
Genetic Tabu Search for the Fuzzy Flexible Job Shop Problem

Juan José Palacios1, Miguel A. González1, Camino R. Vela1, Inés González-Rodrı́guezb, Jorge Puente1

aDepartment of Computing, University of Oviedo, (Spain)
bDept. of Mathematics, Statistics and Computing, University of Cantabria, (Spain)

Abstract

This paper tackles the flexible job-shop scheduling problem with uncertain processing times. The uncertainty in processing times
is represented by means of fuzzy numbers, hence the name fuzzy flexible job-shop scheduling. We propose an effective genetic
algorithm hybridised with tabu search and heuristic seeding to minimise the total time needed to complete all jobs, known as
makespan. To build a high-quality and diverse set of initial solutions we introduce a heuristic method which benefits from the
flexible nature of the problem. This initial population will be the starting point for the genetic algorithm, which then applies tabu
search to every generated chromosome. The tabu search algorithm relies on a neighbourhood structure that is proposed and analysed
in this paper; in particular, some interesting properties are proved, such as feasibility and connectivity. Additionally, we incorporate
a filtering mechanism to reduce the neighbourhood size and a method that allows to speed-up the evaluation of new chromosomes.
To assess the performance of the resulting method and compare it with the state-of-the-art, we present an extensive computational
study on a benchmark with 205 instances, considering both deterministic and fuzzy instances to enhance the significance of the
study. The results of these experiments clearly show that not only does the hybrid algorithm benefit from the synergy among its
components but it is also quite competitive with the state-of-the-art when solving both crisp and fuzzy instances, providing new
best-known solutions for a number of these test instances.

Keywords: Genetic Algorithms, Neighbourhood Structure, Local Search, Heuristics, Flexible Job Shop Scheduling, Fuzzy
Processing Times

1. Introduction

Scheduling operations is one of the most critical issues in
manufacturing and production systems as well as in information
processing environments [1]. The Job-shop Scheduling Prob-
lem (JSP) is a simplified model of many problems in this class
which has interested researchers for decades due to its simple
formulation but, at the same time, high difficulty, being NP-
hard [2]. In the classical JSP a set of jobs have to be processed
on a set of machines, each job consisting of a sequence of con-
secutive operations and each operation requiring the exclusive
use of exactly one machine during all its processing time, which
is perfectly known in advance. A typical performance indicator
is the makespan, i.e., the time required to complete all jobs.

Unfortunately, the classical JSP cannot model many prac-
tical situations due to the fact that project decisions usually
have to be made in advance, when activity durations are still
highly uncertain. A great variety of approaches have been con-
sidered to deal with these real-life situations, as can be seen
in the review of fundamental approaches for scheduling un-
der uncertainty from [3]. Maybe, the best-known approach
is stochastic scheduling, where uncertain processing times are
taken to be stochastic variables. A recent example can be found

Email addresses: palaciosjuan@uniovi.es (Juan José Palacios),
mig@uniovi.es (Miguel A. González), crvela@uniovi.es (Camino
R. Vela), gonzalezri@unican.es (Inés González-Rodrı́guez),
puente@uniovi.es (Jorge Puente)

in [4], where a stochastic programming approach for the project
scheduling is proposed. Here, the uncertainty of the durations
is represented using a set of discrete scenarios in which each
scenario has a probability of occurrence. The durations of ac-
tivities are random variables which are supposed to be inde-
pendent and for which the individual distributions can be esti-
mated. More recently, in [5] a method for solving the resource
constrained project scheduling problem with uncertain activity
durations is given, where uncertain durations are described by
independent random variables with a known probability distri-
bution function. However, it is sometimes the case that proba-
bility distributions underlying durations are unknown and there
is a lack of statistical data to validate the choice of duration dis-
tributions. It may even be argued that probability distributions
allow us to model the variability of repetitive tasks, but not un-
certainty due to a lack of information [6]. Even when durations
are independent random variables it is admitted that estimating
the makespan distribution is, in general, intractable [7]. An al-
ternative and complementary approach to modelling ill-known
processing times is to use fuzzy numbers or, more generally,
fuzzy intervals in the setting of possibility theory. Fuzzy inter-
vals share some of the disadvantages of probability theory, in
particular the need of providing the possibility distribution that
represents ill-known durations. However for, say, triangular
fuzzy numbers the expert need only provide an interval of pos-
sible values and the most typical value, which is usually easier
than accurately defining a probability distribution. Quantitative

Preprint submitted to Computers and Operations Research October 9, 2014

Ines
Texto escrito a máquina
Author's copy of
J.J. Palacios, M.A. González, C.R. Vela, I. González-Rodríguez, J. Puente (2015).
Genetic tabu search for the fuzzy flexible job shop problem.
Computers & Operations Research, 54, 74-89.
DOI of published final version: 10.1016/j.cor.2014.08.023

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina
Following Elsevier Sharing Policy, this work is lincensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

Ines
Texto escrito a máquina

https://creativecommons.org/licenses/by-nc-nd/4.0/

possibility theory is said to provide a natural framework, sim-
pler and less data-demanding than probability theory, for han-
dling incomplete knowledge about scheduling data. The fuzzy
approach has been around for more than two decades and has
received the attention of several researchers (c.f. [8],[9]). In
particular, considerable effort has been made to solve the fuzzy
JSP (FJSP), where task durations are modelled as fuzzy num-
bers (most commonly, triangular fuzzy numbers). Some of the
existing approaches will be reviewed in Section 2.

Another characteristic of real-world problems is flexibility,
which is contemplated in the flexible JSP (fJSP in short), a vari-
ant of the JSP where multiple machines can perform the same
operation (possibly with different processing times). This flex-
ibility allows the system to absorb changes in the demand of
work or in the performance of the machines. On the other hand,
it also increases the difficulty of the problem, since a solution
must also consider the assignment of jobs to machines (job rout-
ings) in addition to scheduling operations on the machines.

Fuzzy processing times and flexibility on the machines can
be considered simultaneously, as done for example in [10].
When this is the case, we have the fuzzy flexible job-shop
scheduling problem (FfJSP). This will be the problem con-
sidered in this paper, with the objective of minimising the
makespan.

As solving method, we propose to design a hybrid algorithm
combining a genetic algorithm with a local search strategy. This
is motivated by the success of this hybridisation not just for
solving JSP ([11]) but also for solving several extensions of it
such as JSP with setup times [12], FJSP [13] or fJSP [14]. It is
not possible however to directly apply these existing methods
to FfJSP, because the addition of both flexibility and fuzzy pro-
cessing times to the problem changes its nature, and therefore
well-known results, both theoretical and empirical, regarding
existing neighbourhood structures are not longer applicable in
the new setting of FfJSP. We need new neighbourhood struc-
tures specific for this problem, with the corresponding study
of their properties. The benefit of having well-founded neigh-
bourhood structures is beyond their use in our local search strat-
egy, since this allows to incorporate them to any search method
based on neighbourhoods or, if connectivity holds, they could
also be used, for instance, as a branching scheme in an exact
search method. Finally, although the use of heuristic strate-
gies to generate the initial population is less frequent in the lit-
erature, there are also authors that have proved its efficacy in
fJSP [15].

We shall propose an efficient hybrid algorithm which com-
bines a memetic algorithm with a heuristic strategy to generate
initial solutions. The initialisation strategy exploits the flexi-
bility on the machine assignment to build a varied set of high-
quality solutions. The memetic algorithm itself combines a ge-
netic algorithm with tabu search, inspired in the method pre-
sented in [14] to solve the flexible job-shop scheduling prob-
lem with setup times. The tabu search relies on exploring both
moves in machine assignments and in processing orders of crit-
ical operations. We propose two new neighbourhood structures
for the local search. For the first structure, we shall prove that
it verifies both feasibility and connectivity properties, the latter

ensuring asymptotic convergence in probability to a global op-
timal solution. The second neighbourhood is obtained by incor-
porating a filtering mechanism that trims the first structure by
discarding non-improving neighbours, keeping feasibility and
considerably reducing the size of the set of neighbours at the
cost of losing connectivity. Additionally, a method based on
constraint propagation is introduced that allows to speed-up the
evaluation of new chromosomes. An extensive computational
study will show that our algorithm outperforms existing meth-
ods from the literature for the same problem, while it gives re-
sults comparable to those of the best available algorithms for
the flexible job shop with deterministic processing times.

The remainder of this paper is organised as follows: Sec-
tion 2 reviews the literature on job-shop scheduling with flexi-
bility and with uncertainty in operation processing times. Sec-
tion 3 is devoted to the problem formulation while Section 4
describes the proposed algorithm, including formal proofs of
the properties of the neighbourhood structure. In Section 5, we
report and analyse the results of the experimental study. Finally,
in Section 6, some conclusions are given.

2. Related work

Hybrid metaheuristics are classical methods for solving com-
binatorial optimisation problems due to the fact that they allow
algorithm designers to combine different search techniques and
benefit from their synergy. In particular, they have a long track
of success with scheduling problems. Even for the classical
JSP, researchers continually propose new algorithms designed
from different metaheuristics which outperform or at least are
comparable to previous ones. Indeed, the algorithms proposed
in [16] and [17] are probably the most efficient approaches to
the JSP with makespan minimisation and both combine the
i−TSAB algorithm from [18] with other existing methods: a
simulated annealing algorithm in the first case and the solution-
guided search method in the second. More recently, a hybrid
genetic tabu search “with innovative initial solutions” is pro-
posed in [19] which not only solves several benchmark prob-
lems optimally but also demonstrates to be capable of solving
real-life job shop problems.

Regarding the FJSP, several metaheuristics have been pro-
posed since the 1990s, starting with the simulated annealing
method from [20]. In [21], the authors develop a GA to max-
imise several objectives in a fuzzy decision making framework.
This GA is later improved in [22] using random keys. In [23], a
particle swarm optimisation algorithm is combined with some
genetic operators. In [24], a GA that searches in the so-called
space of possibly active schedules is proposed and a seman-
tics for fuzzy schedules is provided. In [13], we find a hy-
brid algorithm which combines a GA with a very efficient local
search method. More recently, we find a great variety of nature-
inspired methods for makespan minimisation: a swarm based
neighbourhood search algorithm [25], a hybrid algorithm, com-
bining particle swarm optimisation with tabu search [26] and an
artificial bee colony algorithm [27].

It is also in the 1990s that flexibility in JSP was first ad-
dressed by researchers, after the seminal paper [28], and has

2

ever since been the object of intensive research. From the
first works, such as [29], where the machine assignment and
the scheduling of operations are studied separately, until now,
many are the approaches proposed for the fJSP. Among others,
a tabu search algorithm is proposed in [30] and is later improved
with two neighbourhood structures in [31]. [15] presents a GA
that incorporates different strategies for generating the initial
population while a hybrid genetic algorithm combined with a
variable neighbourhood descent search is given in [11]. More
recently, approaches such as the discrepancy search proposed
in [32], the hybrid harmony search and large neighbourhood
search from [33] or the genetic algorithm combined with tabu
search from [14] obtain the best results so far for many problem
instances.

Compared to the FJSP and the fJSP, the combination of flex-
ibility and uncertainty in FfJSP has received limited albeit in-
creasing attention. Among the most representative proposals,
we mention the genetic algorithm from [34], the hybrid artificial
bee colony algorithm given in [35], the estimation distribution
algorithm from [36], the co-evolutionary algorithm from [37]
or the swarm-based neighbourhood search algorithm from [38].
These last four algorithms are, to the best to our knowledge, the
most competitive methods in the literature for this problem.

3. Problem formulation

In the job shop scheduling problem, there is a set of jobs J =
{J1, . . . ,Jn} that must be processed on a set M = {M1, . . . ,Mm}
of physical resources or machines, subject to a set of con-
straints. There are precedence constraints, so each job Ji,
i = 1, . . . ,n, consists of Ni operations Oi = {oi1, . . . ,oiNi} to
be sequentially scheduled. There are also capacity constraints,
whereby each operation oi j requires the uninterrupted and ex-
clusive use of one of the machines for its whole processing time.

When flexibility is added to the JSP, an operation oi j is al-
lowed to be executed on one machine out a given set M(oi j).
The processing time of the operation oi j on machine Mk ∈
M(oi j) is denoted poi jk ∈ N. Notice that the processing time of
an operation may be different in each machine and that a ma-
chine may process several operations of the same job. A solu-
tion to this problem consists of an assignment to machines of all
N = ∑n

i=1 Ni operations in the set O = ∪1≤i≤nOi together with a
schedule, i.e., an allocation of starting times for each operation
on the assigned machine, which is feasible (i.e. all constraints
hold). The objective is to find an optimal solution according to
some criterion, most commonly that the makespan, which is the
completion time of the last task to finish, is minimal.

Finally, in the fuzzy flexible job shop, processing times poi jk
are allowed to be fuzzy numbers (a particular case of which are
natural numbers), modelling the existing uncertainty regarding
the exact duration of an operation on a particular machine.

