation obtained
by considering cuts as uniform distributed probabilities (Sce-
nario Type II).

To have a significant sample of task orderings, for each fuzzy
problem instance we generate L= 30 feasible processing orders
at random σl , 1 ≤ l ≤ L and compute the average estimation
errors across K scenarios δAI(σl) and δESD(σl) for each σl . The
overall predictive error of AI and ESD will then be given by the
average estimation error across all task orderings and scenarios
as follows:

δ AI =
1
L

L

∑
l=1

δAI(σl), (28)

δ ESD =
1
L

L

∑
l=1

δESD(σl). (29)

These values provide an empirical assessment of the predictive
error of AI y ESD as surrogate values of the average due-date
satisfaction after execution. The charts in Figure 8 show the
predictive error δ AI and δ ESD for every problem instance under
scenarios of Type I and Type II. They clearly show that the new
objective function ESD proposed in this work provides a more
accurate estimate of the average due-date satisfaction of the ex-
ecuted schedule than the classical measure AI in both scenario
samples for all instances.

4.2. Analysis of EATS performance

4.2.1. Parametric analysis
The experimental study to evaluate the performance of EATS

starts with a parametric analysis in order to find the best opera-
tor and parameter configuration. We combine an experimental
design approach using the Taguchi method with a posterior se-
quential optimisation strategy [55]. First, the Taguchi method
provides a base setup together with parameter order according
to their relevance for the algorithm’s performance. Then, a re-
finement of the base setup is obtained following a sequential
strategy, tuning one parameter at a time following the order
given by the Taguchi method. In this phase we have consid-
ered only factors that do not influence the running time, namely,
three order-based crossover and mutation operators, together
with typical values for crossover and mutation probabilities,
and two replacements strategies:

• Crossover operator: Job-Order Crossover (JOX) [56],
Generalised Order Crossover (GOX) [57] and Generalised
Partially-Mapped Crossover (GPMX) [58]

• Crossover probability: 0.8, 0.9, 1.0 .

11

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ABZ7 ABZ8 ABZ9 FT10 FT20 La21 La24 La25 La27 La29 La38 La40

AI ESD

Scenario Type I

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ABZ7 ABZ8 ABZ9 FT10 FT20 La21 La24 La25 La27 La29 La38 La40

AI ESD

Scenario Type II

Figure 8: Average values of the estimation errors δ AI and δ ESD.

Table 1: Delta values and setup obtained after the parametric study

Parameter Delta value Base setup Final setup

Replacement 0.054 NR NR
Crossover 1.186 JOX JOX
Crossover Prob. 0.179 1.00 1.00
Mutation 0.027 IM SM
Mutation Prob. 0.131 0.15 0.15

• Mutation operator: Insert Mutation (IM), Swap Mutation
(SM), and Simple Inversion Mutation (SIM) [59]

• Mutation probability: 0.05, 0.10, 0.15

• Replacement strategy: Allowing repeated individuals
(AR), or not (NR)

In all cases, population size is set to 100, the stopping criteria
are maxIter = 25 and maxIter = 10 iterations without improve-
ment for GA and for TS respectively and the probability pL of
applying local search to an individual is 1.

Having four parameters with three levels and one parameter
with two levels, the Taguchi method uses the L18 orthogonal
array . The resulting “Delta values” shown in Table 1 indi-
cate that the most relevant parameter is the crossover operator,
followed by the crossover probability, the mutation probabil-
ity and, finally, the replacement strategy and mutation operator.
Table 1 also shows the “base setup” configuration that results
from the Taguchi method. A further sequential tuning phase is
undertaken starting from this base configuration and following
the order of relevance. The final configuration is reported in Ta-
ble 1 too. We can see that only the choice of mutation operator
changes in this second phase.

There remain to consider two more factors that not only af-
fect the algorithm’s performance, but also its runtime: the pop-
ulation size and the level of intensification obtained with the
tabu search component.

Figure 9 depicts the evolution of average ESDavg value across
30 runs of EATS along 1000 seconds of runtime when popu-
lation size is set to 100, 250 and 500 for instance La27, the
behaviour on the remaining instances being quite similar. We
can see that 1000 seconds exceeds by far the time needed by

0.0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000

ESDavg

Runtime (seconds)

100 250 500

Figure 9: Evolution of EATS with different population sizes on instance La27

EATS to converge in all cases. As expected, the smaller the
population size, the faster the algorithm converges. The reason
is that in smaller populations there is less diversity to compen-
sate the intensification of the local search. A greater diversity
with either 250 or 500 individuals seems to help improve the al-
gorithm’s performance: they both converge after approximately
500 seconds to the same ESDavg values, lightly better than those
obtained with 100 individuals. In consequence, the population
size will be set to 250.

