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Abstract We consider a job shop scheduling problem with uncertain processing
times modelled as triangular fuzzy numbers and propose a multiobjective surrogate-
assisted evolutionary algorithm to optimise not only the schedule’s fuzzy makespan
but also the robustness of schedules with respect to different perturbations in the du-
rations. The surrogate model is defined to avoid evaluating the robustness measure
for some individuals and estimate it instead based on the robustness values of neigh-
bouring individuals, where neighbour proximity is evaluated based on the similarity
of fuzzy makespan values. The experimental results show that by using fitness esti-
mation, it is possible to reach good fitness levels much faster than if all individuals
are evaluated.

1 Introduction

Scheduling problems form an important body of research since the late fifties with
multiple applications in industry, finances, welfare, etc. Traditionally, scheduling
has been treated as a deterministic problem that assumes precise knowledge of all
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el-ghazali.talbi@univ-lille1.fr

1

Ines
Texto escrito a máquina
Author's copy of:Palacios J.J., Puente J., Vela C.R., González-Rodríguez I., Talbi EG. (2018) Surrogate-Assisted Multiobjective Evolutionary Algorithm for Fuzzy Job Shop Problems. In: Amodeo L., Talbi EG., Yalaoui F. (eds) Recent Developments in Metaheuristics. Operations Research/Computer Science Interfaces Series, vol 62. Springer, ChamThe final publication is available at Springer viahttps://doi.org/10.1007/978-3-319-58253-5_24

Ines
Texto escrito a máquina

https://doi.org/10.1007/978-3-319-58253-5_24


2 Palacios et al.

data. However, modelling real-world problems usually involves processing uncer-
tainty and flexibility. In the literature we find different proposals for dealing with
uncertainty in scheduling [14], either finding solutions which adapt dynamically to
changes or incorporating available knowledge about possible changes to the solu-
tion. In particular, fuzzy sets have contributed to bridge the gap between classical
techniques and real-world user needs, serving both for handling flexible constraints
and uncertain data [26]. They are also emerging as an interesting tool for improving
solution robustness, a much-desired property in real-life applications [18].

When the improvement in robustness must not be obtained at the cost of loosing
performance quality in the solutions, we face a bi-objective scheduling problem.
In general there is a growing interest in multiobjective optimisation for scheduling
and, given its complexity, in the use of metaheuristic techniques to solve these prob-
lems, as shown in [7] among others. Specifically, the multiobjective fuzzy job shop
problem is receiving an increasing attention, mostly to optimise objective functions
related to makespan and due-date satisfaction. Existing proposals include genetic
algorithms [12], differential evolution algorithms [15], or hybrid strategies like the
genetic simulated-annealing algorithm from [25]. Interestingly, the latter contem-
plates finding both robust and satisfactory schedules, although the robustness opti-
misation criterion is based on the worst-case approach which can be too conservative
in cases where the worst case is not that critical and instead an overall acceptable
performance might be more adequate.

Roughly speaking, a schedule is said to be robust if it minimises the effect of
executional uncertainties on its primary performance measure [1], the makespan in
our case, so the robustness of one schedule can be only measured after executing it
in a real environment. In absence of real execution, we can use Monte-Carlo simu-
lations to approximate the robustness value of every schedule, but even with this ap-
proximation the number of simulations required to compute this value translate into
an excessive computational cost for a fitness function in a evolutionary algorithm.
This suggests resorting to surrogate-assisted evolutionary computation, which was
mainly motivated to reduce computational time in problems where complex simu-
lations are involved [16].

The idea of approximating fitness values of some individuals based on informa-
tion generated during the run, i.e. based on fitness values of individuals generated
previously, has lately gained increasing attention [16]. In the simplest case, the fit-
ness of a new individual is derived from its parents’ fitnesses. Other approaches
attempt to construct a more global model of the fitness landscape based on previous
evaluations. Several such approaches can be found in the literature, mainly differ-
ing in the model that is used to approximate the landscape and the selection of data
points used to construct the model [5]. The idea is to keep previous evaluations in a
history and select the closest neighbours to build a specific estimation model.