3.1. Uncertain durations

In real-life applications, it is often the case that the exact pro-
cessing time of operations is not known in advance. However,
based on previous experience, an expert may be able to provide

some qualitative information about what duration is more plau-
sible than another, estimating for instance an interval of possi-
ble values for the processing time or its most typical value, and
he/she may even be able to assess whether some values in the
interval appear to be more plausible than others. This naturally
leads to modelling such durations using fuzzy intervals or fuzzy
numbers (see [20] and references therein for practical ways of
eliciting fuzzy intervals). Fuzzy intervals have been extensively
studied in the literature (cf. [39]). A fuzzy interval A is a fuzzy
set on the reals (with membership function µA :R→ [0,1]) such
that its α-cuts Aα = {u ∈ R : µA(u)≥ α}, α ∈ (0,1], are inter-
vals. A fuzzy interval is a fuzzy number if its α-cuts (denoted
[nα ,nα]) are closed, its support A0 = {u ∈ R : µA(u) > 0} is
compact (closed and bounded) and there is a unique modal
value u∗, µA(u∗) = 1. Clearly, real numbers can be seen as
a particular case of fuzzy ones.

The simplest model of fuzzy interval is a triangular fuzzy
number or TFN, using an interval [a1,a3] of possible values and
a modal value a2 in it. For a TFN A, denoted A = (a1,a2,a3),
the membership function takes the following triangular shape:

µA(x) =

⎧
⎪⎨

⎪⎩

x−a1

a2−a1 : a1 ≤ x≤ a2

x−a3

a2−a3 : a2 < x≤ a3

0 : x < a1 or a3 < x

(1)

If TFNs are to be used to extend the flexible job shop to
handle uncertainty, two issues must be addressed: the precise
meaning of “minimal makespan” when such makespan is a TFN
as well as the means of extending the arithmetic operations of
addition and maximum to work with TFNs.

The fact that there is no natural total ordering in the set of
TFNs makes the concept “minimal makespan” ambiguous. In
the literature on fuzzy job shop two main approaches to defining
a total ordering co-exist.

The membership function µQ of a fuzzy quantity Q can be
interpreted as a possibility distribution on the real numbers; this
allows to define the expected value of a fuzzy quantity [40],
given for a TFN A by

E[A] =
1
4
(a1 +2a2 +a3). (2)

It induces a total ordering ≤E in the set of fuzzy intervals [20],
where for any two fuzzy intervals M,N M ≤E N if and only if
E[M] ≤ E[N]. The expected value coincides with the neutral
scalar substitute of a fuzzy interval and can also be obtained as
the centre of gravity of its mean value or using the area compen-
sation method, which calculates areas under the membership
function with an interpretation in terms of imprecise probabili-
ties [8]. Clearly, for any two TFNs A and B, if ∀i,ai ≤ bi, then
A≤E B.

Related to this is a ranking method widely used in the fuzzy
scheduling literature following the seminal papers of Sakawa et
al. [41],[21]. It is based on using multiple numerical indices for
ranking fuzzy numbers, as suggested in [42]. In particular, for
any TFN A, three indices are considered: c1(A)=E[A], c2(A)=
a2 and c3(A) = a3−a1. Then, A <R B if c1(A)< c1(B) or else

3

if c1(A) = c1(B) and c2(A) < c2(B) or else if c1(A) = c1(B),
c2(A) = c2(B) and c3(A) < c3(B). Obviously, if A <E B, it is
also the case A <R B.

In the fuzzy flexible job shop, we essentially need two op-
erations on fuzzy numbers, the sum and the maximum. These
are obtained by extending the corresponding operations on real
numbers using the Extension Principle. However, computing
the resulting expression is cumbersome, if not intractable. For
the sake of simplicity and tractability of numerical calculations,
it is fairly common in the literature, following [20], to approxi-
mate the results of these operations by interpolation, evaluating
only the operation on the three defining points of each TFN. It
turns out that the sum and its approximation coincide, so for
any pair of TFNs A and B:

A+B = (a1 +b1,a2 +b2,a3 +b3). (3)

Regarding the maximum, for any two TFNs A,B,
if F denotes their maximum and G = maxI(A,B) =
(max{a1,b1},max{a2,b2},max{a3,b3}) its approximated
value, it holds that:

∀α ∈ [0,1], f α ≤ gα , f α ≤ gα . (4)

where [f α , f α] is the α-cut of F . In particular, F and G have
identical support and modal value, that is, F0 = G0 and F1 =
G1. This approximation has been widely used in the scheduling
literature, among others, in [43], [44],[20],[24],[45],[46],[47],
[23],[48], [21] or [49].

More recently, it has been proposed in [50] to approximate
the maximum using the above ranking method, so max(A,B)≈
maxR(A,B) where maxR = A if A <R B and maxR(A,B) = B
otherwise. Notice that maxR(A,B) ≤E maxI(A,B),∀A,B (and
therefore maxR(A,B) ≤R maxI(A,B) too). Notice as well that
it is not guaranteed that maxR maintains the support nor the
modal value of the actual maximum and, more generally, it is
not coherent with the max operation it is meant to approximate.
As we shall see in the following, this is of key importance for
fuzzy scheduling and it is one of the reasons why we choose
to use maxI instead of maxR. Unless otherwise stated and for
the sake of a simpler notation, we shall simply write max when
referring to the interpolated maximum maxI .

3.2. Solution graph and criticality
A solution to the FfJSP may be alternatively viewed as a

pair (α,π) where α is a feasible assignment of each operation
oi j ∈ O to a machine Mk ∈ M(oi j), denoted α(oi j) = k, and π
is a processing order of the operations on all the machines in
M (i.e., a machine sequence) compatible with the job and the
machine sequences that may be represented by a topological
ordering. For an operation oi j ∈ O let PJoi j and SJoi j denote
the operations just before and after oi j in the job sequence and
PMoi j and SMoi j the operations right before and after oi j in the
machine sequence in a solution (α ,π). The starting and com-
pletion times of oi j, denoted Soi j and Coi j respectively, can be
calculated as Soi j = max(CPJoi j

,CPMoi j
) and Coi j = Soi j + poi jk,

where k = α(oi j). The objective is to find a solution (α ,π) that

minimises the makespan, i.e., the completion time of the last
operation to end, denoted as Cmax(α,π) = maxoi j∈O Coi j .

Since operation processing times are fuzzy intervals, the ad-
dition and maximum operations used to propagate constraints
are taken to be the corresponding operations on fuzzy inter-
vals, approximated for the particular case of TFNs as explained
above. The obtained schedule will be a fuzzy schedule in the
sense that the starting and completion times of all operations
and the makespan are fuzzy intervals, interpreted as possibility
distributions on the values that the times may take. However,
the machine assignment α and the operation processing order-
ing π that determine the schedule are crisp; there is no uncer-
tainty regarding the order and the machines in which operations
are to be processed.

The fuzzy schedule is therefore a predictive schedule, given
before the actual project execution. When the schedule is ac-
tually executed and operations are processed according to the
ordering and machine assignment given by (α,π), their pro-
cessing times will no longer be uncertain and will take precise
values in the interval given by the original TFNs. Thanks to
the coherence of the approximated maximum maxI , we can be
sure that all starting and completion times (in particular, the
makespan) will lie within the support of the predicted fuzzy
times. In particular, we can be sure that if the fuzzy makespan
is Cmax = (C1

max,C2
max,C3

max), all possible executions of (α,π)
will have a crisp makespan in the interval [C1

max,C3
max] (being

more likely those values around C2
max). This is not the case with

maxR: a fuzzy schedule computed using maxR may predict a
fuzzy makespan which has no correspondence with the crisp
makespan obtained when the schedule is later executed.

Based on the above, we propose a solution graph model
which extends that from [51] to incorporate machine flexibility.
According to this model, a machine assignment α and a feasible
operation processing order π can be represented by an acyclic
directed graph G(α ,π) = (V,A∪R(α ,π)) where each node x in
V represents either an operation of the problem, labelled with
the machine to which it has been assigned Mk, k = α(x), or one
of the dummy nodes start and end, which are fictitious opera-
tions with processing time 0. Arcs in A represent job processing
orders and the set R(α,π) is partitioned into subsets Rk, where
Rk is a minimal set of arcs representing the processing order
given by π for all operations assigned by α to the machine Mk.
Each arc is weighted with the processing time (a TFN in our
case) of the operation at the source node in the machine where
it will be processed.

To illustrate previous concepts, Figure 1 shows a solution
graph and a Gantt chart (adapted to TFNs following [20]) where
π = {o21,o11,o22,o31,o23,o32,o33,o24,o12} and the assignment
α is explicit in the label of each node. In accordance with
graph model, there is a node for each operation together with
the dummy nodes start and end. Solid arcs represent job pro-
cessing orders while dotted arcs represent machine processing
orders. Each arc is labelled with the processing time (the TFN)
of the source node. In this example, the processing order for
operations in M1 is o21, o31, o33; the processing order for oper-
ations in machine M2 is o11,o23,o32,o34 and, finally, only oper-
ation o22 is to be processed in machine M3. On the right-hand

4

(3,4,7) o11M2

end

start

o12M1

o21M1

o24M2

o22M3

o23M2

(2,3,6) (4,4,4)

o31M1

o32M2

(2,3,5) (3,4,6) o33M1

(0,0,0)

(2,3,6)

(3,4,7)

(3,4,6)
(1,2,3)

+

(1,2,3) (6,8,10)

(3,5,7)

(2,3,5)

(2,4,5)

(0,0,0)

(0,0,0)
(2,4,5)

(a) Solution graph

0 3 6 9 12 15 18 21 24 27 30 33

Makespan

16 22 31

E[Cmax]

Job 1 o11 o12

Job 2 o21 o22 o23 o24

Job 3 o31 o32 o33

(b) Gantt chart (Job-oriented)

Figure 1: A feasible schedule to a problem with 3 jobs and 3 machines. The makespan is (16, 22, 31).

side of Figure 1, the Gantt chart represents the corresponding
partial schedules on each job. For instance, the fuzzy time gap
when operation o23 is being processed corresponds to the green
coloured polygon labelled o23. This polygon is delimited on
the left by the starting time (6, 7, 10) and on the right by the
completion time (7, 9, 13); notice that in the case that starting
and completion times were real numbers, the polygon would
become a rectangle, which is the standard way of representing
operation execution times in deterministic Gantt charts. Ad-
ditionally, the fuzzy makespan and its expected value is de-
picted below the job partial schedules, making it possible to
appreciate which operation contributes to each component of
the makespan.

The way to confront criticality in the fuzzy framework is
it not unique. Here we adopt the definition from [51] where,
given a solution graph G(α,π), three parallel solution graphs
Gi(α,π), i = 1,2,3, are defined with identical structure to
G(α,π) but where the cost of any arc (x,y) is pi

xk, the i-th com-
ponent of pxk, for k = α(x). Since durations in each parallel
graph Gi(α ,π) are deterministic, a critical path in Gi(α,π) is
the longest path from node start to node end. The set of critical
paths in G(α ,π) is then defined as the union of critical paths
in Gi(α,π), i = 1,2,3. Nodes and arcs in a critical path are
also termed critical. A critical path is naturally decomposed
into critical blocks B1, . . . ,Br, where a critical block is a max-
imal subsequence of tasks in a critical path requiring the same
machine and such that two consecutive operations of the block
do not belong to the same job. Notice that the makespan of the
schedule is not necessarily the cost of a critical path, but each
component Ci

max(α,π) is the cost of a critical path in the cor-
responding solution parallel graph Gi(α,π). This will prove an
important point when defining the neighbourhood structure in
Section 4.4.

4. The hybrid algorithm

The long record of good results obtained with hybrid meth-
ods that combine genetic algorithms (GA) and different local
search methods, in particular Tabu Search (TS), supports the
choice of this kind of metaheuristic [11],[13],[10]. It is well-
known that a key component for the success of a TS algorithm
is the neighbourhood structure used in it. Here we propose a
neighbourhood structure for the FfJSP that fulfills two impor-

tant properties: feasibility and connectivity. We also incorpo-
rate new mechanisms to speed-up the evaluation of the individ-
uals and a neighbour filter that allows the algorithm to discard
a great number of non-improving ones, thus reducing the size
of the neighbourhood and increasing the chance for improve-
ment. Filtering is particularly important in the fuzzy framework
as the number of feasible neighbours of a solution is consider-
ably larger than in the crisp case. Regarding the initial popu-
lation, a wise generation of heuristic solutions can help to im-
prove the convergence of the memetic algorithm compared to
starting from an initial population composed by only random
solutions [15]. This is especially interesting when dealing with
large instances ([52]).

The main steps of this hybrid algorithm are the following. In
the first step the initial population is generated by the heuris-
tic algorithm (FfInsertion) described below. Then the genetic
algorithm iterates over a number of generations. In each iter-
ation, a new generation is built from the previous one by ap-
plying the usual genetic operators. Tabu search is applied to
every schedule produced either by the initialisation heuristic al-
gorithm or by the GA; the corresponding chromosome is re-
built from the improved schedule obtained by TS so its charac-
teristics can be transferred to the subsequent offsprings (effect
known as Lamarckian evolution). The flow chart of the result-
ing hybrid algorithm can be seen in Figure 2.

In the following, we describe in more detail these compo-
nents: the genetic algorithm, the heuristic seeding strategy, and
the tabu search algorithm, including the neighbourhood struc-
tures and the makespan estimation procedure.