Regarding the intensification pressure provided by the TS
component, we have run two experiments to fix the stopping
criterion and the proportion of individuals in the population that
are improved with TS. First, we have tested different values for
the number of iterations that TS is left to run without improve-
ment: 10, 25 and 50. With 25 iterations the average ESDavg
value improves 0.3% w.r.t. 10 iterations, but at the cost of con-
suming over 87% more computational resources; the improve-
ment in ESDavg using 50 iterations instead of 25 is less than
0.2% using over 70% more CPU time. In consequence, we take
10 iterations without improvement as stopping criterion for the
TS. Notice however, that in environments where time is not rel-
evant, number of iterations might be increased.

With respect to the probability pL of applying TS to an in-
dividual in the population, we have considered all values in
{0,0.25,0.5,0.75,1}. Figure 10 shows the graph of conver-
gence for instance La27 along 1000 seconds (more than the

12

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

ESDavg	

Runtime	(seconds)	

0	 0.25	 0.5	 0.75	 1	

Figure 10: Evolution of EATS with different intensification probabilities on
instance La27

time needed to converge, as we have seen above), which is
representative of the algorithm’s behaviour on all instances.
Clearly, the main difference in convergence lies in having some
local search (pL > 0) or not having it (pL = 0). We can see that
the evolutionary algorithm with no local search experiments a
rapid evolution and in the beginning obtains better solutions
than when TS is used. The cause is that an important part of
runtime is devoted to intensifying the search, particularly in the
early generations. However, after 50 seconds, EATS outper-
forms the evolutionary algorithm with a significant difference
in the value of ESDavg. In all cases where TS is applied to
some individuals we appreciate a similar convergence pattern,
with slightly better performance for pL = 1, i.e., when TS is
applied to all individuals in the populations.

In summary, we complement the operator and parameter
setup from Table 1 with population size 250, 10 iterations with-
out improvement as stopping criterion for the tabu search and a
probability of applying TS to an individual equal to 1.

4.2.2. Synergy and estimators
Having fixed the parameter setting, another series of experi-

ments is conducted in order to evaluate the contribution of the
neighbour filtering mechanism based on neighbour’s estima-
tion procedure, the tabu search (TS) and evolutionary algorithm
(EA) to the performance of the resulting hybrid metaheuristic
method EATS.

Table 2 contains average and standard deviation values for
ESDavg and CPU time (in seconds) obtained across 30 runs of
the EATS on each instance with and without using the ESD
estimation algorithm proposed in Section 3.2 to filter non-
improving neighbours and avoid unnecessary evaluations as ex-
plained in Section 3.3. Clearly, using the upper bound UB of
ESDavg to filter neighbours’ evaluations translates in a reduc-
tion of running time: EATS takes more than twice (108%) on
average to run when the filtering mechanism is not used, with
runtime increasing up to 131% for ABZ7. However, both ap-
proaches obtain solutions of similar quality regarding objective
function: results obtained with the filtering mechanism seem
slightly better but there is no statistically significant difference
except on instances ABZ7 and La27, here in favour of using

Instance No filter With filter
ESDavg Time (s) ESDavg Time (s)

ABZ7 0.573 (0.007) 900.5 0.577 (0.007) 389.1
ABZ8 0.609 (0.012) 1001.8 0.612 (0.013) 456.5
ABZ9 0.608 (0.016) 1193.6 0.613 (0.022) 541.5
FT10 0.651 (0.000) 32.2 0.651 (0.000) 18.9
FT20 0.269 (0.009) 69.5 0.270 (0.007) 48.5
La21 0.568 (0.011) 188.8 0.571 (0.009) 101.8
La24 0.589 (0.017) 211.0 0.595 (0.017) 106.0
La25 0.582 (0.008) 184.4 0.582 (0.006) 88.5
La27 0.430 (0.030) 472.8 0.448 (0.023) 285.6
La29 0.477 (0.008) 372.2 0.478 (0.008) 194.5
La38 0.774 (0.012) 419.7 0.774 (0.011) 194.3
La40 0.780 (0.001) 298.4 0.780 (0.001) 140.9

Table 2: ESDavg values and runtime (in seconds) obtained by EATS with and
without the neighbour filtering mechanism.

the estimation-based filter. This shows the great potential of the
ESDavg estimate and the associated neighbour filtering mecha-
nism, since it allows the algorithm to have the same or better
performance while considerably shortening the runtime (some-
times reducing it by half).

