
Journal of Intelligent Manufacturing manuscript No.
(will be inserted by the editor)

Swarm lexicographic goal programming for fuzzy open shop
scheduling

Juan José Palacios · Inés González-Rodríguez ·
Camino R. Vela · Jorge Puente

Received: date / Accepted: date

Abstract In this work we consider a multiobjective open shop scheduling problem with
uncertain processing times and flexible due dates, both modelled using fuzzy sets. We
adopt a goal programming model based on lexicographic multiobjective optimisation of
both makespan and due-date satisfaction and propose a particle swarm algorithm to solve
the resulting problem. We present experimental results which show that this multiobjective
approach achieves as good results as single-objective algorithms for the objective with the
highest priority, while greatly improving on the second objective.

Keywords open shop scheduling · fuzzy processing times · flexible due dates · particle
swarm optimisation · lexicographic goal programming

1 Introduction

The open shop scheduling problem (OSP) is a problem with an increasing presence in the
literature and clear applications in industry—consider for instance testing facilities where
units go through a series of diagnostic tests that need not be performed in a specified order
and where different testing equipment is usually required for each test (see (Pinedo, 2008)).
For a number of machines m≥ 3 this problem is NP-complete; in consequence, it is usually
tackled via metaheuristics techniques. For instance, for makespan minimisation, Guéret and
Prins (1998) describe two heuristic methods to obtain a list of operation priorities later used
in a list-scheduling algorithm; Liaw (1999) proposes a tabu search algorithm; Blum (2005)
hybridises ant colony optimisation with beam search and Sha and Cheng-Yu (2008) propose
a solution based on particle swarm optimisation. To minimise total tardiness, Naderi et al
(2011) propose two metaheuristics based on genetic algorithms and variable neighbourhood
search and for multiobjective open shop we find an ant colony algorithm combined with

Juan José Palacios · Camino R. Vela · Jorge Puente
Department of Computing. University of Oviedo, Spain. Campus de Viesques, 33204 Gijón.
E-mail: {palaciosjuan,crvela,puente}@uniovi.es

Inés González-Rodríguez
Department of Mathematics, Statistics and Computing. University of Cantabria, Spain.
Los Castros s/n, 39005 Santander. E-mail: ines.gonzalez@unican.es

Ines
Texto escrito a máquina
This is a post-peer-review, pre-copyedit version of an article published in Journal of Intelligent Manufacturing as: J. J. Palacios, I. Gonzalez-Rodriguez, C. R. Vela, J. Puente. Swarm lexicographic goal programming for fuzzy open shop scheduling. J Intell Manuf (2015) 26:1201-1215The final authenticated version is available online at:http://dx.doi.org/10.1007/s10845-013-0850-y

Ines
Texto escrito a máquina

https://doi.org/10.1007/s10845-013-0850-y

2 Juan José Palacios et al.

simulated annealing in (Panahi et al, 2008) and particle swarm optimisation in (Sha et al,
2010).

Traditionally, scheduling has been treated as a deterministic problem that assumes pre-
cise knowledge of all data involved, in contrast with the uncertainty and vagueness pervad-
ing real-world problems. To enhance the range of applications of scheduling, an increasing
part of the research is devoted to modelling this lack of certainty with great diversity of
approaches (Herroelen and Leus, 2005). In particular, fuzzy sets have been used in differ-
ent manners, ranging from representing incomplete or vague states of information to using
fuzzy priority rules with linguistic qualifiers or preference modelling and as an interesting
tool for improving solution robustness and stability (Guiffrida and Nagi, 1998; Dubois et al,
2003) and (Petrovic et al, 2008).

Far from being trivial, extending heuristic strategies to uncertain settings usually re-
quires a significant reformulation of both the problem and solving methods. This is patent
in the available literature on job shop problems with uncertain processing times and/or flex-
ible constraints. For instance, Dubois et al (1995) extend a constrained-based approach,
Fortemps (1997) uses simulated annealing and Sakawa and Kubota (2000) propose a ge-
netic algorithm in what can be seen as pioneering works in the application of metaheuristic
strategies, followed by many authors, e.g. (González Rodríguez et al, 2008),(Puente et al,
2010),(Niu et al, 2008) or (Zheng et al, 2011). However, while there are many contributions
to solve fuzzy job shop problems, the literature on fuzzy open shop is still scarce. Indeed, the
open shop with uncertainty constitutes a relatively new and complex research line. Among
the few existing proposals, in (Alcaide et al, 2006) a heuristic approach is proposed to min-
imise the expected makespan for an open shop problem with stochastic processing times and
random breakdowns; González-Rodríguez et al (2010) minimise the expected makespan of
an open shop with fuzzy durations using a genetic algorithm hybridised with local search,
while Palacios et al (2011) use a particle swarm optimisation algorithm for the same prob-
lem. Finally, a possibilistic mixed-integer linear programming method is proposed in (Noori-
Darvish et al, 2012) for an OSP with setup times, fuzzy processing times and fuzzy due dates
to minimise total weighted tardiness and total weighted completion times.

Another issue that must be taken into account to reduce the gap between academic and
real-world problems is the fact that many real-life applications require taking into account
several conflicting points of view corresponding to multiple objectives. This is one of the
reasons why the applications of multiobjective decision making techniques in engineering
have grown in the recent decades (Pasandideh et al, 2013). Although Pareto optimality is un-
doubtedly the most extended approach to multicriteria optimisation, as Ehrgott (2005) puts
it, “it is not the end of the story”, with other approaches to multiobjective optimisation in the
literature (Ehrgott and Gandibleux, 2000). Among these techniques, lexicographic and goal
programming methods are some of the most popular ones (Farahani et al, 2010). The philos-
ophy behind goal programming (Romero, 2001) can be traced back to the theories of rational
decision developed in the 1950s, especially the concept of satisficing solutions: in a com-
plex environment, the decision maker’s aim may be to reach a certain satisfactory level for
every relevant objective, rather than optimising its value. Also, lexicographic problems arise
naturally when conflicting objectives exist in a decision problem but for reasons outside the
control of the decision maker the objectives have to be considered in hierarchical manner.
Recent examples of real-world problems where these techniques are applied can be found,
for instance, in (Ehrgott, 2005), (Diaz-Balteiro and Romero, 2008), (Puente et al, 2013),
(Coshall and Charlesworth, 2011), and (Liberatore et al, 2014). Additionally, there exist
interesting relationships between lexicographic and Pareto-optimal solutions. Indeed, “lexi-
cographic minimisation is well-suited to seek a compromise between conflicting interests, as

Swarm lexicographic goal programming for fuzzy open shop scheduling 3

well as reconciling this requirement with the crucial notion of Pareto-optimality” (Bouveret
and Lemaître, 2009).

To our knowledge, a lexicographical goal programming approach to solve multiobjec-
tive instances of fuzzy open shop has never been taken in the still scarce literature on this
problem. This paper attempts to contribute to filling this gap. To this end, in the sequel
we propose a multiobjective particle swarm optimisation (MOPSO) algorithm to solve in-
stances of open shop where uncertain processing times are modelled with triangular fuzzy
numbers and flexible due dates are modelled with fuzzy sets. In Section 2 we provide some
background on fuzzy sets, which will be used in Section 3 to formulate the Fuzzy Open
Shop Problem (FOSP). We adopt a lexicographic goal programming approach to define an
objective function which combines minimisation of the expected fuzzy makespan and max-
imisation of overall due-date satisfaction. The resulting problem is solved by means of a
particle swarm optimization method searching in the space of possibly active schedules, as
proposed in Section 4. Section 5 reports results from the experimental study which illus-
trate the potential of the proposed method. Finally, in Section 6 we summarise the main
conclusions and propose some ideas for future work.

2 Uncertain processing times and flexible constraints

In real-life applications, it is often the case that the exact duration of a task is not known
in advance. However, based on previous experience, an expert may be able to estimate, for
instance, an interval for the possible processing time or its most typical value. In literature,
it is common to use fuzzy intervals to represent such processing times, as an alternative
to probability distributions, which require a deeper knowledge of the problem and usually
yield a complex calculus.

2.1 Fuzzy interval arithmetic to model processing times

Fuzzy intervals are a natural extension of human originated confidence intervals when some
values appear to be more plausible than others. The simplest model is a triangular fuzzy
number or TFN, using an interval [a1,a3] of possible values and a single plausible value a2

in it. For a TFN A, denoted A = (a1,a2,a3), the membership function takes the following
triangular shape:

µA(x) =

x−a1

a2−a1 : a1 ≤ x≤ a2

x−a3

a2−a3 : a2 < x≤ a3

0 : x < a1 or a3 < x

(1)

Triangular fuzzy numbers and more generally fuzzy intervals have been extensively
studied in the literature (cf. (Dubois and Prade, 1986)). A fuzzy interval Q is a fuzzy quantity
(a fuzzy set on the reals) whose α-cuts Qα = {u ∈ R : µQ(u) ≥ α}, α ∈ (0.1], are convex,
i.e. they are intervals (bounded or not). The core of Q consists of those elements with full
membership µQ(u) = 1, also called modal values and its support is Q0 = {u ∈ R : µQ(u)>
0}. A fuzzy number is a fuzzy quantity whose α-cuts are closed intervals, with compact (i.e.
closed and bounded) support and unique modal value. Thus, real numbers can be seen as a
particular case of fuzzy ones.