4.1. Genetic algorithm

We consider here a GA previously used in [14] for tackling
other variants of the JSP and extend it to the FfJSP. The main
characteristics of this GA are the following. In the first step, the
initial population (obtained either randomly or by some heuris-
tic procedure) is evaluated. Then the GA iterates over a number
of generations. In each iteration a new generation is built from
the previous one by applying the genetic operators of selection,
recombination and replacement. In the selection phase all chro-
mosomes are randomly grouped into pairs, and then each one
of these pairs is mated to obtain two offspring. Finally, the re-
placement is carried out as a tournament selection from each
pair of parents and their two offspring. This algorithm differs

5

Generate ini-
tial population
(FfInsertion)

Generate new
population (ge-
netic operators)

Apply TS to all
new chromosomes
and rebuild them

Stop?

Exit

y

n

Figure 2: Flow chart of the hybrid algorithm.

slightly from the classic genetic algorithms in that the selec-
tive pressure is introduced in the replacement instead of in the
selection phase.

To codify chromosomes we have chosen the two-vector rep-
resentation [11], which is widely used in the flexible job-shop
problem and its fuzzy version with slight differences. This en-
coding is quite natural because the fJSP is a combination of ma-
chine assignment and operation scheduling decisions, so a solu-
tion can be expressed by two vectors v1 and v2, v1 representing
the machines assigned to the operations and v2 representing the
processing sequences of operations on the machines.

The operation-sequence vector is based on permutations with
repetition for the JSP [53]. It is a permutation of the set of
operations, each being represented by its job number. For ex-
ample, if we have a problem with 3 jobs: J1 = {o11,o12},
J2 = {o21,o22,o23,o24}, J3 = {o31,o32,o33}, then the sequence
v2 = (2 1 2 3 2 3 3 2 1) is a valid vector that represents the
topological order π = {o21,o11,o22,o31,o23,o32,o33,o24,o12}.
With this encoding, every permutation produces a feasible pro-
cessing order.

Regarding the machine-assignment vector, at a given posi-
tion it has the number of the machine assigned to the operation
located at the same position in the operation-sequence vector.
For example, if we consider the sequence vector above, then
the machine vector v1 = (1 2 3 1 2 2 1 2 1), indicates that the
operations o21, o31, o33 and o12 use the machine M1, the oper-
ations o11, o23, o32 and o24 use the machine M2, and only the
operation o22 uses the machine M3 (that is, α(o21) = α(o31) =
α(o33) = α(o12) = 1, α(o11) = α(o23) = α(o32) = α(o24) = 2
and α(o22) = 3).

For chromosome mating, the genetic algorithm uses an ex-
tension of the well known Job Order Crossover (JOX). Given
two parents, JOX selects a random subset of jobs and copies

their genes to one offspring in the same positions as in the first
parent, then the remaining genes are taken from the second par-
ent so that they maintain their relative ordering. To create the
second offspring, the parents change their roles. In order to ex-
tend this operator to the flexible case, we also need to consider
the machine-assignment vector. We propose to choose for every
operation the corresponding assignment in the parent it comes
from. For instance, let us consider the following two parents:

Assignment Sequence
Parent1 (1 2 3 1 2 2 1 2 1) (2 1 2 3 2 1 3 2 3)
Parent2 (3 2 3 1 3 2 1 3 3) (1 1 2 2 3 3 2 2 3)

Assuming that the selected subset of jobs (in bold) includes
only job 2, then

Assignment Sequence
Offspring1 (1 3 3 2 2 3 2 2 3) (2 1 2 1 2 3 3 2 3)
Offspring2 (2 1 3 1 2 1 1 3 1) (1 3 2 2 1 3 2 2 3)

The operator JOX may swap any two operations requiring
the same machine; this is an implicit mutation effect. This is
the reason we have chosen not to use any explicit mutation op-
erator. In consequence, parameter setting in the experimental
study is considerably simplified, because crossover probabil-
ity is set to 1 and mutation probability needs not be specified.
With this setting, we have obtained results similar to those ob-
tained with a lower crossover probability and a low probability
of applying mutation operators. Also, some authors, for exam-
ple [54] or [55], have already noticed that a mutation operator
does not play a relevant role in a genetic algorithm hybridised
with local search.

To evaluate chromosomes, we need to generate schedules,
obtaining their makespan and compute the expected value
thereof (this constitutes the fitness value). To do so, we have
used a simple decoding algorithm: operations are scheduled in
the machines given by the machine-assignment vector at the
earliest possible instant that maintains the order in which they
appear in the operation-sequence vector of the chromosome. In
other words, we produce a possibly semiactive schedule, which
means that the possibility of that no operation can start earlier
without altering the operation sequence for a given machine as-
signment is 1.

4.2. Heuristic seeding

To generate initial solutions we schedule operations in an
insertion mode but taking advantage of the flexibility. Let Ω
denote the set of operations that can be scheduled at the cur-
rent stage (initially, this set contains the first operation from
each job). We select a random operation oi j in Ω and compute
its earliest completion time, C⋆, considering all the machines
where it can be processed. Then, we randomly select a machine
Mk ∈M(oi j) in which oi j may finish at C⋆ and schedule oi j in
machine Mk at its earliest starting time, given by C⋆ − poi jk.
oi j is removed from Ω and its successor in the job sequence is
added to Ω, provided that it exists. The process finishes when
Ω becomes empty.

6

Input A FfJSP instance
Output An operation processing order and a machine assignment

which determines a schedule
Ω← {oi1,1≤ i≤ n};
while Ω ̸= /0 do

oi j← an operation selected at random from Ω;
for each Mk ∈M(oi j) do

Compute ESToi jk;
C⋆←min{ESToi jk + poi jk,Mk ∈M(oi j)};
K← {Mk ∈M(oi j),ESToi jk + poi jk =C⋆};
Choose a machine Mk⋆ from K at random;
Schedule the operation oi j in machine Mk⋆ ; {fix the value of
Soi j = ESToi jk⋆};
Ω←Ω−{oi j}
if j is not the last operation of job i then

Ω←Ω∪{oi(j+1)};
Build the sequence and the assignment vectors according to the cre-
ated schedule;
return The schedule S given by {Soi j : 1 ≤ i ≤ n,1 ≤ j ≤ Ni} and
the sequence and assignment vectors

Alg. 1: The F f Insertion

To understand what is an insertion mode and indeed how
C⋆ is computed, we define a feasible insertion interval for a
operation oi j in a machine Mk ∈ M(oi j) to be a time interval
[tS

k , t
E
k] in which machine Mk is idle and such that oi j can be pro-

cessed within that time interval without violating precedence
constraints, that is, tS

k + poi jk ≤ tE
k , and tS

k ≥ Coi(j−1) (if j = 0,
Coi(j−1) is taken to be 0). Then, the earliest starting time for
operation oi j in machine Mk, denoted ESToi jk, is the smallest
tS
k that can be found. Thus, the earliest completion time for oi j

is C⋆ = min{ESToi jk + poi jk,Mk ∈M(oi j)}. We schedule oi j in
any machine Mk such that ESToi jk + poi jk =C⋆.

The pseudocode description of this fuzzy flexible insertion
algorithm (FfInsertion) is shown in Algorithm 1.

4.3. Tabu search

Tabu search (TS) is an advanced local search technique, pro-
posed in [56] and [57], which may select non-improving neigh-
bours in order to escape from local optima. To avoid revisiting
recently visited solutions and so to promote the exploration of
new promising regions of the search space, it maintains a tabu
list with a set of moves which are not allowed when generating
new neighbourhoods. TS has a solid record of good empiri-
cal performance, often used in combination with other meta-
heuristics. In particular, as already mentioned in Section 2, the
i-TSAB algorithm is the basis for two of the state-of-the-art ap-
proaches to JSP.

The general scheme of TS algorithm used herein is similar
to other TS algorithms proposed in the literature, for instance
in [58]. In the first step the initial solution, generated by the
GA, is evaluated and it then iterates for a number of steps. At
each iteration, the neighbourhood of the current solution is cal-
culated and one of the neighbours is selected as new solution.
Neighbours are evaluated using a makespan estimate, so the se-
lection criterion is based on selecting the neighbour with lowest

expected value of estimated makespan. A neighbour is tabu if it
is generated by reversing a tabu arc or by assigning a tabu ma-
chine to an operation, unless its estimated expected makespan
is better than that of the current best solution. Additionally, we
use the dynamic length schema for the tabu list and the cycle
checking mechanism as they were proposed in [58]. TS finishes
after a number of iterations without improvement, returning the
best solution found so far.

Two key points of this TS algorithm are the definition of the
neighbourhood structure and the method used to estimate the
neighbour’s makespan. The next two subsections describe, re-
spectively, new neighbourhood structures for FfJSP (including
some properties thereof) and the procedure for makespan esti-
mation.

4.4. Neighbourhood structure
Clearly, a central element in any local search procedure is

the definition of neighbourhood. For the crisp job shop, a well-
known neighbourhood, which relies on the concepts of critical
path and critical block, is that proposed in [59], later extended
to the fuzzy case in [51] using the given definition of critical-
ity. In this structure, given a operation processing order, π , the
neighbourhood of π is the set of operation processing orders
obtained from π by reversing single critical arcs. Adding flex-
ibility to the problem requires considering the assignment of
machines to operations as well. We thus propose to extend the
neighbourhood from [51] to consider also all the moves that re-
sult from changing the machine assignment of a single critical
operation. The resulting neighbourhood is termed NAP and it is
obtained as the union of other two, termed NA and NP. NAP is
quite similar in its motivation and definition to the structure pro-
posed in [14] for the SDST-fJSP; however, we shall see that the
different nature of the FfJSP results in significant differences,
for instance, conditions to discard unfeasible neighbours are no
longer necessary.

Definition 1. (Neighbourhood NA) Let α be a machine assign-
ment, π a feasible operation processing order, x an operation
and k′ ∈M(x) a machine such that k′ ̸=α(x). Let α<x,k′> denote
the assignment obtained from α after reassigning operation x to
machine k′. The neighbourhood structure NA obtained from
α is defined as: NA(α ,π) = {(α<x,k′>,π) : x is critical,k′ ∈
M(x),k′ ̸= α(x)}.

Definition 2. (Neighbourhood NP) Let α be a machine assign-
ment and π a feasible operation processing order. Given an arc
v = (x,y) ∈ R(α,π), let π(v) denote the processing order ob-
tained from π after reversing arc v in G(α,π). The neighbour-
hood structure obtained from π , NP, is given by NP(α,π) =
{(α,π(v)) : v ∈ R(α ,π) is in a critical block}.

For a fixed assignment this neighbourhood coincides with that
defined in [51] for the FJSP.

Notice that while NA concerns both an operation x and a ma-
chine k′, NP concerns the arc formed by a pair of operations
v = (x,y).

Definition 3. NAP(α,π) = NA(α,π)∪NP(α,π).

7

According to the following property it makes sense in the
above definitions to discard non-critical arcs or operations.

Proposition 1. Let α be a machine assignment, π a feasible
processing order, β = α<x,k′> and σ = π(v) where x and v are
not critical in G(α,π). Then

∀i, Ci
max(α,π)≤Ci

max(α ,σ).

∀i, Ci
max(α ,π)≤Ci

max(β ,π).
(5)

This property follows immediately from the definition of criti-
cal arcs and activities.

In addition, the neighbourhood NAP has two highly desirable
properties: feasibility and connectivity, which are stated in the
following two theorems.

Theorem 1. Let α be a machine assignment and let π be
a feasible operation processing order; then all elements in
NAP(α,π) are feasible.

PROOF. Feasibility of neighbours obtained with NP is proved
in [51]. Notice that neighbours in NA are defined so they main-
tain the processing order of operations π , and therefore they are
feasible.

This result allows the algorithm to limit the local search to a
subspace of feasible operation orders and so it avoids feasibility
checking on the neighbours, hence reducing the computational
load.

Now, in order to establish the connectivity property, we will
follow a similar reasoning as [59] to prove this property for the
structure N defined for the classical JSP. In our case, the rea-
soning is more complicated as we have to deal with flexibility
and uncertainty. In fact, in absence of these characteristics, NAP

is the same as N. Hence, we start with the following Lemma.

Lemma 1. Let (α ,π) be a feasible solution, G(α,π) = (V,A∪
R(α,π)) its disjunctive graph and (α∗,π∗) an optimal solution.
Let us define

W (1)
α ,π(α∗,π∗) = {v = (x,y) ∈ R(α,π) :

v is critical in G(α,π),(y,x) ∈ R(α∗,π∗)}
(6)

where R(α,π) denotes the transitive closure of R(α ,π),

W (2)
α,π(α∗,π∗)= {x∈V : x is critical in G(α,π),α(x) ̸=α∗(x)};

(7)
and

Wα,π(α∗,π∗) =W (1)
α ,π(α∗,π∗)∪W (2)

α ,π(α∗,π∗) (8)

i.e., Wα,π(α∗,π∗) is the set of critical arcs (x,y) in G(α ,π) such
that there exists a path from y to x in R(α∗,π∗) together with
the set of critical operations in G(α,π) assigned to a different
machine in α∗.

If holds that, if (α,π) is not optimal, then Wα,π(α∗,π∗) ̸= /0
or equivalently, if Wα ,π(α∗,π∗) = /0 then (α,π) is optimal.

PROOF. We shall first prove that, if (α ,π) is not optimal, there
is at least a critical arc in R(α,π) or a critical operation x such
that α(x) ̸= α∗(x).

