
A memetic algorithm for due-date satisfaction in
fuzzy job shop scheduling

Juan José Palacios1, Inés González-Rodŕıguez2, Camino R. Vela1, and Jorge
Puente1

1 Department of Computer Science,
University of Oviedo, (Spain) {palaciosjuan,puente,crvela}@uniovi.es,

http://di002.edv.uniovi.es/iscop
2 Department of Mathematics, Statistics and Computing,

University of Cantabria, (Spain) ines.gonzalez@unican.es

Abstract. We consider the job shop scheduling problem with with fuzzy
sets modelling uncertain durations and flexible due dates. With the
goal of maximising due-date satisfaction, we propose a memetic algo-
rithm that combines intensification and diversification by integrating lo-
cal search in a genetic algorithm. Experimental results illustrate the syn-
ergy between both components of the algorithm as well as its potential
to provide good solutions.

1 Introduction

Traditionally, it has been assumed that scheduling problems are static and cer-
tain: all activities and their durations are precisely known in advance and do not
change as the solution is being executed. However, for many real-world schedul-
ing problems design variables are subject to perturbations or changes, causing
optimal solutions to the original problem to be of little or no use in practice. It is
also common to handle all constraints as sharp, while in some cases there is cer-
tain flexibility and some constraints are better expressed in terms of preference,
so it is possible to satisfy them to a certain degree.

A source of changes in scheduling problems is uncertainty in activity dura-
tions. Within the great diversity of approaches dealing with this kind of uncer-
tainty, fuzzy sets and possibility theory provide an interesting framework, with
a tradeoff between the expressive power of probability and its associated com-
putational complexity and knowledge demands. Additionally, fuzzy sets can be
used to model flexibility or gradeness in certain management constraints such
as due dates [4].

The variant of job shop scheduling problem with fuzzy durations and, op-
tionally, fuzzy due dates, is called fuzzy job shop [1]. Most contributions in the
literature concentrate on minimising the project’s makespan, but some authors
have tackled the problem of maximising due-date satisfaction, either on its own
or in a multiobjective setting, combined with makespan.

In this paper, we intend to advance in the study of the fuzzy job shop schedul-
ing problem, and in particular, in a metaheuristic method to maximise due-date
satisfaction when uncertain task durations and flexible due dates are fuzzy sets.

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina
Author's copy of:Palacios, J. J., Vela, C. R., González-Rodríguez, I., & Puente, J. (2017, June). A Memetic Algorithm for Due-Date Satisfaction in Fuzzy Job Shop Scheduling. In International Work-Conference on the Interplay Between Natural and Artificial Computation (pp. 135-145). Springer, Cham.The final publication is available at Springer viahttp://dx.doi.org/10.1007/978-3-319-59740-9_14

http://dx.doi.org/10.1007/978-3-319-59740-9_14

2 J.J. Palacios et al

2 The Fuzzy Job Shop Problem

The classical job shop scheduling problem, also denoted JSP, consists in schedul-
ing a set of jobs {J1, . . . , Jn} on a set {M1, . . . ,Mm} of physical resources or
machines, subject to a set of constraints. There are precedence constraints, so
each job Ji, i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be sequentially
scheduled. Also, there are capacity constraints, whereby each task θij requires
the uninterrupted and exclusive use of one of the machines for its whole pro-
cessing time. Additionally, each job Ji may have a due date di by which it is
desirable that the job be completed. A solution to this problem is a schedule, i.e.
an allocation of starting times for each task, which, besides being feasible (in the
sense that all precedence and resource constraints hold), is optimal according to
some criterion, in our case, maximal due-date satisfaction.

2.1 Fuzzy Durations and Flexible Due Dates

In real-life applications, it is difficult, if not impossible, to foresee in advance
the exact time it will take to process a task. It is reasonable however to have
some knowledge (albeit uncertain) about the duration, possibly based on previ-
ous experience. The crudest representation of such uncertain knowledge would
be a human-originated confidence interval and, if some values appear to be
more plausible than others, then a natural extension is a fuzzy interval or fuzzy
number. The simplest model is a triangular fuzzy number or TFN, denoted
â = (a1, a2, a3), given by an interval [a1, a3] of possible values and a modal value
a2 ∈ [a1, a3], so its membership function takes the following triangular shape:

µâ(x) =

x−a1
a2−a1 : a1 ≤ x ≤ a2
x−a3
a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

Triangular fuzzy numbers (or, more generally, fuzzy intervals) are widely used
in scheduling as a model for uncertain processing times [1, 4, 12].