In order to work with fuzzy numbers, it is necessary to extend the usual arithmetic op-
erations on real numbers. In general, if f is a function f : R2→R and Q1, Q2 are two fuzzy

4 Juan José Palacios et al.

quantities, the fuzzy quantity f (Q1,Q2) is calculated according to the Extension Principle.
However, computing the resulting equation is in general cumbersome, if not intractable. It
can be somewhat simplified for two fuzzy numbers M and N, so the α-cuts Mα and Nα are
closed bounded intervals of the form [mα ,mα] and [nα ,nα], if f is a continuous isotonic
mapping from R2 into R, that is, if for any u ≥ u′ and v ≥ v′ it holds f (u,v) ≥ f (u′,v′).
In this case, the First Decomposition Theorem provides us with an alternative formula for
f (M,N):

f (M,N) = ∪α∈(0,1][f (mα ,nα), f (mα ,nα)] (2)

In the open shop, we essentially need the following operations on fuzzy durations: ad-
dition and maximum. In the case of TFNs, the addition is fairly easy to compute, since it is
reduced to operating on the three defining points, that is, for any pair of TFNs M and N:

M+N = (m1 +n1,m2 +n2,m3 +n3). (3)

Unfortunately, for the maximum of TFNs there is no such simplified expression. Being
an isotonic function, we can use equation (2) above, but in general this still requires an in-
finite number of computations, since we have to evaluate maxima for each value α ∈ (0,1].
For the sake of simplicity and tractability of numerical calculations, we follow (Fortemps,
1997) and approximate all results of isotonic algebraic operations on TFNs by a TFN. In-
stead of evaluating the intervals corresponding to all α-cuts, we evaluate only those intervals
corresponding to the support and α = 1, which is equivalent to working only with the three
defining points of each TFN. This is an approach also taken, for instance, in (Niu et al, 2008)
and (Chen and Chang, 2001). Therefore, for any two TFNs M and N, their maximum will
be approximated as follows:

max(M,N)∼M⊔N = (max(m1,n1),max(m2,n2),max(m3,n3)). (4)

Despite not being equal, for any two TFNs M,N, if F = max(N,M) denotes their maximum
and G = N ⊔M its approximated value, it holds that ∀α ∈ [0,1], f α ≤ gα , f α ≤ gα . In
particular, F and G have identical support and modal value: F0 = G0 and F1 = G1. The
approximated maximum can be trivially extended to n > 2 TFNs.

For a fuzzy number N, its membership function µN can be interpreted as a possibility
distribution on the real numbers. This allows to define the expected value of a fuzzy num-
ber (Liu and Liu, 2002), given for a TFN A by

E[A] =
1
4
(a1 +2a2 +a3). (5)

The expected value coincides with the neutral scalar substitute of a fuzzy interval and can
also be obtained as the centre of gravity of its mean value or using the area compensa-
tion method (Dubois et al, 2003). It induces a total ordering ≤E in the set of fuzzy in-
tervals (Fortemps, 1997), where for any two fuzzy intervals M,N M ≤E N if and only if
E[M]≤ E[N].

2.2 Modelling flexible due dates

In practice, if due-date constraints exist, they are often flexible. For instance, customers
may have a preferred delivery date d1, but some delay will be allowed until a later date d2,
after which the order will be cancelled. The satisfaction of a due-date constraint becomes a
matter of degree, our degree of satisfaction that a job is finished on a certain date. A common

Swarm lexicographic goal programming for fuzzy open shop scheduling 5

approach to modelling such satisfaction levels is to use a fuzzy set D with linear decreasing
membership function:

µD(x) =

1 : x≤ d1

x−d2

d1−d2 : d1 < x≤ d2

0 : d2 < x

(6)

This expresses a flexible threshold “less than”, representing the satisfaction level sat(t) =
µD(t) for the ending date t of the job (Dubois et al, 2003). When the job’s completion time
is no longer a real number t but a TFN C, the degree to which C satisfies the due-date
constraint D may be measured using the following agreement index (Sakawa and Kubota,
2000; Celano et al, 2003):

AI(C,D) =
area(D∩C)

area(C)
(7)

where area(D∩C) and area(C) denote the areas under the membership functions of (D∩C)
and C respectively. The intuition behind this definition is to measure the degree to which C
is contained in D (the degree of subsethood).

3 The fuzzy open shop scheduling problem

The open shop scheduling problem, or OSP in short, consists in scheduling a set of n jobs
J1, . . . ,Jn to be processed on a set of m physical resources or machines M1, . . . ,Mm. Each job
Ji consists of m tasks or operations oi j (j = 1, . . . ,m), where oi j requires the exclusive use
of a machine M j for its whole processing time pi j without preemption, i.e. all tasks must
be processed without interruption. In total, there are mn tasks. Additionally, for each job
Ji there may be a due date di, i = 1, . . . ,n before which it is desirable that the job be fin-
ished. A solution to this problem is a schedule (a starting time for all tasks) which, besides
being feasible, in the sense that precedence and capacity constraints hold, is optimal accord-
ing to some criteria, for instance, that due-date satisfaction is maximal or that the project’s
makespan is minimal.

3.1 Fuzzy schedules from crisp task orderings

A schedule s for an open shop problem of size n×m (n jobs and m machines) may be
determined by a decision variable z = (z1, . . . ,znm) representing a task processing order,
where 1 ≤ zl ≤ nm for l = 1, . . . ,nm. This is a permutation of the set of tasks where each
task oi j is represented by the number (i− 1)m+ j. The task processing order represented
by the decision variable uniquely determines a feasible schedule; it should be understood as
expressing partial orderings for every set of tasks requiring the same machine and for every
set of tasks belonging to the same job.

Let us assume that the processing time pi j of each task oi j, i = 1, . . . ,n, j = 1, . . . ,m is
a fuzzy variable (a particular case of which are TFNs), so the problem may be represented
by a matrix of fuzzy processing times p of size n×m. For a given task processing order
z and a task oi j, its starting time Si j(z,p) is the maximum (eq. 4) between the completion
times of the task preceding oi j in its job, let it be denoted oik, and the task preceding oi j in
its machine, let it be denoted ol j:

Si j(z,p) =Cik(z,p)⊔Cl j(z,p) (8)

6 Juan José Palacios et al.

where Cik(z,p) or Cl j(z,p) are taken to be zero if oi j is the first task to be processed either in
its job or its machine. Then, its completion time Ci j(z,p) is obtained by adding its duration
pi j to Si j(z,p):

Ci j(z,p) = Si j(z,p)+ pi j (9)

The completion time of a job Ji will then be the maximum completion time of all its tasks,
that is, Ci(z,p) = ⊔1≤ j≤m{Ci j(z,p)}.

For this schedule, the fuzzy makespan Cmax(z,p) is defined as the maximum of job com-
pletion times:

Cmax(z,p) = ⊔1≤i≤n (Ci(z,p)) (10)

Notice that when uncertain durations are given as fuzzy intervals the schedule s will be
fuzzy in the sense that the starting and completion times of all tasks as well as the makespan
are fuzzy intervals. These may be interpreted as possibility distributions on the values that
each time may take. Fuzzy intervals are thus used to represent our incomplete knowledge of
problem parameters related to durations and, in consequence, our incomplete knowledge of
starting and completion times for all tasks. However, the task processing order represented
by z that determines such schedule is crisp: there is no uncertainty regarding the order in
which tasks are to be processed.

Given a fuzzy schedule, it is necessary to give a precise definition of what “optimal
makespan” means, since neither the maximum nor its approximation define a total ordering
in the set of TFNs. Using ideas similar to stochastic scheduling, we use the total ordering
provided by the expected value and consider that the objective of minimising the makespan
translates, in practice, into minimising its expected value E[Cmax] (eq. 5).