Suppose that there are no critical arcs in R(α ,π) and that
for every critical operation x it holds that α(x) = α∗(x), that
means that all critical arcs in G(α,π) belong to A. Therefore,
for all i, all critical paths in Gi(α,π) belong to A. Hence, in
each Gi(α ,π) there exists a critical path where all arcs belong
to A and such path is optimal in Gi(α ,π) (for every i, a path
where all arcs belong to the same job is a lower bound of Ci

max)
for this assignment α . In principle, in the presence of flexi-
bility this does not guarantee the optimality of the solution, as
the processing time of operations in the path depend on the ma-
chine assignment, which may not be the same as in the optimal
solution. However, since we are also supposing that for every
critical operation x in Gi(α,π) α(x) = α∗(x), we can conclude
that (α ,π) is optimal.

Secondly, we shall prove that if (α ,π) is not optimal, then
there exists some critical arc v = (x,y) such that (y,x) ∈
R(α∗,π∗) or there exists a critical operation x such that α(x) ̸=
α∗(x).

Let us now assume that all critical arcs v = (x,y) ∈ R(α,π)
verify that (x,y) ∈ R(α∗,π∗) and that all critical operations x
in G(α,π) it holds that α(x) = α∗(x). The set of critical arcs
in G(α ,π) is the union of the set of critical arcs across all par-
allel disjunctive graphs. Therefore, the assumption means that
for all i all critical arcs in Ri(α ,π) belong to the transitive clo-
sure Ri(α∗,π∗). Hence, a critical path Pi in Gi(α ,π) is also a
path in Gi(α∗,π∗) = (V,A∪Ri(α∗,π∗)). As above, unlike the
non-flexible case, the length of Pi in Gi(α ,π) may be different
from its length in Gi(α∗,π∗) because it depends on the machine
assignment, but since we are supposing that for all operations
in Pi α(x) = α∗(x), then the length of Pi in Gi(α∗,π∗) is the
same as in Gi(α,π). By definition of transitive closure, there is
a path in Gi(α∗,π∗) with length greater or equal than it and the
length of that path is obviously less or equal than the length of
a critical path in Gi(α∗,π∗). Let Qi denote an arbitrary critical
path in Gi(α∗,π∗) and let ∥Qi∥ denote its length. It holds that:

∀i,Ci
max(α,π) = ∥Pi∥ ≤ ∥Qi∥=Ci

max(α∗,π∗)
In consequence, E[Cmax(α,π)] ≤ E[Cmax(α∗,π∗)]. But, since
(α∗,π∗) is optimal, it must be the case that E[Cmax(α∗,π∗)] ≤
E[Cmax(α ,π)], therefore E[Cmax(α∗,π∗)] = E[Cmax(σ)] and
(α,π) is optimal.

Then, if (α,π) is not optimal, either there exists a critical
arcs v = (x,y) ∈ R(α ,π) verifying that (x,y) /∈ R(α∗,π∗) or
there exists a critical operation x such that α(x) ̸= α∗(x). In
the first case, either (y,x) ∈ R(α∗,π∗) or x and y are not related
in R(α∗,π∗), i.e. α∗(x) ̸= α∗(y), but given that α(x) = α(y), at
least one of them, suppose it is x, verifies that α∗(x) ̸= α(x).

Theorem 2. NAP verifies the connectivity property, that is, for
every non-optimal solution (α,π) we may build a finite se-
quence of transitions of NAP leading from (α,π) to a globally
optimal solution.

PROOF. Let (α∗,π∗) be any optimal solution and let {λk}k≥0
be the sequence of solutions defined recursively as follows:

8

λ0 = (α,π)

λk+1 is obtained from λk by reversing an arc v ∈
W (1)

λk
(α∗,π∗) or by assigning α∗(x) to an operation x ∈

W (2)
λk

(α∗,π∗)

Notice that λk+1 is obtained from λk using a move from NAP

so, by Theorem 1, ∀k λk is a feasible solution. Let us prove that
the above sequence is finite. For any feasible solution (α,π),
we define the following sets:

M(1)
α ,π(α∗,π∗) = {v = (x,y) ∈ R(α,π) : (y,x) ∈ R(α∗,π∗)},

M(1)
α ,π(α∗,π∗) = {v = (x,y) ∈ R(α,π) : (y,x) ∈ R(α∗,π∗)},

M(2)
α ,π(α∗,π∗) = {x ∈V : α(x) ̸= α∗(x)},

M(3)
α ,π(α∗,π∗) = {{x,y} : α∗(x) = α∗(y),α(x) ̸= α∗(x)},

Mα,π(α∗,π∗) = M(1)
α,π(α∗,π∗)∪M(2)

α,π(α∗,π∗)∪M(3)
α ,π(α∗,π∗),

and

Mα,π(α∗,π∗) = M(1)
α,π(α∗,π∗)∪M(2)

α,π(α∗,π∗)∪M(3)
α ,π(α∗,π∗).

The relation between M(1)
α,π and W (1)

α,π above and between
M(2)

α ,π and W (2)
α,π is clear. As for M(3)

α ,π , it is the set of non-directed
arcs between operations which are processed in the same ma-
chine in the optimal solution (α∗,π∗) and such that at least one
of them is processed in other machine in the current assign-
ment α; R(α∗,π∗) contains one arc for every element in M(3)

α ,π .
Notice that M(3)

α,π includes a non-directed arc for every arc that

might appear in M(1)
α,π when moving from λk to λk+1. Indeed, if

an operation x is assigned to α ∗ (x), its relative position with
respect to the rest of the operations in that machine may not be
the same as in π∗, in which case the size of M(1)

α ,π increases (and
at the same time M(3)

α,π decreases in at least the same amount).
Clearly, Wα ,π(α∗,π∗) ⊂ Mα ,π(α∗,π∗) ⊂ Mα ,π(α∗,π∗). Let
∥Mα ,π(α∗,π∗)∥ and ∥Mα ,π(α∗,π∗)∥ denote their cardinals. If
λk is not optimal, by lemma 1, there exists a critical arc v =
(x,y) such that (y,x) ∈ R(α∗,π∗) or there exists a critical op-
eration x such that α(x) ̸= α∗(x) thus making it possible to
obtain λk+1. If λk+1 is obtained from λk by reversing an arc
v ∈W (1)

λk
(α∗,π∗), then

∥M(1)
λk+1

(α∗,π∗)∥= ∥M(1)
λk

(α∗,π∗)∥−1,

and, since no machine assignment has changed,

∥Mλk+1(α∗,π∗)∥= ∥Mλk(α∗,π∗)∥−1.

On the other hand, if λk+1 is obtained from λk by assigning
α∗(x) to a critical operation x ∈M(2)

λk
(α∗,π∗), then

∥M(2)
λk+1

(α∗,π∗)∥= ∥M(2)
λk+1

(α∗,π∗)|−1,

and from M(3)
λk+1

(α∗,π∗) disappear all pairs {x,y} such that the
machine assigned to y in λk is α∗(x). If any of these pairs
corresponds to a new arc v = (x,y) in Mλk+1(α∗,π∗) such that

(y,x)∈R(α∗,π∗), the arc will be added to M(1)
λk+1

(α∗,π∗). How-

ever, for every new element in M(1), the corresponding one will
disappear from M(3). Else, if no element is added to M(1), its
cardinal will remain the same, while M(3) may loose some of
its elements. In consequence,

∥Mλk+1(α∗,π∗)∥ ≤ ∥Mλk(α∗,π∗)∥−1.

Therefore, in the worst case, for k⋆ = ∥Mα,π(α∗,π∗)∥, we have
an optimal solution.

As mentioned above, connectivity is an important property
for any neighbourhood used in local search. It ensures the non-
existence of starting points from which the local search can-
not reach a global optimum. It also ensures asymptotic conver-
gence in probability to a globally optimal order. Additionally,
although the neighbourhood structure is used in a heuristic pro-
cedure in this paper, the connectivity property would allow to
design exact methods for fuzzy flexible job shop.

Preliminary experimental results with NP have endorsed the
good theoretical behaviour, obtaining good expected makespan
values; however, the large size of the neighbourhood structure
for the fuzzy case results in an extremely high computational
load. The fact that, for a fixed assignment α , NP is the neigh-
bourhood structure proposed in [51] for FJSP allows us to profit
from the following result, which can be seen as a filtering mech-
anism that trims the NAP structure by discarding non-improving
neighbours:

Proposition 2. For a given solution (α ,π) reversing a critical
arc which is not at the extreme of a critical block does not im-
prove the expected makespan

PROOF. See Theorem 2 in [51]: since reversing an arc does not
change any machine assignment, the same reasoning applies
and, in consequence, the length of the critical paths that ex-
isted before the move and whose arc has been reversed, remain
unchanged after the move, so the expected makespan cannot
improve.

This suggests defining the following reduced neighbour-
hoods:

Definition 4. NP
r = {v ∈ NP : v is in an extreme of a critical

block }.

Definition 5. NAP
r = NA∪NP

r .

Clearly, NAP
r ⊆ NAP and hence it contains only feasible

neighbours. According to Proposition 2, the discarded neigh-
bours in NAP−NAP

r are always non-improving ones; however,
connectivity no longer holds. In [45] an analogous reduction for
the FJSP was shown to be much more efficient than the origi-
nal structure and, in [60], similar criteria are used to omit some
moves provided that they do not generate better solutions than
the current ones for fJSP.

9

4.5. Makespan estimate

The most time-consuming part of evolutionary algorithms is
usually the fitness evaluation. The use of approximate fitness
functions in order to gain in efficiency is not new; for example
in [61], the authors propose to use surrogate functions to this
end. In scheduling problems, it is often possible to accurately
estimate the makespan after a move, even without resorting to
surrogate functions. In this section, we show how this can be
done for the FfJSP.

In order to simplify expressions, we extend to the fuzzy and
flexible framework, the well-known concepts of head and tail
of an operation. For a solution graph G(α ,π) and an operation
x, the head of x, denoted rx, is the starting time of x, a TFN
given by rx = max{rPJx + pPJxk1 ,rPMx + pPMxk}, being k = α(x)
and k1 = α(PJx). At the same time, the tail of x, denoted qx,
is the time lag between the moment when x is finished until
the completion time of all tasks that must be processed after x,
a TFN given by qx = max{qSJx + pSJxk2 ,qSMx + pSMxk}, where
k2 = α(SMx).

Clearly, the makespan coincides with both the head of the last
operation and the tail of the first operation: Cmax = rend = qstart .
There are also other basic properties that hold for each parallel
graph Gi(α ,π): ri

x is the length of the longest path from node
start to node x; qi

x + pi
x is the length of the longest path from

node x to node end; and ri
x + pi

x +qi
x is the length of the longest

path from node start to node end through node x, i.e., it is a
lower bound on Ci

max(α,π), being equal if x belongs to a critical
path in Gi(α,π).

Let us start by considering moves in NP. If (α,π) is a solu-
tion and v = (x,y) is a critical arc in G(α ,π), reversing arc v
produces a feasible solution (α,σ) with σ = π(v). Let r and q
denote the heads and tails in G(α,π) (before the move) and let
r′ and q′ denote the heads and tails in G(α ,σ) (after the move).
For every operation a previous to x in π , ra = r′a and for every
operation b posterior to y in π , qb = q′b. For x and y, the heads
and tails after the move are calculated as follows:

r′y = max{rPJy + pPJyk3 ,rPMx + pPMxk},
r′x = max{rPJx + pPJxk1 ,r

′
y + pyk},

q′x = max{qSJx + pSJxk2 ,qSMy + pSMyk},
q′y = max{qSJy + pSJyk4 ,q

′
x + pxk},

(9)

where k =α(x) =α(y), k1 =α(PJx), k2 =α(SJx), k3 =α(PJy)
and k4 = α(SJy). Given this, the estimate of the makespan af-
ter the move is Ce

max(α ,σ) = max{r′x + pxk +q′x,r′y + pyk +q′y}.
This is a lower bound on the makespan of (α ,σ).

Regarding moves in NA, let x be a critical operation in (α,π)
and k =α(x), assigning x to another machine Mk′ ∈M(x) main-
taining the processing order π produces a new feasible solution
(β ,π), where β = α<x,k′>, i.e., β (y) = α(y) for all y ̸= x and
β (x) = k′. Again, the head of the operations before x and the
tail of the operations after x do not change; while the head and
tail for x after the move are given by:

r′x = max{rPJx + pPJxk1 ,rPMx + pPMxk′},
q′x = max{qSJx + pSJxk2 ,qSMx + pSMxk′}.

(10)

Therefore, the makespan of (β ,π) can be estimated as
Ce

max(β ,π) = r′x + pxk′ +q′x, which is also a lower bound on the
makespan of (β ,π).

5. Experimental study

The purpose of this experimental study is twofold: first, to
analyse the behaviour of the proposed Hybrid Genetic Tabu
Search (HGTS) algorithm and, second, to compare it with the
state-of-the-art. For the first purpose we consider the compo-
nents of HGTS (the Heuristic Initial Population (HIP) genera-
tor, the GA and the TS) both separately and in combination. To
compare HGTS with the state-of-the-art, we start by consider-
ing the best approaches for the FfJSP, which to our knowledge
are those proposed in [37], [38], [35] and [36]. HGTS is fur-
ther tested on fJSP instances (with no uncertainty); this allows
us to establish comparisons with a large number of algorithms
from the literature on a varied set of instances. We conclude
this empirical study proposing a new benchmark for the FfJSP
with larger and harder instances than those of the current bench-
marks.