Instance EA mTS EATS

ABZ7 0.530 (0.014) 0.358 (0.015) 0.577 (0.007)
ABZ8 0.536 (0.023) 0.380 (0.019) 0.612 (0.013)
ABZ9 0.532 (0.028) 0.362 (0.014) 0.613 (0.022)
FT10 0.635 (0.008) 0.541 (0.027) 0.651 (0.000)
FT20 0.243 (0.008) 0.191 (0.008) 0.270 (0.007)
La21 0.489 (0.014) 0.436 (0.012) 0.571 (0.009)
La24 0.548 (0.027) 0.444 (0.013) 0.595 (0.017)
La25 0.539 (0.018) 0.436 (0.012) 0.582 (0.006)
La27 0.354 (0.020) 0.257 (0.010) 0.448 (0.023)
La29 0.417 (0.031) 0.244 (0.009) 0.478 (0.008)
La38 0.699 (0.007) 0.588 (0.017) 0.774 (0.011)
La40 0.683 (0.022) 0.601 (0.016) 0.780 (0.001)

Table 3: ESDavg values obtained by EATS and its the main components: EA
and LS

To evaluate the synergy effect between the evolutionary algo-
rithm (EA) and the tabu search (TS), EA is run independently
for as long as EATS takes to converge, and TS is run as a multi-
start tabu search (mTS) with as many restarts as the average
number of individuals evaluated by EATS on each instance.
The results in Table 3 correspond to the average ESDavg val-
ues (and their standard deviation in brackets) obtained on each
instance across 30 runs of the three metaheuristic search meth-
ods. We can see that EA never surpasses EATS, being near 11%
worse in average. A statistical Friedman test to rank means and
t-test or Mann-Whitney for every pair of samples (depending on
whether or not normality holds) confirm significant differences
between both methods. A similar behaviour is encountered with
mTS. In the absence of good starting points provided by the EA,

13

results deteriorate (more than 30%) even with longer runtimes
(24% longer). A nice synergy effect can be appreciated when
both strategies are combined, with EATS obtaining much better
results than EA and mTS under equivalent conditions. That is,
EATS does benefit from the exploration of EA and also from
the intensification of TS.

4.3. Comparison with CPLEX
To assess the difficulty of the problem under consideration

and, in particular, of the instances considered herein, the MILP
formulation of the problem is used to try to solve the instances
using IBM ILOG CPLEX with a time limit of 24 hours (that
is, 86400 seconds). In order to demonstrate how both EATS
and MILP scale, an additional set of smaller instances are used
in this study: the instances proposed in [37](S1-S3 and S5-
S7), the instances from [37](S4 and S8) and the instances used
in [39](FT06 and La11-14). Three different sizes are overall
considered: small instances with 36 tasks, medium instances
with 100 tasks and large instances with 150 tasks or more. The
results of both EATS and CPLEX are given in Table 4 for the
additional set of small instances and in Table 5 for the instances
previously considered. For the cases where CPLEX finds a
feasible solution but does not prove optimality within the time
limit, the gap is given in brackets. A dash means that CPLEX
could not find a feasible solution within 24 hours which is the
case for 9 instances out of 12 in Table 5. Regarding the remain-
ing instances, the gap value for FT20 is not reported by CPLEX
whereas gaps for FT10 and LA24 are 87.20% and 650.00%,
respectively.

To take full advantage of the ILOG Concert Technology, it
might be interesting to model the piecewise linear functions
ESD j by giving the breakpoints as input, which is then auto-
matically converted by the library into a mixed integer repre-
sentation. In order to validate this approach, we modify the
MILP model (P1) from Section 2.5 so the objective function
(8) is replaced with (30) and new binary variables w j and con-
tinuous variables y j and z j are added, together with the corre-
sponding constraints. Hence, another MILP model is obtained
as (P2). Here, constraints (31)-(32) are the linear formulation
of y j = max{E[ĉ j],d1

j } and similarly constraints (33)-(35) rep-
resent the linear formulation of z j = min{y j,d2

j }. The objective
function describes ESDavg with respect to new variables.

(P2)

max
1
n ∑

j

d2
j − z j

d2
j −d1

j
(30)

s.t.
(9)− (15)
y j ≥ E[ĉ j] ∀ j ∈ J (31)

y j ≥ d1
j ∀ j ∈ J (32)

z j ≥ y j−W ·w j ∀ j ∈ J (33)

z j ≥ d2
j −W · (1−w j) ∀ j ∈ J (34)

w j ∈ {0,1} ∀ j ∈ J (35)

Tests that are performed with (P1) and (P2) revealed very
similar results for large instances, however it is observed that
(P2) is faster than (P1) for small instances. For the sake of a
fair comparison, the results of (P2) are reported in this section.