In the following, we will consider the bi-objective fuzzy job shop problem with
the goal of optimising both makespan and robustness. We will propose to solve
it with a multiobjective evolutionary algorithm (MOEA) where the fitness related
to robustness is found via surrogates, considering closest neighbours in terms of
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approximation of fuzzy values, using the degree of similarity between fuzzy sets to
have a proximity measure.

The rest of the paper is organised as follows. Section 2 introduces the fuzzy job
shop scheduling problem and a related robustness measure. Section 3 describes the
multiobjective evolutionary algorithm proposed to solve the problem, including the
surrogate model for evaluating the robustness fitness function. We then present and
analyse some experimental results in 4 and finish with some conclusions and future
work in Section 5.

2 Job Shop Scheduling with Uncertain Durations

The job shop scheduling problem, also denoted JSP, consists in scheduling a set of
jobs {J1, . . . ,Jn} on a set of physical resources or machines {M1, . . . ,Mm}, subject
to a set of constraints. There are precedence constraints, so each job Ji, i = 1, . . . ,n,
consists of m tasks {θi1, . . . ,θim} to be sequentially scheduled. Also, there are ca-
pacity constraints, whereby each task θi j requires the uninterrupted and exclusive
use of one of the machines for its whole processing time. A solution to this prob-
lem is a schedule (an allocation of starting times for all tasks) which, besides being
feasible, in the sense that precedence and capacity constraints hold, is optimal ac-
cording to some criteria, for instance, that the makespan is minimal or its robustness
is maximal.

2.1 Uncertain Durations

In real-life applications, it is often the case that the exact duration of a task, i.e. the
time it takes to be processed, is not known in advance, and only some uncertain
knowledge is available. Such knowledge can be modelled using a triangular fuzzy
number or TFN, given by an interval [a1,a3] of possible values and a modal value
a2 in it. For a TFN A, denoted A = (a1,a2,a3), the membership function takes the
following triangular shape:

µA(x) =


x−a1

a2−a1 : a1 ≤ x≤ a2

x−a3

a2−a3 : a2 < x≤ a3

0 : x < a1 or a3 < x

(1)

In the job shop, we essentially need two operations on fuzzy numbers, the sum and
the maximum. These are obtained by extending the corresponding operations on
real numbers using the Extension Principle. However, computing the resulting ex-
pression is cumbersome, if not intractable. For the sake of simplicity and tractability
of numerical calculations, we follow [11] and approximate the results of these op-
erations, evaluating the operation only on the three defining points of each TFN.
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It turns out that for any pair of TFNs A and B, the approximated sum A + B ≈
(a1 + b1,a2 + b2,a3 + b3) coincides with the actual sum of TFNs; this may not be
the case for the maximum max(A,B)≈ (max(a1,b1),max(a2,b2),max(a3,b3)), al-
though they have identical support and modal value.

The membership function of a fuzzy number can be interpreted as a possibility
distribution on the real numbers. This allows to define its expected value, given for
a TFN A by E[A] = 1

4 (a
1 + 2a2 + a3). It coincides, among others, with the neutral

scalar substitute of a fuzzy interval and the centre of gravity of its mean value [9].
It induces a total ordering ≤E in the set of fuzzy numbers, where for any two fuzzy
numbers A,B A≤E B if and only if E[A]≤ E[B].

2.2 Robust scheduling

A fuzzy schedule does not provide exact starting times for each task. Instead, it
gives a fuzzy interval of possible values for each starting time, provided that tasks
are executed in the order determined by the schedule. In fact, it is impossible to
predict what the exact time-schedule will be, because it depends on the realisation
of the task’s durations, which is not known yet. This idea is the basis for a semantics
for fuzzy schedules from [13] by which solutions to the fuzzy job shop should be
understood as a-priori solutions, also called baseline or predictive schedules in the
literature [14]. When tasks are executed according to the ordering provided by the
fuzzy schedule we shall know their real duration and, hence, obtain a real (executed)
schedule, the a-posteriori solution with deterministic times. Clearly, it is desirable
that a fuzzy solution yields reasonably good executed schedules at the moment of
its practical use, in clear relation with the concept of schedule robustness.