After a series of preliminary experiments, the following set-
ting for HGTS has been chosen: the population size is 100 chro-
mosomes and the stopping criterion for the GA, is 20 genera-
tions without improving the best solution, while for the TS, the
number of iterations without improvement depends on the av-
erage size of the instances of the different benchmarks (details
are given later). HGTS has been implemented in C++ and the
target machine is a PC with a Xeon E5520 processor and 24GB
RAM. For each problem instance, we have launched 30 runs
and considered as performance metric the Mean Relative Error
(MRE) with respect to a lower bound of the makespan, calcu-
lated for the fJSP instances as

MRE = (Cmax−LB)/LB×100 (11)

where LB is the instance’s makespan lower bound, and for the
FfJSP instances as

MRE = (E[Cmax]−LBF)/LBF ×100 (12)

where LBF is a lower bound of the expected makespan. The
lower bounds for most of the fJSP instances are those reported
in [31]. To obtain lower bounds for fuzzy instances, we adapt
the lower bound proposed in [62] for JSP to the fuzzy and flex-
ible setting as follows:

LBF = E[max
i
{

Ni

∑
j=1

pmoi j}] (13)

where pmoi j = min{poi jk,Mk ∈M(oi j)}.
Regarding the benchmarks for the FfJSP, we consider here

those proposed in [34], [37] and [38] with six instances alto-
gether. Instances 01 and 02 have 10 jobs, 10 machines and
40 operations each (10× 10× 40). Instances 03 and 04 are
10×10×50 and instances 05 and 06 are 15×10×80. All in-
stances have total flexibility, i.e., any operation can be executed

10

on any machine. For these instances, the stopping criterion for
the TS is 50 iterations without improvement.

In [38], the authors report results on six more FfJSP in-
stances which are obtained as fuzzified versions of fJSP in-
stances from [63],[64], and [29]. In this case, the fuzzy process-
ing times of operations are not explicitly reported but a method
to generate the TFNs is given instead, so the modal value is the
original crisp duration, and the lower and upper defining points
are randomly chosen from some intervals. In consequence, it is
impossible to work with exactly the same instances. Addition-
ally, the solutions reported in [38] are not fully consistent with
the described fuzzifying method. For example, for the instance
with 10 jobs and 6 machines from [63], even if the TFNs are
formed by assigning to each defining point the smallest possible
value (the lower endpoint of each interval as proposed in [38]),
the lower bound of the expected makespan obtained from equa-
tion (13) is 312; however, the expected values reported in [38]
for the average and the best solutions are 273.53 and 167.25
respectively. For these reasons, we have not considered these
instances on our experimental study for the FfJSP. We do how-
ever consider the original crisp fJSP instances from [63],[64]
and [29] in Section 5.3.

5.1. Analysis of the HGTS
We start the analysis of HGTS by considering the effect of

the initial population. To this end, we obtain two different ini-
tial populations, one generated using the heuristic from Sec-
tion 4.2 and the other one, randomly. The best and average
values (the latter between brackets) of the expected makespan
in both populations can be seen in the third and fourth columns
of Table 1, labelled Rd.IP and HIP respectively. These clearly
show the higher quality of the heuristic population. The table
also contains results for the GA both with random and heuris-
tic initial populations (fifth and sixth columns respectively, la-
belled RGA and HGA), results for the heuristic strategy used as
production rule (seventh column, labelled H), results for the TS
both with random and heuristic initial population (eighth and
ninth columns, labelled RTS and HTS) and results for the com-
bination of GA and TS with heuristic population, i.e., HGTS
(last column). Each row in the table corresponds to a problem
instance, with the instance identifier in the first column and the
previously best known solution in the second column; addition-
ally, the last row reports the average MRE across all instances
w.r.t. the lower bound as explained above.

The results for RGA, HGA, H, RTS, HTS and HGTS in Ta-
ble 1 correspond to the case where all methods are given the
same running time: HGTS stops following the criterion given
above, while HGA and RGA stop after they have been running
for the same time as HGTS, H iteratively applies the heuris-
tic scheduling schema FfInsertion to random orderings until
the same time as HTGS is consumed and HTS and RTS are
launched iteratively from different solutions generated with the
heuristic algorithm (or by random in the case of RTS) until the
same time is used.

Notice that, despite the difference in quality of the initial
populations, this difference does not always translate into dif-
ferent results after the search, with the three algorithms under

consideration presenting quite different sensitivity to this ini-
tial population. The GA is the method that benefits most from
the heuristic seeding (57% improvement w.r.t. starting from a
random population). This improvement is reduced to 15% for
the TS, being negligible in all instances except the two largest
ones (05 and 06). Finally, the benefit becomes insignificant for
the hybrid algorithm HGTS in this benchmark (this is the rea-
son that no column is added for the combination of GA and TS
with random initial population). We believe that this may be
explained by the fact that these instances are not challenging
enough to appreciate the contribution of the heuristic seeding
to the overall performance of the HGTS. In Section 5.4, we will
introduce larger instances and use them to further analyse the
influence of the different initial populations. In the remaining
of the experimental study, we consider heuristic initial popula-
tions.

In addition, we can assess the potential of the proposed
heuristic strategy, with H being able to yield quite competitive
solutions. This is due both to the large number of solutions that
can be generated in the running time given to H and to the di-
versity among them. However, even these solutions are far from
the quality of those obtained with HTS (40% worse), and even
further from the solutions provided by HGTS (68% worse).

We must however be cautious when comparing HTS or H
with HGA based on the results from Table 1, since HGA is
somewhat hindered by the parameterisation used. Indeed, HGA
has the same population size as HGTS but a different stopping
criterion (same time as HGTS). This parameterisation has been
chosen to assess as fairly as possible the contribution of the TS
in terms of intensification to the final algorithm HGTS w.r.t.
HGA, but it has the downside effect of not showing the full po-
tential of HGA on its own. On the other hand, we can appreciate
how the genetic algorithm (RGA or HGA) manages to evolve
the initial population (Rd.IP or HIP respectively). When it starts
from random individuals, it has a drastic effect in the MRE val-
ues and it provides a noticeable reduction when it starts from
heuristic individuals.

Finally, the results illustrate the synergy that exists between
the search strategies that are combined in HGTS, with HGTS
reducing the average MRE nearly 17% w.r.t. HTS, more than
40% w.r.t. H and 54% w.r.t. HGA, showing that this combina-
tion obtains better results than either GA and TS when run sep-
arately. In summary, HGTS provides a good symbiosis between
a good starting point (provided by H) and a good combination
of exploration, thanks to the GA, and exploitation, thanks to the
iterative improvement of the TS.

In the next section we analyse these results in more detail in
the context of comparison with other existing methods.

5.2. Comparison with the state-of-the-art in the FfJSP
In order to compare HGTS with the state-of-the-art, we

consider the best methods proposed so far for the FfJSP: the
Co-evolutionary Genetic Algorithm (CGA) proposed by D.Lei
in [37], the Swarm-based Neighbourhood Search Algorithm
(SNSA) proposed by D. Lei and X. Guo in [38], the Hybrid
Artificial Bee Colony Algorithm (hABC) proposed by L. Wang
et al in [35] and the Estimation Distribution Algorithm (EDA)

11

Table 1: Analysis of the components of HGTS for FfJSP

Ins pBKS Rd.IP HIP RGA HGA H RTS HTS HGTS

01 30.25 66.28 (97.85) 32.03 (37.19) 38.75 (40.45) 30.50 (31.15) 29.00 (29.60) 28.50 (28.70) 28.50 (28.53) 28.50 (28.50)
02 45.25 87.60 (127.7) 46.90 (54.58) 53.75 (57.60) 45.75 (46.80) 45.25 (45.55) 45.25 (45.25) 45.25 (45.25) 45.25 (45.25)
03 47.75 98.23 (139.6) 49.65 (56.93) 61.75 (63.70) 47.00 (48.18) 45.50 (46.00) 44.50 (44.78) 44.50 (43.53) 43.50 (43.68)
04 38.00 82.05 (115.5) 38.83 (44.72) 49.00 (51.33) 37.75 (38.25) 35.75 (36.18) 35.25 (35.38) 35.00 (35.08) 34.25 (34.28)
05 62.00 126.1 (167.3) 63.23 (69.58) 73.50 (76.13) 60.75 (61.63) 58.50 (59.18) 56.50 (56.95) 53.75 (54.30) 51.50 (52.15)
06 63.75 117.4 (156.7) 61.73 (67.96) 72.25 (74.25) 59.00 (60.78) 57.00 (57.53) 55.50 (56.18) 53.25 (53.58) 51.25 (51.90)
MRE 25.60 154.3 (254.7) 28.10 (45.09) 53.19 (59.51) 23.00 (25.59) 18.54 (19.92) 16.11 (16.87) 13.83 (14.27) 11.24 (11.88)

proposed by S. Wang et al in [36]. CGA is implemented in Mi-
crosoft Visual C++ 6.0 and run on a 512MB RAM 1.7GHz PC,
it uses a population of 150 chromosomes and a number of 1000
generations and the time taken ranges from 8 to 11 seconds for
a single run. SNSA is coded in Microsoft Visual C++ 6.0 and
run on a 2GB RAM 2.2GHz PC, the swarm size is 100, the
number of iterations is limited to 500 and the time taken varies
from 9 to 14 seconds a single run. hABC is implemented in
C++ and run on a 3.2GB RAM 2.83GHz PC with a population
of 2× n×m chromosomes, n×m steps for local search and a
limit of 20 trials without improving a source of food; the time
taken varies between 11 and 15 seconds per single run. Finally,
EDA is coded in C++ and run on Thinkpad T420 2GB RAM
2.3GHz; the parameters are set as follows: population size of
150, percentage of superior sub-population from population ν
= 20, and learning rates α = 0.3 and β = 0.1; the time taken
ranges between 4 and 10 seconds per single run. In all cases,
the reported results correspond to the best and average solutions
in 20 runs.

Table 2 shows the results obtained by CGA, SNSA, hABC,
EDA and HGTS on the six instances 01–06 provided these data
are available. Unfortunately, some of the references do not
report results for at least one of the largest instances 05, 06;
when this is the case, the corresponding cell in Table 2 is left
empty. For each method and instance, the table reports the best
and average makespan (the latter between brackets). Addition-
ally, the second column contains the lower bound for the ex-
pected makespan calculated according to (13) and the last col-
umn shows the average time taken by HGTS in a single run.
It is worth noting that the results for HGTS correspond to us-
ing the reduced neighbourhood NAP

r instead of NAP, since they
provide very similar results (compare with Table 1). Rows 7 to
9 include average MRE values (across the first 4, 5 and all 6
instances respectively) for all methods for which we have avail-
able data. Finally, the last row in Table 2, labelled #best, indi-
cates the number of instances where each method obtains the
best known solution. In bold are the best known solutions, with
a superindex “a” in the case that our method improves the pre-
vious best known solution, and with a superindex “b” in the
case it is the optimal solution.

Clearly, HGTS outperforms all the other four methods across
the six instances in best and average expected makespan. It ob-
tains the best-so-far solutions in all instances, improving the
previously best-known solutions in 5 of them. In fact, even
the average makespan value of HGTS improves the best value

obtained with the other methods in all but one instance (02).
Moreover, for instances 01 and 03, HGTS obtains the optimal
solution, since its expected makespan coincides with the lower
bound LB f . With respect to run times, it is worth mention-
ing that EDA requires considerably less time than HGTS, even
CPU times are not directly comparable due to differences in tar-
get machines. The reason may be that HGTS is a more complex
metaheuristic and needs more time to converge.

It is important to remark that all the available results for the
three algorithms CGA, SNSA, hABC and EDA have been ob-
tained using the maximum approximation maxR, while HGTS
uses maxI

1. This however should not be a problem in this case,
since maxR(A,B)≤maxI(A,B) for every pair of TFNs A and B,
meaning that if all algorithms were to use the same maximum
approximation the difference in favour of HGTS would either
be the same or even greater. Just for the sake of completeness,
we have evaluated the solutions obtained by HGTS (the oper-
ation processing order together with the machine assignment)
using maxR instead of maxI . Obviously, the resulting expected
makespan does not get worse in any case. More interestingly,
the results are very similar: the best MRE obtained with maxR
is 10.18% versus 10.61% with maxI and the average is 11.20%
versus 11.54%. We may conclude that the comparison between
HGTS and the state-of-the-art algorithms CGA, SNSA, hABC
and EDA is not affected by the maximum operation, being in
all cases favourable to the new method.

5.3. Comparison with the state-of-the-art in the fJSP
To enhance the significance of the experimental study, we

have conducted experiments to compare HGTS with the state-
of-the-art approaches for the fJSP. The motivation is that the
deterministic version of the problem has been considered in a
large number of research works over the last two decades, so
we can expect the best approaches proposed so far to be really
refined, making it a challenge to improve or even match their
results. Therefore, if HGTS (designed for FfJSP) were at least
similar to some of the best approaches for the fJSP, this fact
would be another strong evidence of the good performance of
HGTS.