In the job shop, we essentially need two operations on fuzzy numbers, the sum
and the maximum. These are usually defined by extending the corresponding
operations on real numbers. The resulting addition is pretty straightforward,
so for any pair of TFNs â and b̂ we have â + b̂ = (a1 + b1, a2 + b2, a3 + b3).
Unfortunately, computing the extended maximum is not that simple and the
set of TFNs is not even closed under this operation. Hence, it is common in
the fuzzy scheduling literature to approximate the maximum of two TFNs as
max(â, b̂) ≈ (max{a1, b1},max{a2, b2},max{a3, b3}). Besides its extended use,
several arguments can be given in favour of this approximation (cf. [12]).

Fuzzy sets can also be used to model flexible due dates. Consider the case
where there is a preferred delivery date d1, but some delay may be allowed until
a later date d2. Satisfying the due date constraint thus becomes a matter of
degree, our degree of satisfaction that the job is finished on a certain date. A

A memetic algorithm for due-date satisfaction in fuzzy job shop scheduling 3

fuzzy set d̃ = (d1, d2) can be used to model such gradual satisfaction level with
a decreasing membership function:

µd̃(x) =

1 : x ≤ d1
x−d2
d1−d2 : d1 < x ≤ d2

0 : d2 < x

(2)

This expresses a flexible threshold “less than”, representing the satisfaction level
sat(t) = µd̃(t) for the ending date t of the job [4].

When the job’s completion time is no longer a real number t but a TFN ĉ,
the degree to which ĉ satisfies the due-date constraint d̃ may be measured using
the agreement index [15]:

AI(ĉ, d̃) =
area(d̃ ∩ ĉ)
area(ĉ)

(3)

where area(d̃∩ ĉ) and area(ĉ) denote the areas under the membership functions

of (d̃ ∩ ĉ) and ĉ respectively. This essentially measures the degree to which ĉ is

contained in d̃ following the standard definition of degree of subsethood. AI(ĉ, d̃)
ranges between 0, when the due date is not satisfied at all, and 1, when the due
date is fully satisfied.

2.2 Fuzzy Schedules

To determine a solution for a fuzzy JSP, it is necessary to establish partial
task processing orders on all machines. These can be represented by a linear
processing order π. A schedule (starting and completion times of all tasks) may
be easily computed based on π. For every task x with processing time p̂x, let
PMx(π) and SMx(π) denote the tasks preceding and succeeding x in the machine
sequence provided by π, and let PJx and SJx denote respectively the predecessor
and successor tasks of x in the job sequence. Then the starting time ŝx(π) and
completion time ĉx(π) of x according to π are two TFNs given by:

ŝx(π) = max(ŝPJx + p̂PJx , ŝPMx(π) + p̂PMx(π)), (4)

ĉx(π) = ŝx(π) + p̂x(π). (5)

The completion time of each job Ji, denoted ĉi(π), is the completion time of the
last task in that job. If there is no possible confusion regarding the processing
order, we may simplify notation by writing ŝx, ĉx and ĉi.

The resulting schedule is fuzzy in the sense that the starting and completion
times of all tasks are fuzzy intervals, interpreted as possibility distributions on
the values that the times may take. However, notice that the task processing
ordering π that determines the schedule is deterministic; there is no uncertainty
regarding the order in which tasks are to be processed.

Having built a schedule from π, we can now evaluate the degree of satis-
faction of due dates. Indeed, the agreement index AIi(ĉi(π), d̃i) as defined in

4 J.J. Palacios et al

(3), denoted AIi for short, measures to what degree is each job’s flexible due

date d̃i satisfied in this schedule, i = 1, . . . , n. The overall value of due-date
satisfaction for the schedule is then obtained by aggregating the individual AIi
values for i = 1, . . . , n. Two main approaches for aggregation can be found in
the literature: the minimum agreement index AImin = mini=1,...,nAIi, and the
average agreement index AIavg = 1

n

∑
i=1,...,nAIi. The minimum corresponds to

the classical approach of fuzzy decision making, while the average provides an
alternative for which the compensation property holds. Both aggregated indices
need to be maximised.

The resulting job shop problem, with fuzzy processing times and fuzzy due
dates, and where the objective is to maximise the aggregated agreement index
AIagg (where AIagg can be AIavg or AImin) can be denoted J |p̂i, d̃i|AIagg ac-
cording to the three-field notation from [7].