As already mentioned, we consider that a schedule is robust if it minimises the
effect on the makespan of executional uncertainties. This straightforward definition
may, however, be subject to many different interpretations when it comes to spec-
ifying robustness measures [22]. In this work, we will consider only uncertainties
in task processing times and we shall adopt the concept of ε-robustness proposed
in [3] for stochastic scheduling, already adapted to the fuzzy flexible job shop in
[19]. This definition states that a predictive schedule is considered to be robust if the
quality of the eventually executed schedule is close to the quality of the predictive
schedule. In particular, for the fuzzy job shop, a predictive schedule with makespan
value Cmax,pred (a TFN) is ε-robust for a given ε if the objective value Cmax,ex of the
eventually executed schedule (a real value) is such that:

(1− ε)≤
Cmax,ex

E[Cmax,pred ]
≤ (1+ ε) (2)

or, equivalently,
|Cmax,ex−E[Cmax,pred ]|

E[Cmax,pred ]
≤ ε. (3)
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That is, the relative error of the estimation made by the predictive schedule (i.e. its
expected makespan) is bounded by ε . Obviously, the smaller ε is, the better.

Notice however that this definition requires a real execution of the problem which
may not always be available. Consider for instance the synthetic problems com-
monly used in the literature as benchmarks. In this case, following [19], we provide
an approximation of the ε-robustness measure by means of a Monte-Carlo simu-
lation. Given a fuzzy instance, we generate a sample of K possible realisations of
that instance by assigning an exact duration to each task, that is K deterministic
instances on which we can evaluate the ε-robustness of the solution. Now for each
realisation k = 1, . . . ,K, let Cmax,k denote the exact makespan obtained by executing
tasks according to the ordering provided by a predictive schedule. Then, the average
ε-robustness of the predictive schedule, denoted ε , is calculated as:

ε =
1
K

K

∑
k=1

|Cmax,k−E[Cmax]|
E[Cmax]

, (4)

where E[Cmax] is the expected makespan estimated by the predictive schedule.
A crucial factor in this method is the way in which we sample deterministic du-

rations for the tasks based on their fuzzy values. This is done by simulating exact
durations for tasks following a probability distribution that is consistent with the
possibility distribution µA defined by each fuzzy duration A. A simple approach
consists in considering the uniform probability distribution that is bounded by the
support of the TFN. This possibility-probability transformation is motivated by sev-
eral results from the literature (see [10, 2]) that justify the use of TFNs as fuzzy
counterparts to uniform probability distributions and model-free approximations of
probability distributions with bounded support.

2.3 The multiobjective approach

In scheduling, when there is uncertainty in some of the input data, solution robust-
ness becomes an important factor to be taken into account. Indeed, an optimal solu-
tion found for an ideal deterministic scenario (for instance, assuming that all dura-
tions take their modal value) may be of little or no use when it is executed if changes
in the input data affect its real performance. Therefore, our aim in this work is to
optimise both a performance or quality function, the expected makespan E[Cmax], as
well as the robustness of the solution with respect to that function, the approximate
measure ε .

To optimise these two objective functions, we shall take a dominance-based ap-
proach. In general, for a minimisation problem with fi, i = 1, . . . ,n objective func-
tions, a solution s is said to be dominated by a solution s′, denoted s′ � s iff for each
objective function fi, fi(s′) ≤ fi(s) and there exists at least one objective function
such that fi(s)< fi(s). Our goal will then be to find non-dominated solutions to the
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FJSP with respect to E[Cmax] and ε . To achieve this, we propose a dominance-based
multiobjective evolutionary algorithm (MOEA) [23].