We have considered six benchmark sets: the XWdata from
[64] and [65], the set of instances from [63], the BRdata
from [29], the BCdata from [66], the DPdata from [30] and the

1We have already motivated in Section 3.1 our choice of the maxI operator
for HGTS

12

Table 2: Summary of results in the FfJSP
Ins LB f CGA SNSA hABC EDA HGTS THGT S(s.)
01 28.50 30.00 (30.18) 30.25 (31.68) 30.50 (32.15) 30.00 (33.18) 28.50a,b (28.50) 5.8
02 45.00 45.75 (47.45) 45.25 (47.05) 45.75 (47.70) 45.75 (46.35) 45.25 (45.25) 3.4
03 43.50 47.75 (51.00) 47.50 (51.25) 47.75 (50.70) 45.75 (47.53) 43.50a,b (43.64) 11.7
04 33.50 37.75 (40.80) 39.25 (40.80) 38.00 (40.45) 35.75 (37.78) 34.25a (34.29) 12.7
05 37.50 62.00 (65.95) 65.75 (68.53) 54.75 (57.68) 51.00a (51.83) 51.6
06 40.25 63.75 (65.65) 50.25a (51.50) 53.3
MRE(01-04) 7.35 (15.22) 8.26 (14.31) 7.97 (14.03) 4.70 (10.35) 0.70 (0.81)
MRE(01-05) 18.94 (27.35) 21.68 (28.00) 12.96 (19.04) 7.76 (8.29)
MRE(01-06) 27.80 (33.85) 10.61 (11.54)
#best 0 1 0 0 6

HUdata from [67], making a total of 186 instances (we refer
the interested reader to the original references for further detail
on these test beds). For every test bed, HGTS is compared with
the best available results in the literature. To reduce the compu-
tational load, our method uses the reduced neighbourhood.

For XWdata, our method is compared with the Knowledge-
Based Ant Colony Optimization method (KBACO) by Xing et
al. from [68], the Tabu Search with an efficient Public Critical
Block neighbourhood structure (TSPCB) by Li et al. from [69],
the Artificial Bee Colony (ABC) by Wang et al. from [70]
and the bi-population based estimation of distribution algorithm
(BEDA) by Wang et al. from [71]. The results reported in the
literature together with those obtained with HGTS can be seen
in Table 3: each row corresponds to an instance in the test bed,
with its identifier in the first column and the makespan lower
bound in the second column. In absence of other information,
we have calculated lower bounds for these instances using equa-
tion 13 (without expected values as it corresponds to crisp in-
stances). The next 5 columns correspond each to one of the
methods above, showing the best and average makespan values
(the latter between brackets) obtained on that instance. Finally,
the last column shows the average time (in seconds) taken by
a single run of HGTS on that instance; these are included for
the sake of completeness, even though we are aware that these
times may not be fairly comparable to the times reported in the
above references due to the differences on the running environ-
ments and the target machines. As we can observe, for three in-
stances HGTS obtains the optimal solution in every single run,
while for the remaining instances it reaches the best-known so-
lution, as it is also the case with the other methods.

The results on the Thomalla’s benchmark [63] are compared
with the results reported for the PSO by Girish and Jawahar
in [72] together with those obtained by ILOG OPL Studio, also
reported in [72]. In this paper best-known solution (BKS) val-
ues are also given. All these data, together with the data regard-
ing HGTS can be seen in Table 4, following the same format
as Table 3 above. Again, the LBs for these instances are com-
puted using equation 13. We can see that HGTS obtains the
previously-known BKS both in average and best values for the
first two instances and establishes a new BKS for the third in-
stance. In fact, in two cases it yields the optimal solution; this
optimal solution was already known for instance EX1 but, more
interestingly, it is established for the first time by HGTS for in-
stance EX3.

Table 4: Summary of results in the fJSP: Thomalla Benchmark
Ins LB PSO ILOG HGTS T(s.)
EX1 117 117 117 117b (117) 0.11
EX2 95 109 109 109 (109) 0.62
EX3 316 328 675 316a,b (316) 4.33
MRE 6.18 42.78 4.91 (4.91)
#best 2 2 3

For the following three test beds (the most widely used in
the literature), unless otherwise stated, we compare HGTS with
the tabu search (TS) by Mastrolilli and Gambardella from [31],
the hybrid genetic algorithm (hGA) by Gao, Sun and Gen
from [11], the climbing depth-bounded discrepancy search
(CDDS) by Hmida et al. from [32], the hybrid harmony search
and large-scale neighbourhood search algorithm (HHS/LNS)
by Yuan and Xu from [33], and the genetic algorithm hybridised
with tabu search (GA+TS) by González et al. from [14].

Considering the size of the instances, the stopping criterion
for TS is 200 iterations without improvement for the BCdata
and BRdata families and 400 iterations without improvement
for the DPdata dataset. As above, for the sake of complete-
ness, we report the time taken by a single run of HGTS to solve
each instance. It is however worth mentioning that HGTS has
been designed for fuzzy instances so, to run it on determinis-
tic problems, every instance has been converted into a fuzzy
one (given that every real number r can be represented as the
TFN (r,r,r)). In consequence, CPU times may be expected
to be about 3 times longer than those required by a simplified
algorithm specifically designed for the fJSP. Despite of this,
CPU times with HGTS are not significantly longer than those
reported in the references above for the other algorithms. A de-
tailed comparison in [33] states that the computational effort of
HHS/LNS is comparable with that of hGA but it is much longer
than those of TS and CDDS. Taking into account that the tar-
get machines are very similar, following the comparison frame-
work explained in [33], we could consider that HHS/LNS takes
20% longer than HGTS. However, as there are factors other
than the language and the machine that influence the computa-
tional time, this comparison is only indicative.

Tables 5, 6 and 7 show the results of the experiments on the
BRdata, the BCdata, and DPdata benchmarks respectively. The
format is analogous to the tables above, however, in this case,
the lower bound is the value reported in [31]. We also include

13

Table 3: Summary of results in the fJSP: XWdata
Ins LB KBACO TSPCB ABC BEDA HGTS T(s.)
Case 1 11 11 (11.0) 11 (11.0) 11 (11.0) 11 (11.0) 11b (11.0) 0.3
Case 2 12 14 (14.3) 14 (14.2) 14 (14.0) 14 (14.0) 14 (14.0) 2.2
Case 3 11 11 (11.0) 11 (11.0) 11 (11.0) 11 (11.0) 11b (11.0) 2.1
Case 4 7 7 (7.4) 7 (7.1) 7 (7.0) 7 (7.0) 7b (7.0) 7.3
Case 5 10 11 (11.3) 11 (11.7) 11 (11.0) 11 (11.0) 11 (11.0) 1.3
MRE 5.33 (7.58) 5.33 (7.35) 5.33 (5.33) 5.33 (5.33) 5.33 (5.33)
#best 5 5 5 5 5

two more rows which serve as summary, containing MRE val-
ues and the number of instances for which a method reaches the
best-known solution.

For the BRdata benchmark, results in Table 5 shows that
HGTS improves the previously-best-known solution in one in-
stance (MK06). and obtains the best-known solution in 9 of the
10 instances, something done only by hGA. In terms of MRE,
HGTS is the best method if we consider the best makespan and
the second best if we consider average makespan instead. Fig-
ure 3 shows the job-oriented Gantt chart of the new best solu-
tion encountered for the instance MK06.

The results for the BCdata in Table 6 incorporate best
makespan values for yet another method from the literature, the
parallel double-level metaheuristic approach (TSBM2h) pro-
posed by Bozejko et al. in [60]. The reason is that it reports
detailed good results on this benchmark but not for the remain-
ing test beds. Also, HHS/LNS is omitted in this table because
for this benchmark only the MRE average value for the best
solutions (22.43) is reported in [33]. As we can see, for the
BCdata HGTS obtains the best-known solution in 19 of the
21 instances. Moreover, in one of these instances (seti5c12),
HGTS improves the previously-best-known solution. Addi-
tionally, HGTS obtains the best MRE values for both the best
and the average makespan among all the algorithms considered,
even if differences are small.

On the DPdata benchmark, HGTS improves the previously
best-known solution in three instances (10a, 13a and 16a) and
in other three instances (01a, 03a and 04a) it obtains the op-
timal solution. Additionally, HGTS yields the best the MRE
values both for the best and average makespan from all the six
algorithms considered.

Finally, for the HUdata set, Figure 4 provides a summary of
the results (detailed results for HGTS on these data are openly
available on the web2). In this case we only report results for
TS, hGA, CDDS and HGTS, since results on this benchmark
are not available for the other methods. Also, the figure por-
trays MRE values for the average makespan across groups of in-
stances; the reason is that the makespan results reported in [11]
and [32] for this benchmark are averages on the same groups.
We can observe that HGTS performs slightly better than the
other approaches on the instances of the edata subset, which
seems to be the hardest of the set. Moreover, HGTS reaches
the optimal solution in 77 instances (27 edata, 19 rdata and 31
vdata), improves the best known solution given in [31] in 26

2Repository section in http://www.di.uniovi.es/iscop

instances (12 edata, 12 rdata and 2 vdata) and reaches the best
known solution in other 90 instances (29 edata, 28 rdata and 33
vdata) of the 129 instances of the test bed.

Overall, for the crisp version of the problem, we have tested
186 instances, reaching the best-known solution for 160 of
them. Furthermore, 87 out of these 160 solutions are optimal.
Also, HGTS improves the previously-best-known solution in
31 instances.

To further avail the quality of the proposed method, we
have done some statistical tests to analyse differences between
HGTS and other algorithms from the literature. Following [73],
since we have multiple-problem analysis, we have used non-
parametric statistical tests. First, we have run a Shapiro-Wilk
test to confirm the non-normality of the data. Then we have
used paired Wilcoxon signed rank tests to compare the medians
of the MRE values between HGTS and each of the other meth-
ods, provided that results for single instances are available, that
is, we have considered the sets BRdata∪BCdata∪DPdata and
the methods TS, hGA, CDDS and GA+TS. In all these tests,
the level of confidence used was 95% and the alternative hy-
pothesis was “the difference between the errors of the HGTS
and the method tested is smaller than 0”. The p-values ob-
tained with these tests (TS: 0.0001086, hGA: 0.03996, CDDS:
0.000526, GA+TS: 0.001188) show that there exist statistically
significant differences between HGTS and some of the methods
of the state-of-the-art in fJSP on these benchmarks.

In summary, we can conclude that HGTS clearly outperforms
the previous results for the FfJSP and, in the deterministic set-
ting of fJSP, it is slightly but significantly better than the state-
of-the-art.

5.4. A new benchmark for the FfJSP
As we have seen that there are but a few FfJSP instances

openly available in the literature and, in addition, the optimal
solution for some of these instances has already been found and
proven. This motivates us to propose here a new set of more
challenging problems and provide preliminary results of our al-
gorithm on them for future comparisons.

We base the new instances on well-known crisp fJSP prob-
lems and add uncertainty to the durations based on the ideas
from [25] but using a wider interval for the third defining point,
as it is more likely (and critical) for an operation to take longer
time than expected instead of a shorter one. Let p be the
real duration of a task in some machine, from this we build
a TFN P = (p1, p2, p3) where p2 = p and p1 and p3 are ran-
dom positive integer values verifying that p1 ∈ [0.85p, p) and

14

Table 5: Summary of results in the fJSP: BRdata
Ins LB TS hGA CDDS HHS/LNS GA+TS HGTS T(s.)
Mk01 36 40 (40) 40 (40) 40 (40) 40 (-) 40 (40) 40 (40) 5
Mk02 24 26 (26) 26 (26) 26 (26) 26 (-) 26 (26) 26 (26) 15
Mk03 204 204 (204) 204 (204) 204 (204) 204 (-) 204 (204) 204b (204) 2
Mk04 48 60 (60) 60 (60) 60 (60) 60 (-) 60 (60) 60 (60) 10
Mk05 168 173 (173) 172 (172) 173 (174) 172 (-) 172 (172) 172 (172) 18
Mk06 33 58 (58) 58 (58) 58 (59) 58 (-) 58 (58) 57a (58) 63
Mk07 133 144 (147) 139 (139) 139 (139) 139 (-) 139 (139) 139 (139) 33
Mk08 523 523 (523) 523 (523) 523 (523) 523 (-) 523 (523) 523b (523) 3
Mk09 299 307 (307) 307 (307) 307 (307) 307 (-) 307 (307) 307 (307) 24
Mk10 165 198 (199) 197 (197) 197 (198) 198 (-) 199 (200) 198 (199) 104
MRE 15.41 (15.83) 14.92 (14.92) 14.98 (15.35) 14.98 (-) 15.04 (15.13) 14.67 (15.02)
#best 6 9 8 8 8 9

- means that the corresponding data is not available.

Figure 3: Gantt chart, job-oriented, of new best solution of instance MK06 from BRdata.

p3 ∈ [2p− p1,1.2p]. In the case that no integer value exists
in the interval [0.85p, p), we set p1 = max{1, p− 1}, and if
there is no integer value in [2p− p1,1.2p], p3 takes a random
value in [p+1, p+2]. In this way, unlike the instances in [25],
the generated TFNs always verify that p2− p1 ≤ p3− p2 and
therefore E[P] ≥ p. It is easy to prove that, thanks to this in-
equality, for these instances the optimal solution of the original
crisp problem (or any lower bound thereof, usually better than
the raw LB defined in equation 13) provides a lower bound for
the expected makespan of the fuzzy solution, allowing to mea-
sure relative errors more accurately. The crisp problems we
take to build the benchmark are the largest ones, in number of
operations, from the common-use benchmarks DPdata, BRdata
and BCdata, as we conjecture they provide bigger room for im-
provement. More precisely, we fuzzify instances 07a to 18a
from DPdata and instance Mk10 from BRdata, all of them hav-
ing more than 240 operations. Instance MK09, which has the

same size, has been discarded because all authors obtain the
same results, both in best and average makespan values, which
leads us to think that no further improvement is possible on this
problem. The new fuzzy instances thus generated are openly
available on the web3

This set of larger and harder FfJSP instances allow us to bet-
ter evaluate the behaviour of our algorithm using the neigh-
bourhood NAP, for which connectivity holds, instead of using
the reduced structure NAP

r , which contains less neighbours and
therefore has been used across all of the experimental analy-
sis above. As already mentioned, the loss of the connectiv-
ity is relatively unimportant in our case, given that the neigh-
bourhood is used within a metaheuristic, whereas the reduction
in neighbourhood size obtained by discarding non-improving
neighbours augments the chance of obtaining improving ones.