3 A Memetic Algorithm to Maximise AIagg

Hybrid algorithms, combining genetic algorithms with local search methods,
have proved to be very powerful in different optimisation problems. The reason is
their ability to integrate the intensification provided by the local search with the
diversification provided by the population-based algorithm. In particular, some
state-of-the-art methods for different variants of fuzzy job shop are hybrids of
this kind [11, 12]. This motivates our proposal of a memetic algorithm, combining
a genetic component with local search.

3.1 Genetic Component

For the genetic component of our algorithm, solutions are codified into chro-
mosomes as permutations with repetitions [2]. Each permutation represents a
feasible task processing order π by identifying each operation θij with j-th oc-
currence of index i in the permutation. For example, in a problem with three
jobs and three machines, sequence (1,3,2,2,3,1,1,3,2) represents the task ordering
π = (θ11, θ31, θ21, θ22, θ32, θ12, θ13, θ33, θ23). For fitness evaluation, chromosomes
are decoded into schedules using an insertion schedule generation scheme as
proposed in [13] and the resulting AIagg is taken as fitness value.

The algorithm starts from a random population. It then iterates untilmaxIter
consecutive iterations pass without any improvement in the best solution found
so far. At each iteration a new generation is built from the previous one by
applying the genetic operators of selection, recombination and replacement. In
the selection phase all chromosomes are randomly paired, and then each pair is
mated to obtain two offspring by applying crossover and mutation with a certain
probability. Two individuals are then selected using tournament from each pair
of parents and their two offspring to pass onto the next generation. In order to
keep diversity, when possible the replacement strategy selects two individuals
with different fitness values. For recombination, two classical operators are used:
JOX crossover [9] and insertion mutation.

A memetic algorithm for due-date satisfaction in fuzzy job shop scheduling 5

3.2 Local Search Component

This component follows a typical local search schema: starting from a given solu-
tion, at each step it selects a promising element from a neighbourhood structure
to replace the current solution, until a stopping criterion is met. In our case, we
use a simple hill climbing, where the local search moves to the first neighbour
improving the objective value of the current solution. The search stops when
it reaches a solution without improving neighbours. This strategy is very fast
compared to other local search strategies, making it appealing for large neigh-
bourhoods.

For the deterministic JSP several local search methods have been proposed
where neighbours are generated by selecting (according to some criterion) two
tasks that are sequentially scheduled in a machine and changing their relative
order. This is equivalent to reversing an arc in a graph G representing a solution.
In this graph, nodes correspond to tasks and directed arcs, weighted with the
processing time of the task in the origin, represent immediate precedence between
the two tasks either in the job or the machine. Another node, representing the
start of the project is added and connected with zero weight to the first task in
each job. Also, depending on the objective function, there is a single end node to
which the last task of each job is (e.g. for the makespan minimisation) or there
is an end node per job (this is the case of some objective functions considering
due dates) [3].

The same approach is extended for the fuzzy JSP with makespan minimisa-
tion in [6]. To select arcs to be reversed, the solution graph G (with fuzzy arc
weights) is decomposed in three parallel graphs Gj , j = 1, 2, 3, with identical
topology but such that arcs are weighted with the j-th component of the pro-
cessing time of the task corresponding to the source node. This allows to define
critical paths in G as those paths from the start to the end that are critical
(in the usual deterministic sense) in any of the parallel graphs Gj . Arcs to be
reversed are then chosen from the set of arcs in a critical path that correspond
to machine precedence. Neighbours thus generated are shown to be feasible so-
lutions. It is also shown that reversing any non-critical arc cannot possibly lead
to a solution with shorter critical paths and, hence, better makespan.

Based on these ideas, we propose two different neighbourhood structures,
one for each aggregation of agreement indices. In the case of AIavg, for its value
to increase in a neighbouring solution it must be the case that at least one of
the agreement indices AIi improves. This implies reducing the completion time
ĉi(π) of that job or, equivalently, reducing the length of the longest path from
the start node to the end node of job Ji in the solution graph. Therefore, we
consider that a path is critical for job Ji if and only if it is a longest path from
the start node to the last node of job Ji in any of the parallel graphs Gj . Notice
that there might be more than one critical path for each job. Let CPi denote
the set of critical paths for job Ji, i = 1, . . . , n. An improvement in ĉi(π) (and
hence AIavg) can only be obtained by reversing machine arcs belonging to one
of the paths in CPi, i = 1, . . . , n. Furthermore, since AIi ≤ 1 for i = 1, . . . , n,
reducing the completion time of a job such that AIi = 1 cannot improve AIavg

6 J.J. Palacios et al

either. Therefore, the neighbourhood NAIavg is obtained by reversing machine
arcs that belong to a critical path in the set {CPi : AIi < 1, 1 ≤ i ≤ n}.