The tests reveal that CPLEX finds the optimum for small in-
stances in less than 35 seconds except for S4 which takes 410
seconds, whereas EATS takes 0.86 seconds on average to solve
the same instances. CPLEX is able to find feasible solutions
of varying quality for medium size instances in 24 hours, but
not the optimum. It can find a feasible solution only for one of
the large size instances. On the other hand, EATS finds optimal
solutions for medium size instances in 7.6 seconds on average.
Moreover, it reaches better solutions than CPLEX in less than
250 seconds on average for large size instances.

These results illustrate the complexity of the FJSP with
due date satisfaction, which calls for metaheuristic approaches
(such as EATS) that might sacrifice optimality guarantees for
the sake of finding high quality solutions within reasonable time
and computational effort.

Instance n×m EATS MILP

FT06 6x6 1.000 (0.000) 1.000 (0.00%)
S1 6x6 1.000 (0.000) 1.000 (0.00%)
S2 6x6 1.000 (0.000) 1.000 (0.00%)
S3 6x6 1.000 (0.000) 1.000 (0.00%)
S4 6x6 0.866 (0.000) 0.866 (0.00%)
S5 10x10 1.000 (0.000) 0.600 (66.67%)
S6 10x10 1.000 (0.000) 0.900 (11.11%)
S7 10x10 1.000 (0.000) 0.800 (25.00%)
S8 10x10 1.000 (0.000) 0.913 (9.49%)
La11 20x5 1.000 (0.000) 0.900 (11.11%)
La12 20x5 1.000 (0.000) 0.939 (6.45%)
La13 20x5 1.000 (0.000) 0.990 (1.01%)
La14 20x5 1.000 (0.000) 0.941 (6.25%)

Table 4: ESDavg values obtained by EATS and MILP

Instance n×m MA EATS MILP

ABZ7 20x15 0.563 (0.013) 0.577 (0.007) -
ABZ8 20x15 0.590 (0.021) 0.612 (0.013) -
ABZ9 20x15 0.577 (0.023) 0.613 (0.022) -
FT10 10x10 0.639 (0.009) 0.651 (0.000) 0.534
FT20 20x5 0.253 (0.011) 0.270 (0.007) 0.050
La21 15x10 0.556 (0.013) 0.571 (0.009) -
La24 15x10 0.571 (0.026) 0.595 (0.017) 0.133
La25 15x10 0.577 (0.009) 0.582 (0.006) -
La27 20x10 0.411 (0.020) 0.448 (0.023) -
La29 20x10 0.451 (0.021) 0.478 (0.008) -
La38 15x15 0.742 (0.025) 0.774 (0.011) -
La40 15x15 0.771 (0.016) 0.780 (0.001) -

Table 5: ESDavg values obtained by MA, EATS and MILP

14

4.4. Comparison with the state of the art
To our knowledge, the recent memetic algorithm (MA) from

[43] constitutes the state-of-the-art method for average flexible
due-date satisfaction in the most challenging fuzzy job shop in-
stances, outperforming prior methods from the literature men-
tioned in Section 1.1. However, MA and EATS optimise dif-
ferent objective functions (AIavg and ESDavg respectively) even
if both try to measure average due-date satisfaction. In conse-
quence, it is not possible to compare their performance directly
in terms of objective function values. Instead, we propose to
compare the solutions provided by each method with respect
to their quality as predictive schedules, measuring the real due-
date satisfaction they provide after execution, similarly to what
we have done in Section 4.1. We consider, for each instance,
the processing orders given by 30 solutions obtained from 30
runs of MA and 30 solutions from EATS. For every fuzzy in-
stance we generate 1000 possible realisations assigning a de-
terministic processing time to each task according to Scenario
Type I and the Scenario Type II and we compute the average
due-date satisfaction for each solution across all possible reali-
sations. Figure 11 shows for every instance the boxplots corre-
sponding to the average due-date satisfaction obtained by the 30
solutions from MA and the 30 solutions from EATS when pos-
sible realisations correspond to Scenario Type II (the behaviour
is similar for Scenario Type I). These plots suggest that EATS
provides predictive schedules which perform better in terms of
average due-date satisfaction across different possible scenar-
ios. To assess this difference, a t-test is run when samples pass
the Kolmogorov-Smirnov test (i.e. they follow a normal distri-
bution) and a Mann-Whitney U test otherwise. The tests show
that there is a significant difference in favor of EATS with a sig-
nificance level of 0.05 for all instances, except FT10. Finally,
Table 6 reports for each instance, method and possible scenario
type the average values across all 30 solutions and 1000 possi-
ble scenarios of the average due-date satisfaction; highlighted
in bold are values which are significantly better than their coun-
terpart according to these statistical tests. We may conclude
that solutions provided by EATS outperform those provided by
MA in all instances except FT10, where both methods behave
equally.