3Repository section in http://www.di.uniovi.es/iscop.

15

Table 6: Summary of results in the fJSP: BCdata
Ins LB TS hGA CDDS TSBM2h GA+TS HGTS T(s.)
mt10c1 655 928 (928) 927 (927) 928 (929) 927 (-) 927 (927) 927 (927) 13
mt10cc 655 910 (910) 910 (910) 910 (911) 908 (-) 908 (909) 908 (910) 13
mt10x 655 918 (918) 918 (918) 918 (918) 922 (-) 918 (922) 918 (918) 15
mt10xx 655 918 (918) 918 (918) 918 (918) 918 (-) 918 (918) 918 (918) 12
mt10xxx 655 918 (918) 918 (918) 918 (918) 918 (-) 918 (918) 918 (918) 12
mt10xy 655 906 (906) 905 (905) 906 (906) 905 (-) 905 (905) 905 (905) 13
mt10xyz 655 847 (850) 849 (849) 849 (851) 849 (-) 849 (850) 847 (850) 18
setb4c9 857 919 (919) 914 (914) 919 (919) 914 (-) 914 (914) 914 (914) 16
setb4cc 857 909 (912) 914 (914) 909 (911) 907 (-) 907 (907) 907 (908) 15
setb4x 846 925 (925) 925 (931) 925 (925) 925 (-) 925 (925) 925 (925) 15
setb4xx 846 925 (926) 925 (925) 925 (925) 925 (-) 925 (925) 925 (925) 14
setb4xxx 846 925 (925) 925 (925) 925 (925) 925 (-) 925 (925) 925 (925) 15
setb4xy 845 916 (916) 916 (916) 916 (916) 910 (-) 910 (910) 910 (910) 19
setb4xyz 838 905 (908) 905 (905) 905 (907) 903 (-) 905 (905) 905 (905) 15
seti5c12 1027 1174 (1174) 1175 (1175) 1174 (1175) 1174 (-) 1171 (1173) 1170a (1171) 41
seti5cc 955 1136 (1136) 1138 (1138) 1136 (1137) 1136 (-) 1136 (1137) 1136 (1137) 34
seti5x 955 1201 (1204) 1204 (1204) 1201 (1202) 1198 (-) 1199 (1200) 1199 (1201) 38
seti5xx 955 1199 (1201) 1202 (1203) 1199 (1199) 1197 (-) 1197 (1198) 1197 (1198) 34
seti5xxx 955 1197 (1198) 1204 (1204) 1197 (1198) 1197 (-) 1197 (1197) 1197 (1198) 31
seti5xy 955 1136 (1136) 1136 (1137) 1136 (1138) 1136 (-) 1136 (1137) 1136 (1137) 34
seti5xyz 955 1125 (1127) 1126 (1126) 1125 (1125) 1128 (-) 1127 (1128) 1125 (1126) 43
MRE 22.53 (22.63) 22.61 (22.66) 22.54 (22.60) 22.45 (-) 22.42 (22.49) 22.39 (22.46)
#best 11 10 10 17 16 19

This is confirmed by our experimental results, which show that
the MRE for the best and average expected makespan obtained
with NAP

r in each instance are slightly better (7% MRE im-
provement). However, the most relevant fact is that, since NAP

generates more neighbours, the runtime of HGTS using NAP is
21% longer than the runtime using NAP

r .

As advanced in Section 5.1, this more challenging bench-
mark also allows to better evaluate the effect of the heuristic
seeding in the HGTS. Figure 5 depicts the average MRE values
and CPU times obtained with the hybrid algorithm GA+TS both
using heuristic seeding and starting with a random population
given three different stopping criteria for the tabu search: 50,
100 and 400 maximum number of iterations without improve-
ment. It is clear that MRE values are slightly smaller when
using heuristic seeding and, moreover, the CPU time spent in
generating this heuristic initial population is compensated when
the local search takes longer. This can be interpreted as a result
of the fact that the heuristic seeding helps the local search to
find good solutions quickly not only in the first iterations but
along the whole evolutive process.

Finally, Table 8 contains the results of 30 runs of our algo-
rithm HGTS on every instance of the new benchmark. Each
row corresponds to one of these instances, with the identifier in
the first column (Ins). The LB values in the second column
are the available lower bounds of the original crisp problem
(which are also valid LBs for the expected makespan). The
next four columns correspond to makespan results: the columns
with the header “Best” contain the best makespan (a TFN) to-
gether with its expected value obtained across the 30 runs and
the next two columns, with headers “Avg” and “Std. Dev.”
contain the average and standard deviation values for the ex-
pected makespan across these 30 runs. Finally, the last column
with header “T(s.)” reports the average time per run of HGTS

in seconds. Notice that due to the fuzzification method used
to generate the problems (with asymmetric TFNs stretched to
the right), the expected makespan values are necessarily greater
that the values obtained by the same algorithm on the corre-
sponding original crisp problem. Furthermore, we can see that
the runtime required for solving the fuzzy instances is in aver-
age a 13% longer than the time required for the original crisp
problems, illustrating the increased difficulty of handling un-
certainty.

6. Conclusions

We have considered the FfJSP, a variant of the job shop prob-
lem which incorporates both flexibility in machine assignment
and uncertainty in operation durations, in an attempt to reduce
the gap between academic and real-world problems. We have
proposed a new hybrid algorithm which combines a GA with
TS and heuristic seeding. The new heuristic method to gen-
erate initial solutions benefits from the flexible nature of the
problem and generates high-quality and diverse initial solutions
which provide a starting point for the GA, enhancing its ex-
ploitation ability. The designed TS algorithm is then applied
to every newly generated chromosome in the GA. A key point
for the TS is the neighbourhood structure. We have proposed
here two new structures. For the first one, we have proved that
it verifies both feasibility and connectivity, the latter ensuring
asymptotic convergence in probability to a global optimal solu-
tion. The second neighbourhood is obtained by incorporating a
filtering mechanism that trims the first structure by discarding
non-improving neighbours; this second neighbourhood keeps
the feasibility property and considerably reduces the size of the
first one at the cost of losing connectivity. Finally, a method
based on constraint propagation has been introduced that al-
lows to speed-up the evaluation of new chromosomes. We have

16

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

M
RE

 (%
)

TS hGA CDDS HGTS

rdata vdata edata

Figure 4: Main Relative Errors on the HUdata.

6.0%

6.1%

6.2%

6.3%

6.4%

6.5%

6.6%

6.7%

6.8%

50 100 400

M
RE

max num Iterations

Random seeding Heuristic seeding

(a) MRE average values

0

100

200

300

400

500

600

50 100 400

Ru
nt

im
e

(s
ec

)

max num Iterations

Random seeding Heuristic seeding

(b) Average computational time

Figure 5: Comparison between random and heuristic seeding in the new FfJSP benchmark.

17

Table 7: Summary of results in the fJSP: DPdata
Ins LB TS hGA CDDS HHS/LNS GA+TS HGTS T(s.)
01a 2505 2518 (2528) 2518 (2518) 2518 (2525) 2505 (2513) 2505 (2511) 2505b (2505) 122
02a 2228 2231 (2234) 2231 (2231) 2231 (2235) 2230 (2231) 2232 (2234) 2230 (2234) 205
03a 2228 2229 (2230) 2229 (2229) 2229 (2232) 2228 (2229) 2229 (2230) 2228b (2230) 181
04a 2503 2503 (2516) 2515 (2518) 2503 (2510) 2506 (2506) 2503 (2504) 2503b (2503) 112
05a 2189 2216 (2220) 2217 (2218) 2216 (2218) 2212 (2215) 2219 (2221) 2214 (2218) 208
06a 2162 2203 (2206) 2196 (2198) 2196 (2203) 2187 (2192) 2200 (2204) 2193 (2198) 260
07a 2187 2283 (2298) 2307 (2310) 2283 (2296) 2288 (2303) 2266 (2286) 2270 (2280) 344
08a 2061 2069 (2071) 2073 (2076) 2069 (2069) 2067 (2074) 2072 (2075) 2070 (2074) 318
09a 2061 2066 (2067) 2066 (2067) 2066 (2067) 2069 (2073) 2066 (2067) 2067 (2069) 376
10a 2178 2291 (2306) 2315 (2315) 2291 (2303) 2297 (2302) 2267 (2273) 2247a (2266) 369
11a 2017 2063 (2066) 2071 (2072) 2063 (2072) 2061 (2067) 2068 (2071) 2064 (2069) 294
12a 1969 2034 (2038) 2030 (2031) 2031 (2034) 2027 (2036) 2037 (2041) 2027 (2033) 486
13a 2161 2260 (2266) 2257 (2260) 2257 (2260) 2263 (2269) 2271 (2276) 2250a (2264) 416
14a 2161 2167 (2168) 2167 (2168) 2167 (2179) 2164 (2168) 2169 (2171) 2170 (2173) 396
15a 2161 2167 (2167) 2165 (2165) 2165 (2170) 2163 (2166) 2166 (2166) 2168 (2169) 523
16a 2148 2255 (2259) 2256 (2258) 2256 (2258) 2259 (2266) 2266 (2271) 2246a (2257) 384
17a 2088 2141 (2144) 2140 (2142) 2140 (2146) 2137 (2141) 2147 (2150) 2142 (2146) 483
18a 2057 2137 (2140) 2127 (2131) 2127 (2132) 2124 (2128) 2138 (2141) 2129 (2133) 650
MRE 2.01 (2.24) 2.12 (2.19) 1.94 (2.19) 1.89 (2.13) 1.99 (2.17) 1.73 (1.98)
#best 5 3 5 12 3 8

Table 8: Results on the new FfJSP benchmark

Ins LB Cmax E[Cmax] T(s.)Best Best Avg. Std. Dev.
fuzzMk10 165 (175, 198 , 225) 199 200.2 0.5 314
fuzz07a 2187 (2105, 2276, 2604) 2315 2330.5 8.2 440
fuzz08a 2061 (1917, 2078, 2368) 2110 2119.7 3.5 299
fuzz09a 2061 (1913, 2071, 2363) 2105 2108.8 2.5 420
fuzz10a 2178 (2074, 2259, 2570) 2291 2312.9 12.1 489
fuzz11a 2017 (1926, 2075, 2360) 2109 2118.7 4.3 284
fuzz12a 1969 (1884, 2042, 2305) 2068 2075.8 4.0 560
fuzz13a 2161 (2111, 2279, 2588) 2314 2329.7 9.2 365
fuzz14a 2161 (2007, 2178, 2483) 2212 2215.7 2.6 459
fuzz15a 2161 (1996, 2177, 2472) 2206 2208.8 2.1 642
fuzz16a 2148 (2067, 2247, 2560) 2280 2313.6 14.5 394
fuzz17a 2088 (1993, 2156, 2443) 2187 2193.1 3.2 456
fuzz18a 2057 (1972, 2136, 2430) 2169 2177.2 3.9 684
MRE 5.66 6.22

tested the resulting algorithm, HGTS, on a varied set of 205
instances, considering both deterministic and fuzzy instances
of fJSP from the literature to enhance the significance of the
study. The extensive experimental results clearly show that not
only does the hybrid algorithm benefit from the synergy among
its components, improving each of them when run separately
for the same time, but it is also quite competitive with the state-
of-the-art in solving both crisp and fuzzy instances, providing
new best-known solutions for a number of these test instances.
Finally, we have argued that the existing FfJSP benchmarks are
not challenging enough and, in consequence, we have proposed
a new more challenging benchmark and we have provided the
first makespan results for the new instances with HGTS. We
hope that these provide a basis for future research on the FfJSP
problem.

Acknowledgements

This research has been supported by the Spanish Govern-
ment under research grants FEDER TIN2010-20976-C02-02,

COF13-035 and MTM2010-16051 and by the Principality of
Asturias (Spain) under grant Severo Ochoa BP13106.

References

[1] M. L. Pinedo, Scheduling. Theory, Algorithms, and Systems., 3rd Edi-
tion, Springer, 2008.

[2] M. Garey, D. Johnson, R. Sethi, The complexity of flowshop and jobshop
scheduling, Mathematics of Operations Research 1 (2) (1976) 117–129.

[3] W. Herroelen, R. Leus, Project scheduling under uncertainty: Survey and
research potentials, European Journal of Operational Research 165 (2005)
289–306.

[4] E. Klerides, E. Hadjiconstantinou, A decomposition-based stochastic pro-
gramming approach for the project scheduling problem under time/cost
trade-off settings and uncertain durations, Computers & Operations Re-
search 37 (2010) 2131–2140.

[5] M. Bruni, F. Beraldi, F. Guerriero, E. Pinto, A heuristic approach for
resource constrained project scheduling with uncertain activity durations,
Mathematical Methods of Operations Research 38 (2011) 1305–1318.