In the case that the objective function is AImin, a smaller neighbourhood
structure can be considered. Indeed, for the minimum aggregation, reducing the
completion time ĉi(π) of any job such that AIi > AImin does not improve the
objective function. Therefore we obtain a neighbourhood NAImin

⊂ NAIavg
by

reversing an arc if and only if that arc is in a critical path in the set {CPi :
AIi = AImin < 1, 1 ≤ i ≤ n}.

In summary, the local search component consists in a simple hill climbing
procedure using one of the neighbourhood structures NAIavg

or NAImin
, de-

pending on the objective function considered. This results in quite a fast local
search procedure which is applied to all the individuals that are evaluated by
the genetic algorithm.

4 Experimental Results

To provide an empirical evaluation of the proposed memetic algorithm, called
MA hereafter, we perform a series of experiments with a C++ implementation
running on a PC with Xeon processor at 2,2Ghz and 24 Gb RAM with Linux
(SL 6.0.1). The parameter values (obtained after a parametric analysis not re-
ported here due to lack of space) are population size 100, crossover and mutation
probability 1.0 and 0.05 respectively and maxIter=25 as stopping criterion. In
all cases, results correspond to 30 runs of MA. We evaluate solutions in terms of
1−AIagg for both AIagg = AImin and AIagg = AIavg, representing the distance
between the obtained overall due date satisfaction (measured with AIagg) and
the ideal situation where all due dates are fully satisfied. This ideal value of 1
provides an upper bound for solution performance, but if due dates are too tight
it may occur that this upper bound is actually unattainable.

In a first set of experiments, we compare MA with two methods from the lit-
erature which, to our knowledge, conform the state-of-the-art. The first method
is a genetic algorithm, denoted SMGA, proposed in [15] to optimise AImin. It
was tested on two new instances widely used in the literature thereafter (see the
review [12]): S6.4 of size 6× 6 and S10.4 of 10× 10. On these instances, SMGA
compared favourably to an alternative simulated annealing method SMSA. A
second approach is a random key genetic algorithm (RKGA) from [8], also max-
imising AImin. Both RKGA and the author’s own implementation of SMGA were
tested on a total of 10 instances: S6.4 and S10.4 above, 6 more instances from
the literature and 2 new ones. We find 3 instances of size 6× 6, denoted S6.1-3,
and 3 of size 10× 10, S10.1-3, originally proposed for a multiobjective approach
in [14]. The two new instances of size 15× 10, denoted Lei01 and Lei02 [12], are
meant to provide more challenging scenarios. It must be noted that the results
reported in [8] correspond to a different approximation for the maximum of fuzzy
numbers which may lead to smaller completion times (cf. [12]). Figure 1 shows
the performance of all three algorithms— SMGA, RKGA and MA using AImin
as objective function— on this test bed of 10 instances. The comparison is made

A memetic algorithm for due-date satisfaction in fuzzy job shop scheduling 7

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

S6.1 S6.2 S6.3 S6.4 S10.1 S10.2 S10.3 S10.4 Lei01 Lei02

1
-A
I m

in

SMGA RKGA Memetic

Fig. 1. Comparison with algorithms SMGA and RKGA maximising AImin.

in terms of average values of 1−AImin across all runs of MA and RKGA (30 and
20 respectively) and the best average value for SMGA between the two values
reported in [15] and [8].

We can appreciate that differences among methods are almost negligible in
small instances (S6). In fact, MA obtains the same AImin value on all runs,
which suggests that this value is very close to or is actually the optimum for
these instances. For the larger instances S10.1-4 and Lei01-02, we can see that
MA yields the best results. While improvement with respect to the other methods
is small on instances S10.1 and S10.2, on S10.3 MA is 29.6% better in average
values than RKGA and on S10.4 it is 34.6% better than RKGA and 7.9% better
than SMGA. Differences grow on the largest instances: for instances Lei01 and
Lei02, the results obtained by MA are respectively 89.9% and 94.8% better than
RKGA. Moreover, the obtained average difference is close to 0, which shows the
potential of MA to solve these instances.