3 Multiobjective evolutionary algorithm

We propose a MOEA based on the well-known NSGA-II template [8]. An initial
population is randomly created and evaluated and then the algorithm iterates over a
number of generations, keeping a set of non-dominated solutions. At each iteration
i, a new population Off(Pi) is built from the current one Pi by applying the genetic
operators of selection and recombination and then a replacement strategy is applied
to obtain the next generation Pi+1. Finally, the stopping criterion can be at least
one of the following: stop when no solution belonging to the set of non-dominated
solutions is removed from this set after niiter iterations or after a fixed number of
iterations or after a given running time.

Solutions are encoded into chromosomes using permutations with repeated el-
ements, which are permutations of the set of tasks, each being represented by its
job number [4]. A given chromosome is decoded into the associated schedule, us-
ing an insertion strategy in the schedule-generating scheme [20]. This immediately
gives the makespan expected value. The other fitness function is evaluated based on
the degree of similarity between the fuzzy makespan of the current solution and a
set of solutions, named cache hereafter, for which the ε value has been previously
calculated. We shall refer to this algorithm as sMOEA.

3.1 The surrogate model

Evolutionary algorithms usually need a large number of fitness evaluations before
obtaining a satisfying result. Either when an explicit fitness function does not exist
or when the evaluation of the fitness is computationally very expensive, it becomes
necessary to estimate the fitness value by an approximate model. This is indeed the
case of one of our fitness functions, related to the objective of robustness.

Fitness approximation has been addressed from different areas, as can be seen for
instance in [5, 16]. Techniques to manage surrogates for fitness evaluation include
evaluating the fitness function only in some of the generations or in some individuals
within a generation, having a pre-selection of offspring before evaluation, evaluating
only those individuals that potentially have a good fitness value or choosing for re-
evaluation representative individuals by clustering the population, to mention but a
few.

Here we propose a new double approximation by using data sampling techniques.
First, we run a Monte-Carlo simulation to provide a surrogate of the ε-robustness
measure for the individuals in the cache, as explained in Section 2.2. Then we ap-
proximate the ε-robustness of a solution with that of the most similar solution in
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the set for which ε values have been previously computed, provided that this simi-
larity exceeds a given threshold. The set of pre-evaluated solutions is named cache
inspired in the cache memory of the computers. For this second part of the surrogate
model there are several design decision that have to be made, namely, the similarity
measure and the update strategy of the cache list. The similarity threshold and the
size of the cache list are to be experimentally determined.

3.1.1 The similarity measure

Every decoded solution has a fuzzy makespan value, so we propose to use a similar-
ity measure for TFNs to compare a given solution with every solution in the cache
list based on fuzzy makespan values. The rationale behind this choice is that, on
one hand, ε depends on the expected value of the fuzzy makespan and, on the other
hand, the makespan of every deterministic realisation used to compute ε lies in the
support of the fuzzy makespan.

In the literature we can find numerous proposals to quantify the degree of sim-
ilarity between two fuzzy numbers using different descriptive parameters, such as
the geometric distance, the perimeter, the area or the distance between the centres
of gravity, etc [6, 24]. However, most similarity functions are not adequate for our
framework. In particular we need normalised similarity values in order to establish
threshold values which are independent of the instance and this normalisation must
be invariant to translations if they are to correspond to similarities in ε values. Ad-
ditionally, similarity degrees must be easy to compute. That is, we look for simple
but still representative measures.

In this paper, we consider a measure based on the so-called shared area between
the fuzzy numbers. The shared area between fuzzy numbers with respect to the total
area of these fuzzy numbers has been incorporated as a component of the measure
of similarity of generalised fuzzy trapezoidal numbers in [24]. Here we are using
TFNs, less complex than generalised fuzzy numbers, so we need only consider this
value. The degree of similarity SA,B of A and B is then defined as

SA,B =
Area(A∩B)
Area(A∪B)

(5)

When A∩B is not a triangle, we approximate the area by the maximum triangle
inscribed in this plane area. We will say that A and B are approximately equal given
a small nonnegative number δ iff SA,B ≤ δ .