While also being fuzzy sets, due dates di for jobs Ji, i = 1, . . . ,n, do not model un-
certainty. Instead, they model flexible constraints, introducing grades in the traditionally
Boolean notion of feasibility (cf. (Dubois, 2011) and the references therein for the seman-
tics of fuzzy sets and their role in decision making). In this setting, the agreement index,
AI(Ci(z,p),di) (eq. 7), denoted AIi(z,p) for short, measures to what degree the flexible
due date di is satisfied by the fuzzy time Ci(z,p). The degree of overall due-date satisfac-
tion for schedule s may then be obtained by aggregating the satisfaction degrees AIi(z,p),
i = 1, . . . ,n. In particular, we shall consider two aggregation functions, the minimum and the
average, previously used in the literature concerning shop scheduling with soft constraints,
for instance, in (Sakawa and Kubota, 2000; González Rodríguez et al, 2008; Lei, 2008). The
minimum is inspired by the seminal paper on fuzzy decision making (Bellman and Zadeh,
1970), while the average provides an alternative for which the compensation property holds.
Hence, the degree AIag(z,p) to which a schedule s determined by an ordering z satisfies due
dates will be determined by one of the two following formula:

AIav(z,p) =
1
n

n

∑
i=1

AIi(z,p), (11)

AImin(z,p) = min
i=1,...,n

AIi(z,p) (12)

Clearly both AIav(z,p) and AImin(z,p) should be maximised. Notice however that they
model different requirements and encourage different behaviours. In the cases when there is
no possible confusion regarding the order z or the processing times p, we may simplify the
notation and write AIag or Cmax.

Swarm lexicographic goal programming for fuzzy open shop scheduling 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T

Cmax

M 1 t1 t3 t5

M 2 t4 t6 t2

(a) Machine oriented

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T

J1 t1 t2

C1 ∩D1

J2 t4 t3

C2 ∩D2

J3 t6 t5

C3 ∩D3

(b) Job oriented

Fig. 1: Gantt charts of the schedule represented by the decision variable (1, 4, 6, 3, 5, 2)

Let us illustrate the previous definitions with an example. Consider a problem of 3 jobs
and 2 machines with the following matrices for fuzzy processing times and due dates:

p =

(3,4,7) (3,4,7)
(2,3,4) (4,5,6)
(3,4,5) (1,2,6)

d =

(11,21)
(6,10)
(12,15)

Here p21 =(2,3,4) is the processing time of task o21, the task of job J2 to be processed in

machine M1 and d2 = (6,10) is the flexible due date for job J2. Figures 1 (a) and (b) show the
Gantt charts (both machine and job oriented) adapted to TFNs of the schedule given by the
decision variable z=(1, 4, 6, 3, 5, 2). They represent the partial schedules on each machine
and each job obtained from this decision variable. Tasks must be processed in the following
order: o11,o22,o32,o21,o31,o12. Given this ordering, the starting time for task o21 will be the
maximum of the completion times of o22 and o11, which are respectively the preceding tasks
in the job and in the machine: S21 =C22⊔C11 = (4,5,6)⊔(3,4,7) = (4,5,7). Consequently,
its completion time will be C21 = S21 + p21 = (4,5,7)+(2,3,4) = (6,8,11). Also, it is easy
to see that Cmax = (9,12,19) (see Figure 1 (a)), so E[Cmax] = 13. Regarding due dates, in
Figure 1 (b) we can see that the completion time of job J1 always satisfies its due date,
so AI1 = 1, whereas for job J2 area(C2) = 5/2 and area(d2 ∩C2) = 4/3, so AI2 = 0.53,
and analogously AI3 = 0.75. Hence, the aggregated degrees of due date satisfaction will be
AImin = 0.53 and AIav = 0.76.

3.2 Multiobjective model

For the fuzzy open shop problem we are interested both in maximising the aggregated due-
date satisfaction AIag and minimising the expected makespan E[Cmax]. A well-established
approach dealing with multiple and possibly conflicting objectives is lexicographic goal pro-
gramming (Ehrgott, 2005; Tamiz et al, 1998), assuming that the decision makers establish a
priority structure as well as target levels for the different objectives.

Before we formulate the resulting problem, notice that AIag(z,p) ∈ [0,1] for both aggre-
gation operators. Hence, maximising AIag(z,p) is equivalent to minimising 1−AIag(z,p),
which could be interpreted as the degree to which due dates are violated. In consequence, we
can restate the objective of our problem as minimising both E[Cmax(z,p)] and 1−AIag(z,p).

Let Cmax and 1−AIag be ordered according to their priority, and let f1 denote the objec-
tive with highest priority and f2 denote the secondary objective. Also, let us assume that the
decision makers establish target values b1,b2 ≥ 0 for f1 and f2. Clearly, these values should
not be exceeded, which translates into the following goal constraints:

fi(z,p)+∆−i −∆+
i = bi, i = 1,2 (13)

8 Juan José Palacios et al.

where ∆+
1 ,∆+

2 ≥ 0, the positive deviations from the targets, should be minimised. This re-
sults in the following lexicographic goal programming model for the fuzzy open shop prob-
lem (FOSP):

lexmin (∆+
1 ,∆+

2)

subject to:
fi(z,p)+∆−i −∆+

i = bi, i = 1,2,
bi ≥ 0, i = 1,2,
∆−i ,∆+

i ≥ 0,
1≤ zl ≤ nm, l = 1, . . . ,nm,

zl ̸= zk, k ̸= l
zl ∈ Z+, l = 1, . . . ,nm,

(14)

where lexmin denotes lexicographically minimising the objective vector (∆+
1 ,∆+

2).
The resulting problem can be denoted O| f uzz pi, f uzz di|LexGP(E[Cmax],1−AIav) ac-

cording to the three-field notation from (Graham et al, 1979), extended to multicriteria
scheduling in the spirit of (T’kindt and Billaut, 2006).

4 Particle swarm optimization for the FOSP

Particle swarm optimisation (PSO) is a population-based stochastic method inspired by bird
flocking or fish schooling, first proposed in (Kennedy and Eberhart, 1995) which has been
successfully applied to solve complex combinatorial optimization problems; recent exam-
ples of this success can be found in (Belmecheri et al, 2013), (Jia and Seo, 2013), and (Kim
and Son, 2012). In particular, it has been applied to scheduling problems, among others,
in (Tassopoulos and Beligiannis, 2012), (Vijay chakaravarthy et al, 2013), and (Marinakis
and Marinaki, 2013) as well as the already mentioned references devoted to the open shop
problem (Sha and Cheng-Yu, 2008; Sha et al, 2010).

In PSO, each position in a multidimensional search space corresponds to a solution of
the problem and particles in the swarm cooperate to explore the space and find the best
position (hence best solution). Particle movement is mainly affected by the three following
factors:

– Inertia: Velocity of the particle in the latest iteration,
– pbest: The best position found by the particle,
– gbest: The best position found by the swarm so far (“the best pbest”),

Potential solutions are represented by multidimensional particles flying through the prob-
lem space, changing their position and velocity by following the current optimum particles
pbest and gbest. A generic PSO algorithm is given in Algorithm 1: first, the initial swarm is
generated and evaluated and then the swarm evolves until a termination criterion is satisfied.
In each iteration, a new swarm is built from the previous one by changing the position and
velocity of each particle to move towards its pbest and gbest locations.

In the following, we present a multiobjective PSO algorithm for the FOSP with lexi-
cographic goal programming defined in the previous section. A preliminary version of this
algorithm was presented in (Palacios et al, 2011) to minimise the expected makespan of
fuzzy open shop.

Swarm lexicographic goal programming for fuzzy open shop scheduling 9

Input A FOSP instance
Output A schedule for the input instance

Generate and evaluate the initial swarm;
Compute gbest and pbest for each particle;
while no Termination Criterion is satisfied do

for each particle k do
Update velocity vk;
Update position xk;
Evaluate particle k;
Update pbest and gbest values;

return The schedule from the best particle evaluated so far;

Algorithm 1: A generic PSO algorithm

4.1 Position Representation and Evaluation

For each particle k in the swarm, its position xk is represented with a priority-based rep-
resentation. Thus, the decision variable zk is encoded as a priority array xk = (xk

l)l=1...nm
where xk

l denotes the priority of task l, so a task with smaller xk
l has a higher priority to be

scheduled.
Given a FOSP solution represented by a decision variable z, which is a permutation of

tasks, we can transfer this permutation to a priority array as follows. First, from z we obtain
a position array, denoted posz, such that posz

l is the position of task l in z (posz
l = i if and

only if zi = l). For instance, for a problem with n = 2 jobs and m = 3 machines we can have
a decision variable z and the corresponding position array posz as follows:

z = (4,1,5,2,3,6) posz = (2,4,5,1,3,6)

Then, the priority array x is obtained by randomly setting xl in the interval
(

posz
l −0.5, posz

l +0.5
)
,

so a task with smaller xl has higher priority to be scheduled. For the above decision variable,
a possible particle position would be:

x = (2.3,3.7,5.4,0.8,2.8,5.9)

Conversely, from every particle position x we can obtain a position array posx (and the
corresponding decision variable) where posx

i is the position of xi if the elements of x were
reordered in non-decreasing order.