Additionally, we consider another method that maximises AImin, proposed
in [5]. In a multiobjective setting, a lexicographic genetic algorithm is proposed
to optimise makespan, AImin, and AIavg and tested on five instances, obtained
by fuzzifying well-known deterministic instances: FT06 (6× 6), La11, La12, La13
and La14 (20×5). The proposed method always obtains full due-date satisfaction
on all instances, with AImin = AIavg = 1. For the sake of completeness, we have
run our method on these instances, first optimising AImin and then AIavg. In
both cases, the obtained results reach the optimal value for all instances.

A second set of experiments is conducted on a set of more challenging in-
stances from [10]. These are obtained from 12 well-known benchmark problems
for deterministic job shop which are considered hard to solve: FT10 (size 10×10),
FT20 (20 × 5), La21, La24, La25 (15 × 10), La27, La29 (20 × 10), La38, La40
(15× 15), and ABZ7, ABZ8, ABZ9 (20× 15). The deterministic processing times
from the original instances have been transformed into symmetric TFNs so the
original duration is the modal value, and flexible due dates have been intro-

8 J.J. Palacios et al

1 −AIavg 1 −AImin

Instance Best Avg. Best Avg. Runtime

ABZ7 0.335 0.355 (0.018) 1.000 1.000 (0.000) 132.9
ABZ8 0.312 0.333 (0.012) 1.000 1.000 (0.000) 128.0
ABZ9 0.300 0.325 (0.015) 1.000 1.000 (0.000) 199.1
FT10 0.243 0.246 (0.008) 1.000 1.000 (0.000) 5.4
FT20 0.701 0.714 (0.010) 1.000 1.000 (0.000) 9.3
La21 0.358 0.381 (0.010) 1.000 1.000 (0.000) 23.9
La24 0.334 0.362 (0.015) 1.000 1.000 (0.000) 23.2
La25 0.319 0.342 (0.010) 1.000 1.000 (0.000) 25.7
La27 0.501 0.536 (0.021) 1.000 1.000 (0.000) 68.4
La29 0.457 0.479 (0.018) 1.000 1.000 (0.000) 58.3
La38 0.156 0.167 (0.007) 1.000 1.000 (0.000) 48.8
La40 0.116 0.137 (0.013) 1.000 1.000 (0.000) 56.6

Table 1. Results obtained using AIavg as objective function.

duced. We refer the interested reader to [10] and references therein for further
information on the fuzzification process.

The results obtained on each benchmark instance when the objective function
is AIavg are summarised in Table 1. After a first column containing the name
of the instance, the second and third columns contain the value for the best
solution and the average and standard deviation (the latter between brackets)
of 1−AIavg across the 30 runs. The fourth and fifth columns are analogous, but
measuring overall due-date satisfaction with AIagg = AImin. Finally, the last
column shows the average runtime in seconds across the 30 runs.

Since MA is run using AIavg as objective value, the most relevant data are
those in the second and third columns. We can appreciate that the distance
to full due-date satisfaction varies significantly across the different instances,
ranging from less than 0.2 in instances La38 and La40 to an extreme value of
0.714 in instance FT20. We believe this is related to the method used in [10]
to generate due-date values. For FT20, with many jobs but just a few tasks per
job, due dates are very tight and there is little flexibility to schedule the tasks of
every job in such a way that due dates are met. On the other hand, for instances
like La38 and La40, where both the number of jobs and tasks per job is large,
due dates result less rigid so the obtained satisfaction values are much closer to
the upper bound.

The fourth and fifth column of Table 1 illustrate how AImin turns out to be
too restrictive as aggregation method on this set of instances: even for those so-
lutions with an average agreement index AIavg relatively close the upper bound,
at least one of the due dates cannot be satisfied, resulting in AImin = 0. This
is due to the difficulty of the proposed instances, with very tight due dates that
make it very unlikely to find a solution such that AImin > 0. Indeed, when
running MA on this test bed using AImin as fitness function, the error of the
obtained solutions is always very close to 1 (1 in many instances). In fact, the

A memetic algorithm for due-date satisfaction in fuzzy job shop scheduling 9

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

ABZ7 ABZ8 ABZ9 FT10 FT20 La21 La24 La25 La27 La29 La38 La40

1
-A
I a
vg

LS GA MA

Fig. 2. Performance of the different components of MA

initial population consists of random solutions for which AImin = 0 in most
cases, so there is no good solution to guide the algorithm to promising areas of
the search space. On the other hand, using AIavg as fitness value, the initial pop-
ulation already contains many individuals with fitness greater than 0, allowing
MA to converge.