3.1.2 The update strategy

The update strategy for the cache is motivated by the fact that, as the algorithm
converges, the chance that a new solution lies in areas of the search space with bad
solutions becomes smaller. A new solution is thus added to the cache only if it is
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not similar enough to any of the elements already in the list, in the sense that they
are not approximately equal as defined above. When this is the case, the solution
is fully evaluated to obtain its ε value and added to the list. If this is full, the new
solution replaces the one in the list that has not been used for longer to estimate the
value of the robustness for another individual.

The cache is initially empty. Then, every individual in the initial population is
processed to be inserted in the list following the replacement strategy above. Notice
that by doing this the cache list, which has a prefixed size, may not be full once the
whole initial population is analysed.

3.2 Genetic operators

In the selection phase all chromosomes are randomly grouped into pairs, and then
each of these pairs is mated to obtain two offspring. For the mating we have imple-
mented one of the most extended crossover operators for the JSP, the Generalized
Order Crossover (GOX). In order to preserve the diversity of individuals inside the
population and prevent the algorithm from getting stuck in local optima, the inser-
tion mutation strategy is also introduced.

The replacement strategy is a key factor in MOEA algorithms. Here we adopt a
strategy based on the non-dominated sorting approach with diversity preservation
from [8], that is, solutions belonging to a lower (better) non-domination rank are
preferred and, between two solutions in the same non-dominance level, we prefer
the solution located in the less crowded region. To introduce greater diversity in the
algorithm, we remove from the pool of individuals those which are repeated, in the
sense that there exists in the pool at least another individual having identical values
for all objective functions. In the case that such elimination causes the pool to con-
tain less individuals than the population size, all the non-repeated individuals pass
onto the next generation, which is later completed with the best repeated individuals
according to their rank level and crowding distance.

4 Experimental study

For the experimental study, we consider one hard and well-known instance obtained
by fuzzifying task durations of a crisp JSP classical benchmark, La29, as proposed
in [21].

We start by trying to gain some insight into the effects of considering different
similarity thresholds and cache sizes, respectively denoted δ and λ hereafter. We
have generated a set of 1000 random solutions and, for different similarity thresh-
olds δ ranging from 0.10 to 0.95, we have recorded the percentage of times (called
hit rate) that a solution is approximately equal to at least one solution in a set of
size λ , with λ ranging from 10 to 200. We have seen that, for similarity thresholds
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under 0.80, the cache almost always contains an approximately equal solution for
most of the λ values. Moreover, even when δ = 0.80 and λ values over 100 are
considered, we have hit rates near 100%. Translated into our surrogate algorithm
this could mean that actual ε values will most likely be computed only for those so-
lutions inserted in the cache in the first iterations. However, a different behaviour is
observed for the same cache sizes (λ ≥ 100) when δ = 0.90 and δ = 0.95 are con-
sidered. On the other hand, when these stricter similarity thresholds are considered
with small λ values, there is little chance of finding an approximately equal solution
in the cache, so most of the times a new solution will need to be completely eval-
uated, neutralising the potential effect of the surrogate approach in running times.
That said, δ = 0.8 offers more reasonable hit rates for small λ values, which support
considering these smaller cache sizes in the experimental study.

We now proceed to consider different values for δ and λ and analyse their ef-
fects in running times and solution quality. For the sake of clarity, we will refer to
the multiobjective algorithm using the surrogate model as sMOEA, while MOEA
will refer to the algorithm that avoids surrogates and evaluates every new solution.
As a result of a preliminary parametric analysis, the parameter setup is as follows:
population size 100, crossover and mutation probabilities 1.0 and 0.1 respectively.
Given the stochastic nature of the algorithm, it is run 10 times, so 10 different sets
of non-dominated solutions are stored in order to obtain representative data.