A particle may be decoded in several ways. For deterministic job shop and, by extension,
for open shop scheduling, it is common to use the G&T algorithm (Giffler and Thompson,
1960), which is an active schedule builder. A schedule is active if one task must be de-
layed for any other one to start earlier. Active schedules are good in average and, most
importantly, the space of active schedules contains at least an optimal one, that is, the set of
active schedules is dominant. For these reasons it is worth to restrict the search to this space.
In (Gonçalves et al, 2005) a narrowing mechanism was incorporated to the G&T algorithm
in order to limit machine idle times using a delay parameter δ ∈ [0,1], thus searching in the
space of so-called parametrised active schedules. In the deterministic case, for δ < 1 the
search space is reduced so it may no longer contain optimal schedules and at the extreme
δ = 0 the search is constrained to non-delay schedules where a resource is never idle if a re-
quiring operation is available. This variant of G&T has been applied in (Sha and Cheng-Yu,
2008) to the deterministic OSP, under the name “parameterized active schedule generation
algorithm”. Algorithm 2, denoted pFG&T , is an extension of parametrised G&T to the case

10 Juan José Palacios et al.

Input A FOSP instance and a particle position xk

Output A schedule for the input instance considering the priorities given by xk

Ω ←{1, . . . ,nm};
while Ω ̸= /0 do

Compute {E[Sl] : l ∈Ω} and {E[Cl] : l ∈Ω} considering only tasks previously scheduled;
C∗←minl∈Ω{E[Cl]};
S∗←minl∈Ω{E[Sl]};
Identify the conflict set O←{l : E[Sl]< S∗+δ × (C∗−S∗), l ∈Ω};
Choose the task l∗ from O with smallest xk

l ;
Schedule the operation l∗; {fix the value of Sl∗}
Ω ←Ω −{l∗};

return The schedule s given by {Sl : l ∈ {1, . . . ,nm}}

Algorithm 2: The pFG&T

of fuzzy processing times proposed in (Palacios et al, 2011). Throughout the algorithm, Ω
denotes the set of tasks that have not been scheduled yet, xk denotes the priority array and Sl
and Cl denote the starting and completion time of task oi j such that l = (i−1)m+ j. It should
be noted that, due to the uncertainty in task durations, even for δ = 1 we cannot guarantee
that the produced schedule will indeed be active when it is actually performed (and tasks
have exact durations). We may only say that the obtained fuzzy schedule is possibly active.

4.2 Particle movement

4.2.1 Velocity update

Particle velocity is traditionally updated depending on the distance to gbest and pbest. In-
stead, this PSO only considers whether the position value xk

l is greater or smaller than pbestk
l

(gbestl). For any particle, its velocity is represented by an array of the same length as the
position array where all the values are in the set {−1,0,1}. The initial values for the velocity
array are set randomly. Velocity and particle updating is controlled by the inertia weight w
according to Algorithm 3. In the updating process of each particle k and dimension d an
element of randomness is introduced, making it dependent on pbestk

d with probability p1
and on gbestd with probability p2, where p1, p2 ∈ [0,1] are constants such that p1 + p2 ≤ 1.

4.2.2 Mutation

When adapting PSO to discrete optimisation, there is a risk of getting stuck in local minima
when velocity is limited to absolute values (Hu et al, 2003). In order to introduce diversity,
after a particle k moves to a new position, we randomly choose a dimension d and then
mutate its priority value xk

d independently of vk
d . For a problem of size n×m, if xk

d < (nm/2),
xk

d will take a random value in [mn−n,mn], and vk
d = 1; otherwise (if xk

d ≥ (nm/2)), xk
d will

take a random value in [0,n] and vk
d =−1.

4.2.3 Diversification strategy

In the case that all particles had the same pbest solution, they could be trapped into local
optima. To prevent such situation, a diversification strategy is proposed in (Sha and Cheng-
Yu, 2008) in order to keep the different pbest solutions. According to this strategy, the pbest

Swarm lexicographic goal programming for fuzzy open shop scheduling 11

Input A particle position xk and velocity vk, best particle and swarm positions pbestk and gbest, inertia w
and updating probabilities p1, p2

Output The updated particle position xk and velocity vk

for each dimension d do
generate random value rand ∼U(0,1);
if vk

d ̸= 0 and rand ≥ w then
vk

d ← 0;
if vk

d = 0 then
generate random value rand ∼U(0,1);
if rand ≤ p1 then

if pbestk
d ≥ xk

d then vk
d ← 1;

else vk
d ←−1;

generate random value rand2 ∼U(0,1);
xk

d ← pbestk
d + rand2−0.5;

if p1 < rand ≤ p1 + p2 then
if gbestd ≥ xk

d then vk
d ← 1;

else vk
d ←−1;

generate random value rand2 ∼U(0,1);
xk

d ← gbestd + rand2−0.5;
else

xk
d ← xk

d + vk
d ;

return The updated particle position xk and velocity vk;

Algorithm 3: Particle movement

solution of each particle is not the best solution found by the particle itself, but one of the
best N solutions found by the swarm so far, where N is the size of the swarm. Once any
particle generates a new solution, the pbest solutions will be updated as follows: if the new
solution equals the makespan of any pbest solution, the latter will be replaced with the new
solution; else if the new solution has better makespan than the worst pbest solution and has
a different makespan from all pbest solutions, then the worst pbest solution is replaced by
the new one; else, the set of N pbest solutions remains unchanged.

5 Experimental Results

For the experimental study, we use the fuzzy open shop instances proposed in (González-
Rodríguez et al, 2010). These were obtained by fuzzyfying the well-known benchmark
from (Brucker et al, 1997), consisting of 6 families, denoted J3, J4,. . . , J8, of sizes 3×3 to
8× 8, with 8 or 9 instances each. Each family is divided into three sets of problems per0,
per10 and per20 according to the difference between minimum and maximum workloads
of jobs and machines (the number in the name refers to this difference in percentage). We
shall only consider the largest instances, pertaining to the blocks of size 7× 7 and 8× 8
and compare our results on expected makespan to those of the memetic algorithm (MA)
proposed in (González-Rodríguez et al, 2010), which combines a genetic algorithm with a
local search schema. According to the results reported in (González-Rodríguez et al, 2010),
this MA outperforms the genetic algorithm alone when run under equivalent running condi-
tions; additionally, on crisp instances of OSP it improves two GAs from (Liaw, 2000) and
(Prins, 2000) and is competitive with two PSO algorithms from (Sha and Cheng-Yu, 2008),
one of them hybridised with beam search.

For each original deterministic problem instance there are 10 fuzzy versions, generated
by transforming the original crisp processing times into symmetric TFNs such that their

12 Juan José Palacios et al.

modal value corresponds to the original duration. To add a due date di for each job Ji we
follow Andresen et al (2008): first, we define a generic due date di = TF×∑m

j=1 p2
i j, where

TF is a tightness factor; then, we use two different tightness factors to have the earliest and
latest due dates: d1

i , with TF = 1.10, and d2
i , with TF = 1.15.

Given the method for generating due dates, in per0 instances, where all jobs have the
same workload (and consequently the same due date), the makespan and due date satisfac-
tion are strongly correlated objectives, making these instances unsuitable for our multiob-
jective study. Therefore, the experimental analysis will be conducted on the instances per10
and per20 of size 7×7 and 8×8, making it a total of 120 instances, these being the hardest
ones to solve when both objectives are considered.

For each problem instance, we have run the PSO algorithm using different objectives:
we have considered the three single-objective functions E[Cmax],AIav and AImin and the four
multiobjective functions that result from combining the two choices of aggregation function
for due date satisfaction (AIag =AImin or AIag =AIav) and the two possible priority structures
for objectives (f1 =Cmax, f2 = AIag or f1 = AIag, f2 =Cmax).

For the multiobjective cases, it is necessary that the target values for both objectives be
fixed. As already mentioned, in practice these target values should be given by the DM based
on his/her expertise in the problem. Unfortunately, such expert knowledge is not available
for the set of synthetic instances used herein. Instead, we emulate the DM and try to gain
insight into the problem instances with some preliminary runs of the PSO using E[Cmax],AIav
and AImin as single objectives, using the parameter values proposed in (Sha and Cheng-Yu,
2008). Then, we set b1 (resp. b2 for 1−AIag) equal to the worst value of E[Cmax] (1−AIag)
across 30 runs of the PSO.