In a complementary analysis, we have also implemented MA
adapted to optimise ESDavg. However, MA includes a local
search component with a neighbourhood structure that is tai-
lored to optimise AIavg and therefore a straightforward run of
the algorithm would be unfair for MA. Thus, in this experiment
we have replaced its neighbourhood structure by the one intro-
duced in this paper, which is specifically designed for ESDavg
maximisation. Since the preliminary runs show that MA is
faster than EATS, for the sake of fairness, we have run MA with
the original setup from [43] for as long as EATS takes to con-
verge. Table 5 reports the average ESDavg values obtained after
30 runs of each algorithm on each instance (standard deviations
are included between brackets). We can see that under equal
runtime conditions, EATS outperforms MA in all instances. A
Mann-Whitney-Wilcoxon statistical test also confirms that the
differences are significant with a significance level of 0.05 in all
instances except La25.

MA EATS

ABZ7

MA EATS

ABZ8

MA EATS

ABZ9

MA EATS

FT10

MA EATS

FT20

MA EATS

La21

MA EATS

La24

MA EATS

La25

MA EATS

La27

MA EATS

La29

MA EATS

La38

MA EATS

La40

Figure 11: Comparison of solutions obtained with MA and EATS in terms of
due-date satisfaction after execution in Scenario Type II

All instances used in this work and the obtained results are
available online for future reference1.

5. Conclusions

We have tackled the job shop scheduling problem with un-
certain durations and flexible due dates modelled as fuzzy num-
bers. We have proposed a new measure of due-date satisfaction
and we have defined a new neighbourhood structure purpose-
built for this new objective. We have proved results that show
that the neighbourhood presents a good theoretical behaviour
and we have provided a neighbour estimation mechanism. An
evolutionary tabu search method (EATS) has been proposed
that uses the neighbourhood structure and a filtering mechanism
based on neighbour estimates. Experimental results have been
presented that avail the proposal of the new objective function
for due-date satisfaction under uncertainty as well as the good
behaviour of the metaheuristic search method EATS. Not only
have we assessed the synergy effect between the genetic algo-
rithm and the tabu search that compose EATS and the efficiency
gain provided by the filtering mechanism, but we have also seen
how EATS compares favourably with other approaches from
the literature.

Acknowledgements

This research has been supported by the Spanish Government
under research grant TIN2016-79190-R and by the Principality
of Asturias Government under grant IDI/2018/000176.

1Repository section at http://di002.edv.uniovi.es/iscop

15

Instance Scenario Type I Scenario Type II
MA EATS MA EATS

ABZ7 0.535 (0.016) 0.572 (0.008) 0.541 (0.016) 0.576 (0.008)
ABZ8 0.572 (0.016) 0.608 (0.013) 0.576 (0.015) 0.611 (0.013)
ABZ9 0.556 (0.020) 0.608 (0.021) 0.563 (0.020) 0.612 (0.022)
FT10 0.646 (0.000) 0.646 (0.000) 0.646 (0.000) 0.646 (0.000)
FT20 0.255 (0.012) 0.270 (0.007) 0.254 (0.013) 0.270 (0.007)
La21 0.527 (0.018) 0.572 (0.009) 0.527 (0.019) 0.570 (0.009)
La24 0.543 (0.029) 0.594 (0.017) 0.543 (0.030) 0.593 (0.017)
La25 0.543 (0.013) 0.578 (0.005) 0.543 (0.013) 0.580 (0.006)
La27 0.414 (0.029) 0.448 (0.023) 0.413 (0.030) 0.448 (0.023)
La29 0.443 (0.018) 0.477 (0.009) 0.443 (0.019) 0.478 (0.009)
La38 0.722 (0.019) 0.772 (0.012) 0.724 (0.018) 0.773 (0.012)
La40 0.748 (0.021) 0.778 (0.002) 0.749 (0.021) 0.779 (0.001)

Table 6: Average due-date satisfaction across different possible scenarios obtained by MA and EATS

References
[1] M. L. Pinedo, Scheduling. Theory, Algorithms, and Systems., fifth ed.,

Springer, 2016.
[2] M. A. González, C. Vela, I. González-Rodrı́guez, R. Varela, Lateness

minimization with tabu search for job shop scheduling problem with se-
quence dependent setup times, Journal of Intelligent Manufacturing 24(4)
(2013) 741–54.