In a final set of experiments, we assess if both components of our memetic
algorithm MA are actually contributing to the obtained results. To this end,
the genetic component, GA, and the local search, LS, are run independently on
the second set of more challenging instances. For a fairer comparison, LS is run
as a multi-start local search with as many restarts as the average number of
evaluations performed by MA on each instance. Analogously, GA is run with
the same setup as MA for as long as the latter takes to converge. Due to the
issues we have outlined regarding the optimisation of AImin in the harder set of
test instances, we take AIavg as objective function in all cases. The multi-start
local search starting from random solutions obtains the worst results, not only
in performance, Figure 2, but also in runtime which is 44% larger than MA. On
the other hand, GA performs much better than the local search. Still, we can
appreciate a synergy effect when combining both strategies, with MA obtaining
much better results in the same running time than GA. This shows that MA
benefits from the exploration of GA and also from the intensification of LS.

5 Conclusions

We have tackled the job shop scheduling problem with uncertain durations and
flexible due dates modelled as fuzzy numbers. We have proposed a memetic algo-
rithm, combining a genetic algorithm with a purpose-built local search. Exper-
imental results compare favourably with the state-of-the-art methods, showing
the potential of the proposed method.

10 J.J. Palacios et al

Acknowledgements

This research has been supported by the Spanish Government under research
grant TIN2016-79190-R.

References

1. Abdullah, S., Abdolrazzagh-Nezhad, M.: Fuzzy job-shop scheduling problems: A
review. Information Sciences 278, 380–407 (2014)

2. Bierwirth, C.: A generalized permutation approach to jobshop scheduling with
genetic algorithms. OR Spectrum 17, 87–92 (1995)

3. B lażewicz, J., Domschke, W., Pesch, E.: The job shop scheduling problem: Con-
ventional and new solution techniques. European Journal of Operational Research
93, 1–33 (1996)

4. Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: Modelling flexible con-
straints vs. coping with incomplete knowledge. European Journal of Operational
Research 147, 231–252 (2003)

5. González Rodŕıguez, I., Puente, J., Vela, C.R.: A multiobjective approach to fuzzy
job shop problem using genetic algorithms. CAEPIA 2007, Lecture Notes in Arti-
ficial Intelligence 4788, 80–89 (2007)

6. González Rodŕıguez, I., Vela, C.R., Puente, J., Varela, R.: A new local search
for the job shop problem with uncertain durations. In: Proc. of ICAPS-2008. pp.
124–131. AAAI Press (2008)

7. Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics 4, 287–326 (1979)

8. Lei, D.: Solving fuzzy job shop scheduling problems using random key genetic
algorithm. International Journal of Advanced Manufacturing Technologies 49, 253–
262 (2010)

9. Ono, I., Yamamura, M., Kobayashi, S.: A genetic algorithm for job-shop scheduling
problems using job-based order crossover. In: Proc. of IEEE International Confer-
ence on Evolutionary Computation, 1996. pp. 547–552. IEEE (1996)

10. Palacios, J.J., Derbel, B.: On maintaining diversity in MOEA/D: Application to
a biobjective combinatorial FJSP. In: Proc. of GECCO ’15. pp. 719–726. ACM
(2015)

11. Palacios, J.J., González, M.A., Vela, C.R., González-Rodŕıguez, I., Puente, J.: Ge-
netic tabu search for the fuzzy flexible job shop problem. Computers & Operations
Research 54, 74–89 (2015)

12. Palacios, J.J., Puente, J., Vela, C.R., González-Rodŕıguez, I.: Benchmarks for fuzzy
job shop problems. Information Sciences 329, 736–752 (2016)

13. Palacios, J.J., Vela, C.R., González-Rodŕıguez, I., Puente, J.: Schedule genera-
tion schemes for job shop problems with fuzziness. In: Schaub, T., Friedrich, G.,
O’Sullivan, B. (eds.) Proc. of ECAI 2014. pp. 687–692. IOS Press (2014)

14. Sakawa, M., Kubota, R.: Fuzzy programming for multiobjective job shop schedul-
ing with fuzzy processing time and fuzzy duedate through genetic algorithms.
European Journal of Operational Research 120, 393–407 (2000)

15. Sakawa, M., Mori, T.: An efficient genetic algorithm for job-shop scheduling prob-
lems with fuzzy processing time and fuzzy duedate. Computers & Industrial En-
gineering 36, 325–341 (1999)