5.1 Parameter setting

To ensure that the algorithm yields reliable solutions within a reasonable amount of time, the
Taguchi method is used for parameter tuning. Table 1 shows the parameters of our algorithm
together with the four possible values (factor levels in the Taguchi terminology) considered
for each of them. A caveat in changing the swarm size N is its considerable effect on the
algorithm’s runtime if a constant number of iterations is considered. Now, it is common in
literature to measure the computational effort of a metaheuristic in terms of the number of
objective-function evaluations, which is independent of the computer system. This suggests
adjusting the number of iterations in such a way that the PSO evaluates roughly the same
number of particles for all possible swarm sizes: for N = 60,80,100 and 120, the number
of iterations Niter is set respectively to 3000, 2250, 1800 and 1500. As for the second
parameter, the inertia weight w, it should be linearly decreasing from a starting value, thus
stimulating the exploration of the PSO. We consider two possible starting values, 0.9 and
0.7, and two possible slopes, 0.6/Niter and 0.2/Niter, which should allow to analyse the
behaviour of the PSO with either more exploration or more exploitation in the last iterations.
In consequence, w will be linearly decreasing in four possible intervals, as shown in Table 1.
Regarding the guiding probabilities, p1 and p2, since their sum must be less or equal to
1, we consider them as a single factor: given the values 0.7, 0.5, 0.3 and 0.1, p1 and p2
simultaneously traverse these values in increasing and decreasing order respectively, that is,
first p1 = 0.7 and p2 = 0.1, then p1 = 0.5 and p2 = 0.3 and so forth. Thus, we always ensure
that the constraint p1 + p2 ≤ 1 holds, while covering a varied sample of values for both
probabilities. Finally, for the delay parameter we consider the two extremes values, δ = 0

Swarm lexicographic goal programming for fuzzy open shop scheduling 13

Table 1: Parameter settings

Parameters Factor level

1 2 3 4

Swarm Size (N) 60 80 100 120

Inertia Weight (w)
[0.9,0.3] [0.7,0.1] [0.9,0.7] [0.7,0.5]linearly decreasing [from,to]

Guiding Probabilities (gp = (p1, p2)) (0.7,0.1) (0.5,0.3) (0.3,0.5) (0.1,0.7)

Delay Parameter (δ) 0 0.25 0.75 1

— which in the deterministic case restricts the search to the space of non-delay schedules—
and δ = 1, together with two intermediate values δ = 0.25 and δ = 0.75.

With a total of four parameters and four factor levels each, the orthogonal array L′16
is pertinent for the Taguchi analysis. For every combination of parameter values given by
the orthogonal array we run the PSO with the four multiobjective functions: L(Cmax,AIav),
L(Cmax,AImin), L(AIav,Cmax), and L(AImin,Cmax) on a fuzzy instance of each 8×8 problem.

To measure the quality of each configuration we need a value that can consistently com-
bine such heterogeneous values as Cmax, AIav and AImin while taking into account the lexi-
cographical goal programming nature of the model. First, we consider the distance of each
value to its corresponding target, averaged across ten runs of the algorithm and normalised
so as to unify scales (notice that such distance is taken to be zero if the target is reached).
Let d1 and d2 denote, respectively, the normalised distance values for the primary and sec-
ondary objective. These values will allow us to characterise the algorithm’s performance
for the Taguchi analysis as follows: if the first target is reached, i.e. d1 = 0, then the per-
formance is given by d2 (the distance to the second objective); in the worse case that the
primary objective does not reach its target (d1 > 0), then the performance is given by 1+d1.
Since 0≤ d2 ≤ 1, this guarantees that the algorithm is always considered to perform worse
when the target for the primary objective is not reached, as well as discriminating among
solutions taking into account how far they are from reaching each target. We have opted
for using this performance measure directly, instead of the classical signal-to-noise ratio, in
the line of the use of the Taguchi method in (Jia and Seo, 2013) and (Wang et al, 2013) for
scheduling problems.

Table 2 shows, for every combination of factor levels in the orthogonal array, the average
performance value for each of the four multiobjective functions considered. It is based on
these values that we can compute the response value of each parameter and analyse their
significance rank. As a summary, Figure 2 depicts the response values of each parameter
for each of the four objective functions, illustrating the effect of the parameter levels on the
algorithm’s performance. Clearly, the most significant parameter for all objective functions
is δ , with a difference between the highest and lowest level over 1.25 of a maximum possible
difference of 2.00 (see Figure 2(d)). The second most significant parameter is the pair of
guiding probabilities (Figure 2(c)), although their effect is significantly smaller. Finally, the
smallest effect on the performance for all functions is obtained with the swarm size and the
inertia weight (see Figure 2(a),(b))). Additionally, for the two most significant parameters it
can be clearly seen that the best level remains the same for all four objective functions. This
is not the case for swarm size and inertia weight, where the best levels differ for L(Cmax,AIav)
and L(AIav,Cmax); however, the difference is relatively small, 0.079 for swarm size and 0.142

14 Juan José Palacios et al.

Level 1 Level 2 Level 3 Level 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L(Cmax,AImin) L(AImin,Cmax) L(Cmax,AIav) L(AIav,Cmax)

P
e

rf
o

rm
a

n
ce

Multi-objective approach

Swarm Size N

(a) Swarm Size (N)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L(Cmax,AImin) L(AImin,Cmax) L(Cmax,AIav) L(AIav,Cmax)

P
e

rf
o

rm
a

n
ce

Multi-objective approach

Inertia ω

(b) Inertia Weight (w)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L(Cmax,AImin) L(AImin,Cmax) L(Cmax,AIav) L(AIav,Cmax)

P
e

rf
o

rm
a

n
ce

Multi-objective approach

(c) Guiding Probabilities (gp)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L(Cmax,AImin) L(AImin,Cmax) L(Cmax,AIav) L(AIav,Cmax)

P
e

rf
o

rm
a

n
ce

Multi-objective approach

(d) Delay Parameter (δ)

Fig. 2: Average performance of the four multiobjecive-PSO for each parameter level.

for inertia weight. In consequence, we will take the factor level that performs best for all but
one objective functions, this being a good value in all cases.

As a result of this analysis, the parameter setting in what follows will be δ = 0.25,
gp = (p1, p2) = (0.7,0.1), w linearly decreasing from 0.7 to 0.1, and swarm size N = 80 for
all objective functions.

Table 2: Orthogonal tabulation and average performance values

Exp. Parameter levels Average performance

N w gp δ L(Cmax,AImin) L(AImin,Cmax) L(Cmax,AIav) L(AIav,Cmax)

1 1 1 1 1 0.919 0.727 0.524 0.727
2 1 2 2 2 0.051 0.043 0.208 0.178
3 1 3 3 3 1.266 1.344 1.302 1.409
4 1 4 4 4 1.701 1.759 1.661 1.871
5 2 1 2 3 1.084 1.104 1.100 1.015
6 2 2 1 4 1.282 1.423 1.361 1.546
7 2 3 4 1 0.970 0.792 1.035 0.764
8 2 4 3 2 0.324 0.258 0.556 0.186
9 3 1 3 4 1.650 1.693 1.702 1.776
10 3 2 4 3 1.222 1.217 1.193 1.294
11 3 3 1 2 0.293 0.226 0.175 0.004
12 3 4 2 1 1.023 0.775 0.881 0.740
13 4 1 4 2 0.822 0.429 0.441 0.197
14 4 2 3 1 1.055 0.802 1.063 0.953
15 4 3 2 4 2.000 2.000 2.000 1.983
16 4 4 1 3 0.912 0.930 0.920 0.605

Swarm lexicographic goal programming for fuzzy open shop scheduling 15

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

985

990

995

1000

1005

1010

1015

1020

1025

1030

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

AIag
E[Cmax]

Number of iterations

E[Cmax]

Target(Cmax)

Aimin

AIav

Fig. 3: Evolution of E[Cmax] and E[AImin] on the L(Cmax,AImin) version for the J8-per20-1
instance

5.2 Highest priority for makespan minimisation

Let us first consider the case where Cmax is the objective with highest priority and let
L(Cmax,AIav) and L(Cmax,AImin) denote the resulting multiobjective functions for AIag =
AIav and AIag = AImin respectively.

In order to illustrate the algorithm’s convergence, we first focus on a single problem
instance. Figure 3 shows the convergence pattern of L(Cmax,AImin) for a fuzzy instance gen-
erated from J8-per20-1, one of the largest and hardest instances. We can see how the algo-
rithm shows a proper convergence: initially the algorithm minimises the expected makespan
E[Cmax] while the behaviour of AImin is erratic. However, once the algorithm has reached the
expected makespan target (around the 250th iteration), it starts maximising AImin instead.
We can also observe the evolution of the AIav value and its correlated behaviour w.r.t. AImin.
Analogous convergence curves show that the number of iterations can be reduced for 7×7
to 2100 iterations.

Tables 3 and 4 contain a summary of the results obtained when makespan minimisation
has the highest priority. For each objective function used by the PSO they report the values
of E[Cmax], AIav and AImin in the solution, averaged across the 30 executions of the PSO
and the 10 fuzzy instances generated from the same original problem, together with the
standard deviations. The average values are shown in bold when they reach the target for the
corresponding objective.

A first look at Tables 3 and 4 confirms the strong correlation between the values of
AImin and Aav, both measuring the overall due-date satisfaction. In most cases, the single-
objective version using any of these aggregated values reaches the target value established
for the other aggregated measure. That is, when any one of these aggregated measures is
optimised, the alternative one is also optimised.