[3] J. Kuhpfahl, C. Bierwirth, A study on local search neighbourhoods for
the job shop scheduling problem with total weighted tardiness objective,
Computers & Operations Research 261 (2016) 44–57.

[4] D. Dubois, H. Fargier, P. Fortemps, Fuzzy scheduling: Modelling flexible
constraints vs. coping with incomplete knowledge, European Journal of
Operational Research 147 (2003) 231–52.

[5] D. Dubois, H. Fargier, H. Prade, Fuzzy constraints in job-shop schedul-
ing, Journal of Intelligent Manufacturing 6 (1995) 215–34.

[6] W. Wang, D. Wang, W. Ip, JIT production planning approach with fuzzy
due date for okp manufacturing systems, International Journal of Pro-
duction Economics 58 (1999) 209–15. doi:https://doi.org/10.1016/S0925-
5273(98)00122-4.

[7] S. Abdullah, M. Abdolrazzagh-Nezhad, Fuzzy job-shop scheduling
problems: A review, Information Sciences 278 (2014) 380–407.
doi:10.1016/j.ins.2014.03.060.

[8] J. Behnamian, Survey on fuzzy shop scheduling, Fuzzy Optimization and
Decision Making 15 (2016) 331–66. doi:10.1007/s10700-015-9225-5.

[9] H. Prade, Using fuzzy set theory in a scheduling problem: a case
study, Fuzzy Sets and Systems 2 (1979) 153–65. doi:10.1016/0165-
0114(79)90022-8.

[10] W. K. Wong, C. K. Kwong, P. Y. Mok, W. H. Ip, Genetic optimiza-
tion of JIT operation schedules for fabric-cutting process in apparel
manufacture, Journal of Intelligent Manufacturing 17 (2006) 341–54.
doi:10.1007/s10845-005-0007-8.

[11] A. Duenas, D. Petrovic, Multi-objective genetic algorithm for single ma-
chine scheduling problem under fuzziness, Fuzzy Optimization and De-
cision Making 7 (2008) 87–104. doi:10.1007/s10700-007-9026-6.

[12] S. Petrovic, S. Fayad, D. Petrovic, E. Burke, G. Kendall, Fuzzy job shop
scheduling with lot-sizing, Annals of Operations Research 159 (2008)
275–92.

[13] S. Niroomand, A. Hadi-Vencheh, N. Mirzaei, S. Molla-Alizadeh-
Zavardehi, Hybrid greedy algorithms for fuzzy tardiness/earliness min-
imisation in a special single machine scheduling problem: case study and
generalisation, International Journal of Computer Integrated Manufactur-
ing 29 (2016) 870–88. doi:10.1080/0951192X.2015.1130244.

[14] I. Boussaı̈d, J. Lepagnot, P. Siarry, A survey on optimiza-
tion metaheuristics, Information Sciences 237 (2013) 82–117.
doi:10.1016/j.ins.2013.02.041.

[15] C. Blum, J. Puchinger, G. R. Raidl, A. Roli, Hybrid metaheuristics in
combinatorial optimization: A survey, Applied Soft Computing 11 (2011)
4135–51. doi:10.1016/j.asoc.2011.02.032.

[16] C. Cotta, L. Mathieson, P. Moscato, Memetic algorithms, in: R. Martı́,
P. Panos, M. G. C. Resende (Eds.), Handbook of Heuristics, Springer
International Publishing, 2016, pp. 1–32. doi:10.1007/978-3-319-07153-
4 29-1.

[17] P. Moscato, C. Cotta, An accelerated introduction to memetic algo-
rithms, in: M. Gendreau, J.-Y. Potvin (Eds.), Handbook of Metaheuris-
tics, Springer, 2019, pp. 275–309. doi:10.1007/978-3-319-91086-4 9.

[18] J. J. Palacios, J. Puente, C. R. Vela, I. González-Rodrı́guez, Benchmarks
for fuzzy job shop problems, Information Sciences 329 (2016) 736–52.
doi:10.1016/j.ins.2015.09.042.

[19] M. A. González, C. R. Vela, R. Varela, Scatter search with path relink-
ing for the flexible job shop scheduling problem, European Journal of
Operational Research 245 (2015) 35–45. doi:10.1016/j.ejor.2015.02.052.

[20] M. González, C. R. Vela, R. Varela, An efficient memetic algorithm for
the flexible job shop with setup times, in: Proceedings of the 23th In-
ternational Conference on Automated Planning and Scheduling (ICAPS-
2013), 2013, pp. 91–9.