[6] D. Dubois, H. Prade, P. Smets, Representing partial ignorance, IEEE
Transactions on Systems, Man and Cybernetics, Part A 26 (3) (1996)
361–377.

18

[7] A. Ludwig, R. H. Möhring, F. Stork, A computational study on bound-
ing the makespan distribution in stochastic project networks, Annals of
Operations Research 102 (2001) 49–64.

[8] D. Dubois, H. Fargier, P. Fortemps, Fuzzy scheduling: Modelling flexible
constraints vs. coping with incomplete knowledge, European Journal of
Operational Research 147 (2003) 231–252.

[9] R. Słowiński, M. Hapke (Eds.), Scheduling Under Fuzziness, Vol. 37 of
Studies in Fuzziness and Soft Computing, Physica-Verlag, 2000.

[10] Q. Zhang, H. Manier, M.-A. Manier, A genetic algorithm with tabu search
procedure for flexible job shop scheduling with transportation constraints
and bounded processing times, Computers & Operations Research 39
(2012) 1713–1723.

[11] J. Gao, L. Sun, M. Gen, A hybrid genetic and variable neighborhood de-
scent algorithm for flexible job shop scheduling problems, Computers &
Operations Research 35 (2008) 2892–2907.

[12] C. R. Vela, R. Varela, M. A. González, Local search and genetic algorithm
for the job shop scheduling problem with sequence dependent setup times,
Journal of Heuristics 16 (2010) 139–165.

[13] J. Puente, C. R. Vela, I. González-Rodrı́guez, Fast local search for fuzzy
job shop scheduling, in: Proceedings of ECAI 2010, IOS Press, 2010, pp.
739–744.

[14] M. González, C. R. Vela, R. Varela, An efficient memetic algorithm for
the flexible job shop with setup times, in: Proceedings of the 23th In-
ternational Conference on Automated Planning and Scheduling (ICAPS-
2013), 2013, pp. 91–99.

[15] F. Pezzella, G. Morganti, G. Ciaschetti, A genetic algorithm for the flex-
ible job-shop scheduling problem, Computers & Operations Research 35
(2008) 3202–3212.

[16] C. Y. Zhang, P. Li, Y. Rao, Z. Guan, A very fast TS/SA algorithm for
the job shop scheduling problem, Computers & Operations Research 35
(2008) 282–294.

[17] J. C. Beck, T. Feng, J.-P. Watson, Combining constraint programming and
local search for job-shop scheduling, Informs Journal on Computing 23
(2011) 1–14.

[18] E. Nowicki, C. Smutnicki, An advanced tabu search algorithm for the job
shop problem, Journal of Scheduling 8 (2005) 145–159.

[19] S. Meeran, M. Morshed, A hybrid genetic tabu search algorithm for solv-
ing job shop scheduling problems: a case study, Journal of Intelligent
Manufacturing 23 (2012) 1063–1078.

[20] P. Fortemps, Jobshop scheduling with imprecise durations: a fuzzy ap-
proach, IEEE Transactions of Fuzzy Systems 7 (1997) 557–569.

[21] M. Sakawa, R. Kubota, Fuzzy programming for multiobjective job shop
scheduling with fuzzy processing time and fuzzy duedate through genetic
algorithms, European Journal of Operational Research 120 (2000) 393–
407.

[22] D. Lei, Solving fuzzy job shop scheduling problems using random key ge-
netic algorithm, International Journal of Advanced Manufacturing Tech-
nologies 49 (2010) 253–262.

[23] Q. Niu, B. Jiao, X. Gu, Particle swarm optimization combined with ge-
netic operators for job shop scheduling problem with fuzzy processing
time, Applied Mathematics and Computation 205 (2008) 148–158.

[24] I. González Rodrı́guez, J. Puente, C. R. Vela, R. Varela, Semantics of
schedules for the fuzzy job shop problem, IEEE Transactions on Systems,
Man and Cybernetics, Part A 38 (3) (2008) 655–666.

[25] Y. Zheng, Y. Li, D. Lei, Swarm-based neighbourhood search for fuzzy
job shop scheduling, International Journal of Innovative Computing and
Applications 3 (3) (2011) 144–151.

[26] J.-q. Li, Y.-x. Pan, A hybrid discrete particle swarm optimization algo-
rithm for solving fuzzy job shop scheduling problem, International Jour-
nal of Advanced Manufacturing Technology online first (2012)

[27] Y.-L. Zheng, Y.-X. Li, Artificial bee colony algorithm for fuzzy job shop
scheduling, International Journal of Computer Applications in Technol-
ogy 44 (2) (2012) 124–129.

[28] P. Brucker, R. Schlie, Job-shop scheduling with multi-purpose machines,
Computing 45(4) (1990) 369–375.

[29] P. Brandimarte, Routing and scheduling in a flexible job shop by tabu
search, Annals of Operations Research 41 (1993) 157–183.

[30] S. Dauzère-Pérès, J. Paulli, An integrated approach for modeling and
solving the general multiprocessor job-shop scheduling problem using
tabu search, Annals of Operations Research 70 (3) (1997) 281–306.

[31] M. Mastrolilli, L. Gambardella, Effective neighborhood functions for the

flexible job shop problem, Journal of Scheduling 3 (1) (2000) 3–20.
[32] A. Hmida, M. Haouari, M. Huguet, P. Lopez, Discrepancy search for the

flexible job shop scheduling problem, Computers & Operations Research
37 (2010) 2192–2201.

[33] Y. Yuan, H. Xu, An integrated search heuristic for large-scale flexible job-
shop scheduling problems, Computers & Operations Research 40 (2013)
2864–2877.

[34] D. Lei, A genetic algorithm for flexible job shop scheduling with fuzzy
processing time, International Journal of Production Research 48 (10)
(2010) 2995–3013.

[35] L. Wang, G. Zhou, Y. Xu, L. Min, A hybrid artificial bee colony algorithm
for the fuzzy flexible job-shop scheduling problem, International Journal
of Production Research 51 (12) (2013) 3593–3608.

[36] S. Wang, L. Wang, Y. Xu, L. Min, An effective estimation of distribution
algorithm for the flexible job-shop scheduling problem with fuzzy pro-
cessing time, International Journal of Production Research 51 (12) (2013)
3779–3793.

[37] D. Lei, Co-evolutionary genetic algorithm for fuzzy flexible job shop
scheduling, Applied Soft Computing 12 (2012) 2237–2245.

[38] D. Lei, X. Guo, Swarm-based neighbourhood search algorithm for fuzzy
flexible job shop scheduling, International Journal of Production Research
50 (6) (2012) 1639–1649.

[39] D. Dubois, H. Prade, Possibility Theory: An Approach to Computerized
Processing of Uncertainty, Plenum Press, New York (USA), 1986.

[40] S. Heilpern, The expected value of a fuzzy number, Fuzzy Sets and Sys-
tems 47 (1992) 81–86.

[41] M. Sakawa, T. Mori, An efficient genetic algorithm for job-shop schedul-
ing problems with fuzzy processing time and fuzzy duedate, Computers
& Industrial Engineering 36 (1999) 325–341.

[42] G. Bortolan, R. Degani, A review of some methods for ranking fuzzy
subsets, in: D. Dubois, H. Prade, R. Yager (Eds.), Readings in Fuzzy Sets
for Intelligence Systems, Morgan Kaufmann, Amsterdam (NL), 1993, pp.
149–158.

[43] G. Celano, A. Costa, S. Fichera, An evolutionary algorithm for pure
fuzzy flowshop scheduling problems, International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 11 (2003) 655–669.

[44] S.-M. Chen, T.-H. Chang, Finding multiple possible critical paths using
fuzzy PERT, IEEE Transactions on Systems, Man, and Cybernetics–Part
B: 31 (6) (2001) 930–937.

[45] I. González Rodrı́guez, C. R. Vela, A. Hernández-Arauzo, J. Puente, Im-
proved local search for job shop scheduling with uncertain durations., in:
Proceedings of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS-2009), AAAI Press, Thesaloniki, 2009,
pp. 154–161.

[46] M. Kuroda, Z. Wang, Fuzzy job shop scheduling, International Journal of
Production Economics 44 (1996) 45–51.

[47] D. Lei, Pareto archive particle swarm optimization for multi-objective
fuzzy job shop scheduling problems, International Journal of Advanced
Manufacturing Technology 37 (2008) 157–165.

[48] S. Petrovic, X. Song, A new approach to two-machine flow shop problem
with uncertain processing times, Optimization and Engineering 7 (2006)
329–342.

[49] B. Wang, Q. Li, X. Yang, X. Wang, Robust and satisfactory job shop
scheduling under fuzzy processing times and flexible due dates, in: Proc.
of the 2010 IEEE International Conference on Automation and Logistics,
2010, pp. 575–580.

[50] D. Lei, Fuzzy job shop scheduling problem with availability constraints,
Computers & Industrial Engineering 58 (2010) 610–617.

[51] I. González Rodrı́guez, C. R. Vela, J. Puente, R. Varela, A new local
search for the job shop problem with uncertain durations, in: Proceedings
of the Eighteenth International Conference on Automated Planning and
Scheduling (ICAPS-2008), AAAI Press, Sidney, 2008, pp. 124–131.

[52] R. Varela, C. R. Vela, J. Puente, A. Gómez, A knowledge-based evolution-
ary strategy for scheduling problems with bottlenecks, European Journal
of Operational Research 145 (2003) 57–71.

[53] C. Bierwirth, A generalized permutation approach to jobshop scheduling
with genetic algorithms, OR Spectrum 17 (1995) 87–92.

[54] I. Essafi, Y. Mati, S. Dauzère-Pérès, A genetic local search algorithm for
minimizing total weighted tardiness in the job-shop scheduling problem,
Computers & Operations Research 35 (2008) 2599–2616.

[55] M. González, C. R. Vela, R. Varela, A competent memetic algorithm for

19

complex scheduling, Natural Computing 11 (2012) 151–160.
[56] F. Glover, Tabu search–part I, ORSA Journal on Computing 1 (3) (1989)

190–206.
[57] F. Glover, Tabu search–part II, ORSA Journal on Computing 2 (1) (1990)

4–32.
[58] M. Dell’ Amico, M. Trubian, Applying tabu search to the job-shop

scheduling problem, Annals of Operational Research 41 (1993) 231–252.
[59] P. Van Laarhoven, E. Aarts, K. Lenstra, Job shop scheduling by simulated

annealing, Operations Research 40 (1992) 113–125.
[60] W. Bozejko, M. Uchronski, M. Wodecki, Parallel hybrid metaheuristics

for the flexible job shop problem, Computers & Industrial Engineering
59 (2) (2010) 323–333.

[61] Y. Jin, Surrogate-assisted evolutionary computation: Recent advances and
future challenges, Swarm and Evolutionary Computation 1(2) (2011) 61–
70.

[62] E. Taillard, Benchmarks for basic scheduling problems, European Journal
of Operational Research 64 (1993) 278–285.

[63] C. S. Thomalla, Job shop scheduling with alternative process plans, Inter-
national Journal of Production Economics 74 (2001) 125–134.

[64] I. Kacem, S. Hammadi, P. Borne, Approach by localization and multiob-
jective evolutionary optimization for flexible job-shop scheduling prob-
lems., IEEE Transactions on System, Man, and Cybernetics-Part C. Ap-
plications and Reviews 32 (1) (2002) 1–13.

[65] I. Kacem, S. Hammadi, P. Borne, Pareto-optimality approach for flexible
job-shop scheduling problems: hybridization of evolutionary algorithms
and fuzzy logic., Mathematics and Computers in Simulation 60 (2002)
245–276.

[66] J. Barnes, J. Chambers, Flexible job shop scheduling by tabu search,
Technical Report Series: ORP96-09, Graduate program in operations re-
search and industrial engineering. The University of Texas at Austin.

[67] E. Hurink, B. Jurisch, M. Thole, Tabu search for the job shop scheduling
problem with multi-purpose machine, Operations Research Spektrum 15
(1994) 205–215.

[68] L. Xing, Y. Chen, P. Wang, Q. Zhao, J. Xion, A knowledge-based ant
colony optimization for flexible job shop scheduling problems, Applied
Soft Computing 10 (3) (2010) 888–896.

[69] J. Li, Q. Pan, P. Suganthan, T. Chua, A hybrid tabu search algorithm with
an efficient neighborhood structure for the flexible job shop scheduling
problem, International Journal of Advanced Manufacturing Technology
52 (5-8) (2011) 683–697.

[70] L. Wang, G. Zhou, Y. Xu, L. Min, An effective artificial bee colony algo-
rithm for the flexible job-shop scheduling problem, International Journal
of Advance Manufacturing Technology 60 (2012) 303–315.

[71] L. Wang, S. Wang, G. Zhou, L. Min, A bi-population based estimation
of distribution algorithm for the flexible job-shop scheduling problem,
Computers & Industrial Engineering 62 (2012) 917–926.

[72] B. S. Girish, N. Jawahar, A particle swarm optimization algorithm for
flexible job shop scheduling problem, in: Proceedings of the 5th An-
nual IEEE Conference on Automation Science and Engineering, 2009,
pp. 298–303.

[73] S. Garcı́a, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric
tests for multiple comparisons in the design of experiments in compu-
tational intelligence and data mining: Experimental analysis of power.,
Information Sciences 180 (2010) 2044–2064.

20