Let us now compare results obtained by the proposed multiobjective approach using
L(Cmax,AImin) and L(Cmax,AIav) with the results obtained when optimising a single criterion.
For the objective with the highest priority—minimisation of expected makespan—we see
that both multiobjective approaches behave similarly to the single-objective function. In
particular, they always reach the expected makespan target. Additionally, the multiobjective
approach obtains a clear improvement in due-date satisfaction. Indeed, for all instances,
AImin values obtained with L(Cmax,AImin) are in average 159% better than those obtained
using E[Cmax] as single-objective function. There are however remarkable differences in

16 Juan José Palacios et al.

Table 3: Comparison of results for E[Cmax] highest priority on instances of size 7×7

Objective
E[Cmax] AImin AIav

Targ. Avg S.Dev Target Avg S.Dev Target Avg S.Dev

J7
-p

er
10

-0 L[Cmax,AImin] 1035 1032 1.655 0.9569 0.9155 0.0992 0.9923 0.9818 0.0225
L[Cmax,AIav] 1035 1032 1.878 0.9569 0.9114 0.0925 0.9923 0.9815 0.0205
E[Cmax] – 1030 1.946 – 0.8182 0.1157 – 0.9669 0.0226
AImin – 1058 9.363 – 0.9873 0.0108 – 0.9968 0.0035
AIav – 1057 10.473 – 0.9841 0.0162 – 0.9971 0.0029

J7
-p

er
10

-1 L[Cmax,AImin] 1019 1017 1.478 0.9303 0.7562 0.0321 0.9857 0.9352 0.0117
L[Cmax,AIav] 1019 1017 1.664 0.9303 0.7529 0.0340 0.9857 0.9351 0.0137
E[Cmax] – 1017 1.157 – 0.7502 0.0253 – 0.9346 0.0102
AImin – 1049 8.212 – 0.9723 0.0212 – 0.9916 0.0083
AIav – 1047 9.655 – 0.9653 0.0298 – 0.9934 0.0049

J7
-p

er
10

-2 L[Cmax,AImin] 1038 1033 3.410 0.9358 0.7685 0.1091 0.9817 0.9252 0.0301
L[Cmax,AIav] 1038 1034 2.935 0.9358 0.7495 0.1322 0.9817 0.9347 0.0275
E[Cmax] – 1031 2.915 – 0.6873 0.1511 – 0.9091 0.0353
AImin – 1072 13.352 – 0.9713 0.0183 – 0.9898 0.0073
AIav – 1071 14.196 – 0.9670 0.0257 – 0.9938 0.0045

J7
-p

er
20

-0 L[Cmax,AImin] 1001 1001 0.294 0.8278 0.3915 0.1116 0.9459 0.7322 0.0683
L[Cmax,AIav] 1001 1001 0.343 0.8278 0.3140 0.1501 0.9459 0.7838 0.0433
E[Cmax] – 1001 0.145 – 0.1412 0.0888 – 0.6426 0.0695
AImin – 1030 7.829 – 0.8700 0.0167 – 0.9419 0.0170
AIav – 1027 7.934 – 0.8367 0.0412 – 0.9635 0.0086

J7
-p

er
20

-1 L[Cmax,AImin] 1032 1031 1.561 0.8337 0.3143 0.1404 0.9531 0.7730 0.0560
L[Cmax,AIav] 1032 1031 1.603 0.8337 0.2204 0.1767 0.9531 0.7960 0.0468
E[Cmax] – 1028 2.329 – 0.0884 0.1144 – 0.7312 0.0435
AImin – 1082 9.013 – 0.8781 0.0210 – 0.9550 0.0147
AIav – 1082 10.664 – 0.8534 0.0400 – 0.9698 0.0069

J7
-p

er
20

-2 L[Cmax,AImin] 1027 1024 2.246 0.8658 0.4303 0.2055 0.9617 0.8225 0.0562
L[Cmax,AIav] 1027 1024 2.974 0.8658 0.3934 0.2045 0.9617 0.8333 0.0517
E[Cmax] – 1021 2.742 – 0.2688 0.2400 – 0.7972 0.0606
AImin – 1074 15.165 – 0.9158 0.0211 – 0.9665 0.0121
AIav – 1076 13.906 – 0.8979 0.0412 – 0.9771 0.0082

the improvement rate depending on the instance type. For example, due-date satisfaction
improves only 8% for J7-per10 instances and 16% for J8-per10, but this improvement scales
up to 164% and 450% in per20 instances of sizes 7×7 and 8×8 respectively. This variability
is due to the fact that, as mentioned above, the dependency between E[Cmax] and AImin is
greater for per10 instances, given the way in which the original benchmark was created. In
consequence, for per10 problems, when the makespan is optimised, due-date satisfaction is
also being optimised to a certain extent; however this is not always the case for an arbitrary
open shop problem.

Regarding AIav values, they improve 7.2% when using L(Cmax,AIav). Again there is
a remarkable variability in the improvement depending on the family of problems: 2.1%
for per10 instances and 12.2% for per20 instances. It is also tempting to conclude that
the gain obtained with L(Cmax,AImin) is much higher than that obtained with L(Cmax,AIav).
However, this is only a scale effect. If instead of considering absolute gains, we measure the
reduction of the gap between the AImin and the AIav values and their corresponding targets,
the multiobjective approach L(Cmax,AImin) is in average over 36% better than E[Cmax] and
L(Cmax,AIav) is also over 36% better than E[Cmax] w.r.t. the corresponding secondary target.
In any case, it is worth noticing that for per10 instances L(Cmax,AImin) performs better than

Swarm lexicographic goal programming for fuzzy open shop scheduling 17

Table 4: Comparison of results for E[Cmax] highest priority on instances of size 8×8

Objective
E[Cmax] AImin AIav

Targ. Avg S.Dev Target Avg S.Dev Target Avg S.Dev

J8
-p

er
10

-0 L[Cmax,AImin] 1055 1052 2.587 0.9026 0.8292 0.0889 0.9756 0.9515 0.0261
L[Cmax,AIav] 1055 1052 2.676 0.9026 0.8017 0.0999 0.9756 0.9545 0.0225
E[Cmax] – 1050 3.105 – 0.7504 0.1156 – 0.9399 0.0271
AImin – 1073 10.333 – 0.9598 0.0273 – 0.9874 0.0100
AIav – 1072 9.972 – 0.9453 0.0384 – 0.9898 0.0063

J8
-p

er
10

-1 L[Cmax,AImin] 1036 1032 3.391 0.8653 0.7242 0.0987 0.9664 0.9062 0.0360
L[Cmax,AIav] 1036 1033 2.904 0.8653 0.6721 0.1333 0.9664 0.9141 0.0355
E[Cmax] – 1030 3.744 – 0.6087 0.1316 – 0.8858 0.0375
AImin – 1064 11.386 – 0.9386 0.0342 – 0.9801 0.0151
AIav – 1063 12.490 – 0.9342 0.0485 – 0.9881 0.0088

J8
-p

er
10

-2 L[Cmax,AImin] 1041 1036 5.139 0.8656 0.7958 0.1082 0.9658 0.9357 0.0364
L[Cmax,AIav] 1041 1037 4.521 0.8656 0.7533 0.1275 0.9658 0.9436 0.0330
E[Cmax] – 1033 5.225 – 0.6735 0.1283 – 0.9108 0.0371
AImin – 1065 13.246 – 0.9330 0.0339 – 0.9778 0.0149
AIav – 1062 13.724 – 0.9279 0.0472 – 0.9862 0.0088

J8
-p

er
20

-0 L[Cmax,AImin] 1022 1020 2.339 0.8644 0.1645 0.1259 0.9668 0.7168 0.0712
L[Cmax,AIav] 1022 1020 2.001 0.8644 0.0771 0.1324 0.9668 0.7728 0.0550
E[Cmax] – 1015 2.255 – 0.0219 0.0515 – 0.6685 0.0604
AImin – 1074 11.741 – 0.9394 0.0322 – 0.9814 0.0123
AIav – 1072 11.650 – 0.9250 0.0481 – 0.9870 0.0083

J8
-p

er
20

-1 L[Cmax,AImin] 1003 1002 0.800 0.7574 0.2573 0.1703 0.9225 0.7709 0.0716
L[Cmax,AIav] 1003 1002 0.793 0.7574 0.1541 0.1846 0.9225 0.7914 0.0630
E[Cmax] – 1001 0.862 – 0.0411 0.0790 – 0.6946 0.0589
AImin – 1023 9.613 – 0.8358 0.0417 – 0.9288 0.0255
AIav – 1025 11.223 – 0.7799 0.0920 – 0.9513 0.0147

J8
-p

er
20

-2 L[Cmax,AImin] 1018 1017 2.292 0.8246 0.3463 0.2001 0.9502 0.7961 0.0700
L[Cmax,AIav] 1018 1017 2.191 0.8246 0.2714 0.2040 0.9502 0.8239 0.0567
E[Cmax] – 1014 2.538 – 0.1269 0.1498 – 0.7593 0.0561
AImin – 1065 15.408 – 0.9026 0.0347 – 0.9628 0.0185
AIav – 1062 15.974 – 0.8879 0.0611 – 0.9758 0.0127

L(Cmax,AIav) whereas for per20 instances the best performance corresponds to L(Cmax,AIav)
in terms of gap reduction w.r.t. its secondary target. A possible explanation is that AImin is
a more demanding aggregation operator. If it is relatively “easy” to satisfy the due dates for
all jobs (at least to a certain extent), then 0 < AImin ≤ AIav and AImin will probably provide
a better guide for maximising due date satisfaction. However, as long as it is likely that one
of the due dates is not satisfied at all in schedules with good makespan values (as is the case
for per20 problems), then AImin = 0 with high probability, thus providing a poor guide for
the optimisation process.