[21] J. J. Palacios, M. A. González, C. R. Vela, I. González-Rodrı́guez,
J. Puente, Genetic tabu search for the fuzzy flexible job shop
problem, Computers & Operations Research 54 (2015) 74–89.
doi:10.1016/j.cor.2014.08.023.

[22] C. Y. Zhang, P. Li, Y. Rao, Z. Guan, A very fast TS/SA algorithm for
the job shop scheduling problem, Computers & Operations Research 35
(2008) 282–94.

[23] C. Smutnicki, W. Bożejko, Tabu search and solution space analyses. the
job shop case, in: R. Moreno-Dı́az, F. Pichler, A. Quesada-Arencibia
(Eds.), Computer Aided Systems Theory – EUROCAST 2017, Springer,
2018, pp. 383–91.

[24] I. Essafi, Y. Mati, S. Dauzère-Pérès, A genetic local search algorithm for
minimizing total weighted tardiness in the job-shop scheduling problem,
Computers & Operations Research 35 (2008) 2599–616.

[25] K. Bülbül, A hybrid shifting bottleneck-tabu serach heuristic for the job
shop total weighted tardiness problem, Computers & Operations Re-
search 38 (2011) 967–783.

[26] M. A. González, I. González-Rodrı́guez, C. Vela, R. Varela, An effi-
cient hybrid evolutionary algorithm for scheduling with setup times and
weighted tardiness minimization, Soft Computing 16 (2012) 2097–113.

[27] C. Bierwirth, J. Kuhpfahl, Extended GRASP for the job shop scheduling
problem with total weighted tardiness objective, European Journal of
Operational Research 261 (2017) 835–48.

[28] C. S. McCahon, Using PERT as an approximation of fuzzy project-
network analysis, IEEE Transactions on Engineering Management 40
(1993) 146–53.

[29] P. Fortemps, Jobshop scheduling with imprecise durations: a fuzzy ap-
proach, IEEE Transactions of Fuzzy Systems 7 (1997) 557–69.

[30] M. Sakawa, T. Mori, An efficient genetic algorithm for job-shop schedul-
ing problems with fuzzy processing time and fuzzy duedate, Computers
& Industrial Engineering 36 (1999) 325–41.

16

[31] D. Lei, Solving fuzzy job shop scheduling problems using random key ge-
netic algorithm, International Journal of Advanced Manufacturing Tech-
nologies 49 (2010) 253–62.

[32] O. Engin, M. K. Yilmaz, C. Kahraman, M. E. Baysal, A. Sarucan, A scat-
ter search method for fuzzy job shop scheduling problem with availability
constraints, in: Proceedings of the World Congress on Engineering 2011
(WCE 2011), volume II, Newswood Limited, London (U.K.), 2011, pp.
1144–8.

[33] S. Wang, Aorigele, G. Liu, S. Gao, A hybrid discrite imperialist compe-
tition algorithm for fuzzy job-shop scheduling problems, IEEE Access 4
(2016) 9320–31. doi:10.1109/ACCESS.2016.2645818.

[34] J. J. Palacios, C. R. Vela, I. González-Rodrı́guez, J. Puente, A memetic
algorithm for due-date satisfaction in fuzzy job shop scheduling, in:
IWINAC2017 International Work-Conference on the Interplay Between
Natural and Artificial Computation. LNCS 10337, Springer, 2017, pp.
135–45.

[35] Z. Xiang, B. Zhenqiang, W. Guijun, P. Quanke, Optimization of fuzzy
job-shop scheduling with multi-process routes and its co-evolutionary al-
gorithm, in: Intelligent Computation Technology and Automation (ICI-
CTA), 2011 International Conference on, volume 1, IEEE, 2011, pp. 866–
70. doi:10.1109/ICICTA.2011.618.

[36] C. Fayad, S. Petrovic, A fuzzy genetic algorithm for real-world job-shop
scheduling, Innovations in Applied Artificial Intelligence, Lecture Notes
in Computer Science 3533 (2005) 524–33.

[37] M. Sakawa, R. Kubota, Fuzzy programming for multiobjective job shop
scheduling with fuzzy processing time and fuzzy duedate through genetic
algorithms, European Journal of Operational Research 120 (2000) 393–
407.

[38] I. González Rodrı́guez, J. Puente, C. R. Vela, R. Varela, Semantics of
schedules for the fuzzy job shop problem, IEEE Transactions on Systems,
Man and Cybernetics, Part A 38 (2008) 655–66.

[39] I. González Rodrı́guez, J. Puente, C. R. Vela, A multiobjective approach
to fuzzy job shop problem using genetic algorithms, CAEPIA 2007, Lec-
ture Notes in Artificial Intelligence 4788 (2007) 80–9.