In the literature we find many proposals to compare multiobjective algorithms.
In this work we consider two metrics: the hypervolume, which is a quality indica-
tor that combines both convergence and diversity measures and the unary additive
ε− Indicator, which is a distance-based indicator [23]. This last indicator is calcu-
lated with respect to a reference set RF , which ideally should be the optimal Pareto
front PO∗. However, since the benchmark instance used here has not been solved
yet, this Pareto front is unknown. In consequence, we approximate it by the set
of non-dominated elements of the union of all sets of solutions obtained so far in
this experimentation [23]. Additionally, to avoid problems derived from the differ-
ent scales of the objective functions, we normalise their values. More precisely, let
f−i (S) = min{ fi(s) : s ∈ S} be a lower bound of the objective function fi in the set
S, and

f+i (S) = max{ fi(s) : s ∈ S}+0.05∗ (max{ fi(s) : s ∈ S}−min{ fi(s) : s ∈ S})

an upper bound thereof, then the objective value fi(s) of each solution s ∈ S is
normalised as follows:

∀i fi(s) =
fi(s)− f−i (S)

f+i (S)− f−i (S)
. (6)

By taking this upper bound, we prevent the solutions from having a value equal to 1,
which can be troublesome when computing the hypervolume. Indeed, solutions with
objective values equal to 1 define a rectangle with null area, making them unsuitable
for fair comparisons.

In our experimental study, we first run the MOEA that evaluates ε for every so-
lution, using niiter = 25 non-improving consecutive iterations as stopping criterion.
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Fig. 1: Improvement and hypervolume values for different sizes of cache. Red lines
represent hypervolumes and blue lines time reductions

Besides the sets of non-dominated solutions, we register the number of generations
needed for MOEA to converge (3950). Then, using this number of generations as
stopping criterion, sMOEA is executed considering three δ values: 0.80, 0.90 and
0.95 and six λ values: 10, 25, 50, 75, 100 and 200. The sets of non-dominated solu-
tions obtained after every run are then fully evaluated in order to obtain their actual
ε values that allow for fairer comparisons, so solutions that are dominated after the
full evaluation are removed from the sets.

Figure 1 shows the improvement in running time of sMOEA w.r.t. MOEA and the
hypervolume values for sMOEA given different combinations of λ and δ : Figure
1(a) for δ = 0.95, Figure 1(b) for δ = 0.90 and Figure 1(c) for δ = 0.80. All figures
show a primary Y-axis for time improvement in percentage (from -15% to 105%)
and a secondary Y-axis for hypervolume values (from 0.61 to 0.71), being 0.6939
the hypervolume value reached by MOEA.

We can observe that, in general, increasing the similarity threshold improves the
hypervolume and reduces the time improvement. This behavior is quite natural, as
having a stricter threshold δ causes the algorithm to fully evaluate more solutions,
thus having more accurate information, at the cost of having a longer runtime.

Notice as well that, even though time reductions are comparable, this is not the
case for hypervolume (HV) values. When δ = 0.80, the HV values obtained are in
general much worse than those obtained with δ ≥ 0.90 (only with a cache size of
200 do they begin to be competitive). This leads us to reject 0.80 as an appropriate
threshold for the similarity of solutions.

Focusing on Figures 1(a) and 1(b) we can observe that, when the similarity
threshold is high and the cache size is small, the processing time not only does
not decrease, it even increases. Specifically, with δ = 0.95 and λ ≤ 50, and with
δ = 0.90 and λ = 10, CPU times of sMOEA are worse than those of MOEA. This
is explained by the fact that it is unlikely to find an approximately equal individual
in a small-sized cache, so most of individuals of the sMOEA are fully evaluated (as
is the case with MOEA) and, additionally, sMOEA has to compare solutions and
update the cache frequently, incurring in higher computational cost. For values such
as δ = 0.95 and λ = 75 or δ = 0.90 and λ = 50, for which the cache is actually used
by sMOEA, we can observe time improvements at some cost in HV values. More
interestingly, when the cache size increases to 100, time reduction does not imply a
loss in quality. We believe this is because the most similar solution in the cache is
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more likely to be really close to the current solution, having the effect of more reli-
ability in the surrogates, leading to better HV values. This effect is nonetheless lost
for λ = 200, probably because an excessively large cache causes the robustness fit-
ness value to be estimated too often. Finally, we look at the ε-indicator for those sets
of experiments where sMOEA does not consume more time resources than MOEA.
We see that, only for λ = 100 and δ = 0.90 or δ = 0.95, the ε-indicator values
obtained for sMOEA are similar to those of the MOEA (0.0712, 0.0791, and 0.0731
respectively).