Finally, the correlation between both aggregation operators is further confirmed if we
look at the behaviour of AIav in case of L(Cmax,AImin) and AImin in case of L(Cmax,AIav):
both multiobjective approaches significantly reduce the alternative due-date objective, with
a gap-improvement of approximately 26% in both cases.

Let us now compare the multiobjective PSO using L(Cmax,AIav) or L(Cmax,AImin) with
the single-objective memetic algorithm (MA) from (González Rodríguez et al, 2010) in
terms of expected makespan minimisation. Table 5 contains the expected makespan re-
sults for each method—MA optimising only E[Cmax], PSO with L(Cmax,AIav) and PSO
with L(Cmax,AImin)— with values averaged across the 10 instances of each size and 30

18 Juan José Palacios et al.

Table 5: Comparison between PSO and MA in terms of E[Cmax]

Problem Target
MA PSO

E[Cmax] L(Cmax,AImin) L(Cmax,AIav)

J7-per10-0 1035 1066 1032 1032
J7-per10-1 1019 1052 1017 1017
J7-per10-2 1038 1067 1033 1034
J7-per20-0 1001 1004 1001 1001
J7-per20-1 1032 1044 1031 1031
J7-per20-2 1027 1042 1024 1024

J8-per10-0 1055 1083 1052 1052
J8-per10-1 1036 1066 1032 1033
J8-per10-2 1041 1071 1036 1037
J8-per20-0 1022 1037 1020 1020
J8-per20-1 1003 1014 1002 1002
J8-per20-2 1018 1035 1017 1017

runs of the algorithm. Clearly, the PSO with both multiobjective functions L(Cmax,AIav)
and L(Cmax,AImin) compares favourably with the single-objective MA in terms of makespan
values. Indeed, the multiobjective PSO reduces E[Cmax] values about 2.25% (slightly over
3% for per10 instances and slightly below 1.5% for per20 instances), with no significant
differences between different problem sizes or different aggregated measures for due-date
satisfaction. This reduction may not seem very important in absolute values. However, on
a closer look we can see that the MA never reaches the expected makespan target value,
whereas the multiobjective PSO reaches this target in all instances. We can conclude that
our multiobjective PSO outperforms the previous single-objective algorithm when it comes
to optimising the objective with the highest priority (makespan), while also optimising the
secondary objective.

5.3 Highest priority for due-date satisfaction

We now consider the alternative priority structure where due-date satisfaction becomes the
primary objective; let L(AIag,Cmax) denote the resulting lexicographic goal programming
multiobjective function. If we now compare each L(AIag,Cmax) with the corresponding ag-
gregated due-date satisfaction value AIag (AImin or AIav), the results are analogous to the
case where makespan was the first objective. In all instances L(AIag,Cmax) reaches the cor-
responding target for due-date satisfaction value whereas the gap between the expected
makespan and its target value is reduced 36% in average when AIag = AImin and 40% in
the case that AIag = AIav. Figure 4 shows the E[Cmax] values (averaged across the 10 fuzzy
instances of every original problem and the 30 executions of the PSO algorithm) obtained
with AImin, AIav and the corresponding multiobjective functions on each family of prob-
lems. It also depicts the E[Cmax] target values for each family. We can clearly appreciate
how the expected makespan behaves better in the multiobjective approach. We can also ob-
serve that AIav used as single objective function obtains in general slightly better E[Cmax]
values than the alternative AImin. Also, its multiobjective counterpart L(AIav,Cmax) performs

Swarm lexicographic goal programming for fuzzy open shop scheduling 19

960

980

1000

1020

1040

1060

1080

1100

J7
-p

e
r1

0
-0

J7
-p

e
r1

0
-1

J7
-p

e
r1

0
-2

J7
-p

e
r2

0
-0

J7
-p

e
r2

0
-1

J7
-p

e
r2

0
-2

J8
-p

e
r1

0
-0

J8
-p

e
r1

0
-1

J8
-p

e
r1

0
-2

J8
-p

e
r2

0
-0

J8
-p

e
r2

0
-1

J8
-p

e
r2

0
-2

E[Cmax]

Problem families

AImin

L[AImin,Cmax]

AIav

L[AIav, Cmax]

Target

Fig. 4: Average E[Cmax] values obtained with AImin, AIav and the corresponding multiobjec-
tive L(AImin,Cmax) and L(AIav,Cmax).

slightly better (in terms of makespan minimisation) than L(AImin,Cmax). The explanation,
again, lies in the fact that AImin is a more pessimistic aggregator of individual job due-date
satisfaction. The figure also illustrates that, as above, the solutions are in general closer to
the target values for per10 instances than for per20 ones.

6 Conclusions and future work

We have proposed a multiobjective approach for solving the open shop scheduling problem
with uncertain durations and flexible due dates modelled using fuzzy sets. We have adopted a
lexicographic goal programming framework to deal with the multiple objectives of minimis-
ing the project’s makespan and maximising due-date satisfaction. The resulting problem has
been solved by adapting a particle swarm optimisation algorithm to the hierarchical multiob-
jective framework. The experimental results, on fuzzy instances of well-known benchmark
problems, illustrate the potential of our proposal. In general, the multiobjective approaches
perform as well as their single-objective counterparts when it comes to optimising the ob-
jective with the highest priority, reaching the target levels in all cases. Additionally, the
multiobjective approaches greatly improve on the secondary objective. Also, the multiob-
jective PSO algorithm compares favourably to a memetic algorithm from the literature in
terms of makespan minimisation, when this is the objective with the highest priority.

In the future, we would like to contemplate an alternative approach to multiobjective
optimisation, appropriate for the case when no priority structure among multiple objectives
can or needs to be established. We would like to explore the known relationships between
lexicographic and Pareto optimality, as well as extending the PSO algorithm to directly
work with sets of non-dominated solutions. We would also like to adapt the PSO algorithm
to other scheduling problems with uncertainty, such as job shop or resource-constrained
project scheduling.

Acknowledgements We would like to thank the anonymous referees for their insightful and constructive
comments. This research has been supported by the Spanish Government under research grants FEDER
TIN2010-20976-C02-02 and MTM2010-16051 and by the Principality of Asturias (Spain) under grant Severo
Ochoa BP13106.

20 Juan José Palacios et al.

References

Alcaide D, Rodriguez-Gonzalez A, Sicilia J (2006) A heuristic approach to minimize ex-
pected makespan in open shops subject to stochastic processing times and failures. Inter-
national Journal of Flexible Manufacturing Systems 17:201–226

Andresen M, Bräsel H, Mörig M, Tusch J, Werner F, Willenius P (2008) Simulated annealing
and genetic algorithms for minimizing mean flow time in an open shop. Mathematical and
Computer Modelling 48:1279–1293

Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Management Sci-
ence 17(4):141–164

Belmecheri F, Prins C, Yalaoui F, L A (2013) Particle swarm optimization algorithm for a
vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows.
Journal of Intelligent Manufacturing 24(4):775–789

Blum C (2005) Beam-ACO—hybridizing ant colony optimization with beam search: an ap-
plication to open shop scheduling. Computers & Operations Research 32(6):1565–1591

Bouveret S, Lemaître M (2009) Computing leximin-optimal solutions in constraint net-
works. Artificial Intelligence 173:343–364

Brucker P, Hunrink J, Jurisch B, Wöstmann B (1997) A branch & bound algorithm for the
open-shop problem. Discrete Applied Mathematics 76:43–59

Celano G, Costa A, Fichera S (2003) An evolutionary algorithm for pure fuzzy flowshop
scheduling problems. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 11:655–669

Chen SM, Chang TH (2001) Finding multiple possible critical paths using fuzzy PERT.
IEEE Transactions on Systems, Man, and Cybernetics–Part B: 31(6):930–937