[40] J. J. Palacios, B. Derbel, On maintaining diversity in MOEA/D: Applica-
tion to a biobjective combinatorial FJSP, in: GECCO ’15 Proceedings of
the 2015 Annual Conference on Genetic and Evolutionary Computation,
ACM, 2015, pp. 719–26. doi:10.1145/2739480.2754774.

[41] D. Lei, Pareto archive particle swarm optimization for multi-objective
fuzzy job shop scheduling problems, International Journal of Advanced
Manufacturing Technology 37 (2008) 157–65.

[42] C. Wang, N. Tian, Z. Ji, Y. Wang, Multi-objective fuzzy
flexible job shop scheduling using memetic algorithm, Jour-
nal of Statistical Computation and Simulation 87 (2017) 2828–46.
doi:10.1080/00949655.2017.1344846.

[43] J. J. Palacios, I. González-Rodrı́guez, C. R. Vela, J. Puente, Satisfying
flexible due dates in fuzzy job shop by means of hybrid evolutionary
algorithms, Integrated Computer-Aided Engineering 26 (2019) 65–84.
doi:10.3233/ICA-180583.

[44] S. Heilpern, The expected value of a fuzzy number, Fuzzy Sets and
Systems 47 (1992) 81–6.

[45] J. Błażewicz, E. Pesch, M. Sterna, The disjunctive graph machine repre-
sentation of the job shop scheduling problem, European Journal of Opera-
tional Research 127 (2000) 317–31. doi:10.1016/S0377-2217(99)00486-
5.

[46] I. González Rodrı́guez, C. R. Vela, J. Puente, R. Varela, A new local
search for the job shop problem with uncertain durations, in: Proceedings
of the Eighteenth International Conference on Automated Planning and
Scheduling (ICAPS-2008), AAAI Press, Sidney, 2008, pp. 124–31.

[47] R. Graham, E. Lawler, J. Lenstra, A. Rinnooy Kan, Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey., An-
nals of Discrete Mathematics 4 (1979) 287–326.

[48] P. Van Laarhoven, E. Aarts, K. Lenstra, Job shop scheduling by simulated
annealing, Operations Research 40 (1992) 113–25.

[49] M. Dell’ Amico, M. Trubian, Applying tabu search to the job-shop
scheduling problem, Annals of Operational Research 41 (1993) 231–52.

[50] E. D. Taillard, Parallel taboo search techniques for the job shop schedul-
ing problem, ORSA Journal on Computing 6 (1994) 108–17.

[51] F. Glover, Future paths for integer programming and links to artifi-
cial intelligence, Computers & Operations Research 13 (1986) 533–49.
doi:10.1016/0305-0548(86)90048-1.

[52] M. Gendreau, J.-Y. Potvin, Tabu search, in: M. Gendreau, J.-Y. Potvin
(Eds.), Handbook of Metaheuristics, 3rd ed., Springer International Pub-
lishing, 2019, pp. 37–55. doi:10.1007/978-3-319-91086-4 2.

[53] C. Cotta, A. J. Fernàndez, Memetic algorithms in planning, scheduling,
and timetabling, in: K. P. Dahal, K. C. Tan, P. I. Cowling (Eds.), Evo-
lutionary Scheduling, Springer, 2007, pp. 1–30. doi:10.1007/978-3-540-
48584-1 1.

[54] J. J. Palacios, I. González-Rodrı́guez, C. R. Vela, J. Puente, Robust mul-
tiobjective optimisation for fuzzy job shop problems, Applied Soft Com-
puting 56 (2017) 604–16. doi:10.1016/j.asoc.2016.07.004.

[55] E.-G. Talbi, Metaheuristics. From Design to Implementation, Wiley,
2009.

[56] I. Ono, M. Yamamura, S. Kobayashi, A genetic algorithm for job-shop
scheduling problems using job-based order crossover, in: Evolutionary
Computation, 1996., Proceedings of IEEE International Conference on,
IEEE, 1996, pp. 547–52.

[57] C. Bierwirth, A generalized permutation approach to jobshop scheduling
with genetic algorithms, OR Spectrum 17 (1995) 87–92.

[58] C. Bierwirth, D. C. Mattfeld, H. Kopfer, On permutation representations
for scheduling problems, in: PPSN IV: Proceedings of the 4th Interna-
tional Conference on Parallel Problem Solving from Nature, Springer-
Verlag, London, UK, 1996, pp. 310–8.

[59] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, S. Dizdarevic,
Genetic algorithms for the travelling salesman problem: A review of rep-
resentations and operators, Artificial Intelligence Review 13 (1999) 129–
70. doi:10.1023/A:1006529012972.

17