Once a first filter has been applied to the different options for δ and λ values, we
shall compare the two best variants of sMOEA (with λ = 100 and δ = 0.95 or 0.90)
and MOEA. Regarding runtime, sMOEA(0.90,100) obtains a greater reduction in
CPU times (53% versus 21% of sMOEA(0.95,100)). In terms of quality, a first im-
pression can be obtained from the box-plots in Figure 2, which correspond to the HV
values obtained using the three configurations. With the exception of two outsider
values, HV values corresponding to the configuration sMOEA(0.95,100) appear to
be slightly better than the rest. Having said this, differences in the box-plot are not
big enough for a solid conclusion, making further comparisons necessary.

0.6

0.62

0.64

0.66

0.68

0.7

0.72

sMOEA(0.90,100) sMOEA(0.95,100) MOEA

Fig. 2: HV for all runs of sMOEA(0.90,100), sMOEA(0.95,100) and MOEA (with
no cache)

A more detailed comparison between the three algorithms, taking into account
their multiobjective nature, can be done by means of the empirical attainment
functions (EAFs), which characterise the output of a stochastic multiobjective op-
timisation algorithm [17].Figure 3 graphically plots the difference (using a gray
scale) between the EAFs for algorithms MOEA (with no cache), sMOEA(0.95,100)
and sMOEA(0.90,100), which allows us to identify the regions where one algo-
rithm performs better than another. We can see that the solutions obtained with
MOEA dominate those obtained by sMOEA(0.90,100) in almost every region with
a low probability, slightly higher in the middle of the front, whereas solutions from
sMOEA(0.90,100) almost never dominate those of MOEA with not null probability.
The comparison between MOEA and sMOEA(0.95,100) reveals more equilibrium:
the solutions from MOEA dominate with lower probability those of the surrogate
version in some regions of the space, but they are dominated in other regions with a
probability higher than 0. Finally, between both variants of the surrogate algorithm,
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sMOEA(0.95,100) is clearly better than sMOEA(0.90,100), since the difference be-
tween their EAFs is positive in almost every region and it is null when we make the
opposite comparison.
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Fig. 3: Comparison between MOEA (no cache) and sMOEA(0.90/0.95,100) based
on EAFs.

Finally, a statistical analysis between HVs of the sets of solutions obtained with
sMOEA(0.95,100) and MOEA is carried out, with a level of significance of 0.05 in
every test considered. Once the normality of the samples and the homocedasticity
are verified, a t-test is done with the result that there are no significant differences
in terms of solution quality (p-value 0.918709). Notice that the lack of statistically
significant differences, far from being a bad result, supports the interest of our pro-
posal. Indeed, it indicates that the HV values obtained with the proposed sMOEA
and MOEA are similar and therefore means that the use of surrogates does not have
a bad influence in solution quality (in terms of hypervolume values), while it pro-
vides a reduction of over 20% in running time.

5 Conclusions

We have considered the job shop problem with uncertainty in the task durations
modeled as fuzzy numbers. We have proposed to simultaneously optimise the
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makespan and the robustness of the solutions, understood as an overall acceptable
performance under variations in the input data.

We have seen that a multiobjective evolutionary algorithm (MOEA) may produce
good results for the FJSP, but at the same it is too time consuming. To overcome this
drawback we have proposed a new surrogate model to spend less time in robust-
ness evaluation. The resulting algorithm, termed sMOEA, has shown to be quite
sensitive to the values of the parameters δ and λ . In particular, the combination of
small δ values with large λ values gives rise to a fast method, at the cost of losing
quality on solutions, while with large δ and small λ values the opposite happens.
From a thorough experimental study, we have found a reasonable tradeoff between
these parameters that allows sMOEA to reduce running times in more than 20%
w.r.t. the original MOEA, without significant loss of solution quality in terms of
hypervolumes.
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