Coshall JT, Charlesworth R (2011) A management orientated approach to combination fore-
casting of tourism demand. Tourism Management 32:759–769

Diaz-Balteiro L, Romero C (2008) Making forestry decisions with multiple criteria: A re-
view and an assessment. Forest Ecology and Management 255:3222–3241

Dubois D (2011) The role of fuzzy sets in decision sciences: Old techniques and new direc-
tions. Fuzzy Sets and Systems 184:3–28

Dubois D, Prade H (1986) Possibility Theory: An Approach to Computerized Processing of
Uncertainty. Plenum Press, New York (USA)

Dubois D, Fargier H, Prade H (1995) Fuzzy constraints in job-shop scheduling. Journal of
Intelligent Manufacturing 6:215–234

Dubois D, Fargier H, Fortemps P (2003) Fuzzy scheduling: Modelling flexible constraints
vs. coping with incomplete knowledge. European Journal of Operational Research
147:231–252

Ehrgott M (2005) Multicriteria Optimization, 2nd edn. Springer
Ehrgott M, Gandibleux X (2000) A survey and annotated bibliography of multiobjective

combinatorial optimization. OR Spektrum 22:425–460
Farahani RZ, SteadieSeifi M, Asgari N (2010) Multiple criteria facility location problems:

A survey. Applied Mathematical Modelling 34:1689–1709
Fortemps P (1997) Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE

Transactions of Fuzzy Systems 7:557–569
Giffler B, Thompson GL (1960) Algorithms for solving production scheduling problems.

Operations Research 8:487–503
Gonçalves J, Magalhães Mendes JJ, Resende MGC (2005) A hybrid genetic algorithm for

the job shop scheduling problem. European Journal of Operational Research 167:77–95

Swarm lexicographic goal programming for fuzzy open shop scheduling 21

González Rodríguez I, Puente J, Vela CR, Varela R (2008) Semantics of schedules for the
fuzzy job shop problem. IEEE Transactions on Systems, Man and Cybernetics, Part A
38(3):655–666

González-Rodríguez I, Palacios JJ, Vela CR, Puente J (2010) Heuristic local search for fuzzy
open shop scheduling. In: Proceedings IEEE International Conference on Fuzzy Systems,
FUZZ-IEEE2010, IEEE, pp 1858–1865

González Rodríguez I, Vela CR, Puente J (2010) A genetic solution based on lexicographical
goal programming for a multiobjective job shop with uncertainty. Journal of Intelligent
Manufacturing 21:65–73

Graham R, Lawler E, Lenstra J, Rinnooy Kan A (1979) Optimization and approximation
in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics
4:287–326

Guéret C, Prins C (1998) Classical and new heuristics for the open-shop problem: A com-
putational evaluation. European Journal of Operational Research 107:306–314

Guiffrida AL, Nagi R (1998) Fuzzy set theory applications in production management re-
search: a literature survey. Journal of Intelligent Manufacturing 9:39–56

Herroelen W, Leus R (2005) Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research 165:289–306

Hu X, Eberhart RC, Shi Y (2003) Swarm intelligence for permutation optimization: a case
study of n-queens problem. In: Swarm Intelligence Symposium, 2003. SIS’03. Proceed-
ings of the 2003 IEEE, IEEE, pp 243–246

Jia Q, Seo Y (2013) An improved particle swarm optimization for the resource-constrained
project scheduling problem. International Journal of Advanced Manufacturing Technol-
ogy 67:2627–2638

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Confer-
ence on Neural Networks, IEEE Press, New Jersey, pp 1942–1948

Kim BI, Son SJ (2012) A probability matrix based particle swarm optimization for the ca-
pacitated vehicle routing problem. Journal of Intelligent Manufacturing 23:1119–1126

Lei D (2008) Pareto archive particle swarm optimization for multi-objective fuzzy job
shop scheduling problems. International Journal of Advanced Manufacturing Technol-
ogy 37:157–165

Liaw CF (1999) A tabu search algorithm for the open shop scheduling problem. Computers
and Operations Research 26:109–126

Liaw CF (2000) A hybrid genetic algorithm for the open shop scheduling problem. European
Journal of Operational Research 124:28–42

Liberatore F, Ortuño MT, Tirado G, Vitoriano B, Scaparra MP (2014) A hierarchical com-
promise model for the joint optimization of recovery operations and distribution of emer-
gency goods in humanitarian logistics. Computers & Operations Research 42:3–13

Liu B, Liu YK (2002) Expected value of fuzzy variable and fuzzy expected value models.
IEEE Transactions on Fuzzy Systems 10:445–450

Marinakis Y, Marinaki M (2013) Particle swarm optimization with expanding neighborhood
topology for the permutation flowshop scheduling problem. Soft Computing 17(7): 1159–
1173

Naderi B, Fatemi Ghomi SMT, Aminnayeri M, Zandieh M (2011) A study on open shop
scheduling to minimise total tardiness. International Journal of Production Research
49(15):4657–4678

Niu Q, Jiao B, Gu X (2008) Particle swarm optimization combined with genetic operators
for job shop scheduling problem with fuzzy processing time. Applied Mathematics and
Computation 205:148–158

22 Juan José Palacios et al.

Noori-Darvish S, Mahdavi I, Mahdavi-Amiri N (2012) A bi-objective possibilistic program-
ming model for open shop scheduling problems with sequence-dependent setup times,
fuzzy processing times, and fuzzy due-dates. Applied Soft Computing 12:1399–1416

Palacios JJ, González-Rodríguez I, Vela CR, Puente J (2011) Particle swarm optimisation
for open shop problems with fuzzy durations. In: Proceedings of IWINAC 2011, Part I,
Springer, Lecture Notes in Computer Science, vol 6686, pp 362–371

Panahi H, Rabbani M, Tavakkoli-Moghaddam R (2008) Solving an open shop scheduling
problem by a novel hybrid multi-objective ant colony optimization. In: Eighth Interna-
tional Conference on Hybrid Intelligent Systems, IEEE, pp 320–325

Pasandideh SHR, Niaki STA, Hajipour V (2013) A multi-objective facility location model
with batch arrivals: two parameter-tuned meta-heuristic algorithms. Journal of Intelligent
Manufacturing 24(2):331–348

Petrovic S, Fayad S, Petrovic D (2008) Sensitivity analysis of a fuzzy multiobjective sched-
uling problem. International Journal of Production Research 46(12):3327–3344

Pinedo ML (2008) Scheduling. Theory, Algorithms, and Systems., 3rd edn. Springer
Prins C (2000) Competitive genetic algorithms for the open-shop scheduling problem. Math-

ematical Methods of Operations Research 52:389–411
Puente J, Vela CR, González-Rodríguez I (2010) Fast local search for fuzzy job shop sched-

uling. In: Proceedings of ECAI 2010, IOS Press, pp 739–744
Puente J, Vela CR, González-Rodríguez I, Rodríguez LJ, Palacios JJ (2013) GRASPing

examination board assignments for university-entrance exams. In: IEA-AIE 2013, Pro-
ceedings of, Springer, Lecture Notes in Computer Science, vol 7906, p 171–180

Romero C (2001) Extended lexicographic goal programming: a unifying approach. Omega
29:63–71

Sakawa M, Kubota R (2000) Fuzzy programming for multiobjective job shop scheduling
with fuzzy processing time and fuzzy duedate through genetic algorithms. European Jour-
nal of Operational Research 120:393–407

Sha D, Lin HH, Hsu C (2010) A modified particle swarm optimization for multi-objective
open shop scheduling. In: Proceeding of the International MultiConference of Engineers
and Comuter Scientists, vol 3

Sha DY, Cheng-Yu H (2008) A new particle swarm optimization for the open shop schedul-
ing problem. Computers & Operations Research 35:3243–3261

Tamiz M, Jones D, Romero C (1998) Goal programming for decision making: An overview
of the current state-of-the-art. European Journal of Operations Research 111:569–581

Tassopoulos IX, Beligiannis GN (2012) Using particle swarm optimization to solve effec-
tively the school timetabling problem. Soft Computing 16:1229–1252

T’kindt V, Billaut JC (2006) Multicriteria Scheduling. Theory, Models and Algorithms, 2nd
edn. Springer

Vijay chakaravarthy G, Marimuthu S, Naveen Sait A (2013) Performance evaluation of pro-
posed differential evolution and particle swarm optimization algorithms for scheduling
m-machine flow shops with lot streaming. Journal of Intelligent Manufacturing 24:175–
191

Wang L, Zhou G, Xu Y, Min L (2013) A hybrid artificial bee colony algorithm for the
fuzzy flexible job-shop scheduling problem. International Journal of Production Research
51(12): 3593–3608

Zheng Y, Li Y, Lei D (2011) Swarm-based neighbourhood search for fuzzy job shop sched-
uling. International Journal of Innovative Computing and Applications 3(3):144–151

