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Abstract. We consider a variation of the open shop problem where task
durations are allowed to be uncertain and where uncertainty is modelled
using fuzzy numbers. We propose a genetic approach to minimise the
expected makespan: we consider different possibilities for the genetic
operators and analyse their performance, in order to obtain a competitive
configuration. Finally, the performance of the proposed genetic algorithm
is tested on several benchmark problems, modified so as to have fuzzy
durations, compared with a greedy heuristic from the literature.

1 Introduction

The open shop scheduling problem is often regarded as a variation of the job shop
scheduling problem, and traditionally it has received considerably less attention
by researchers. However, its significantly larger solution space and the scarcity
of specific methods to solve it make it an important problem in itself, with an
increasing presence in the recent literature [1],[2],[3]. It is also a problem with
clear applications. Consider for instance testing facilities, where units go through
a series of diagnostic tests that need not be performed in a specified order and
where different testing equipment is usually required for each test. To enhance
the range of applications of scheduling, part of the research is devoted to model
the uncertainty and vagueness pervading real-world situations. The approaches
are diverse [4] and, among these, fuzzy sets have been used in a wide variety of
approaches, ranging from representing incomplete or vague states of information
to using fuzzy priority rules with linguistic qualifiers or preference modelling [5].
Incorporating uncertainty to scheduling usually requires a significant reformu-
lation of the problem and solving methods, in order that the problem can be
precisely stated and solved efficiently and effectively. Some attempts have been
made to extend heuristic methods to shop scheduling problems where durations
are modelled via fuzzy intervals, most commonly and successfully for the flow
shop problem (for instance, in [6] and [7]) and also for the job shop [8], [9], [10]
and [11].


Ines
Texto escrito a máquina
Author's copy of:
Palacios, J. J., Puente, J., Vela, C. R., & González-Rodríguez, I. (2009, June). A genetic algorithm for the open shop problem with uncertain durations. In International Work-Conference on the Interplay Between Natural and Artificial Computation (pp. 255-264). Springer, Berlin, Heidelberg
The final publication is available at Springer via
https://doi.org/10.1007/978-3-642-02264-7_27

https://doi.org/10.1007/978-3-642-02264-7_2

2 Open Shop Scheduling with Uncertain Durations

The open shop scheduling problem, or OSP in short, consists in scheduling a
set of n jobs Jy,...,J, to be processed on a set of m physical resources or
machines M, ..., M,,. Each job consists of m tasks or operations, each requiring
the exclusive use of a different machine for its whole processing time without
preemption, i.e. all operations must be processed without interruption. In total,
there are mn operations, {Of,1 < k < mn}. A solution to this problem is
a schedule—an allocation of starting times for all operations— which is feasible,
in the sense that all constraints hold, and is also optimal according to some
criterion. Here, the objective will be minimising the makespan C,4,, that is,
the time lag from the start of the first operation until the end of the last one, a
problem often denoted O||Cyq. in the literature.

2.1 Uncertain Durations

In real-life applications, it is often the case that it is not known in advance
the exact time it will take to process one operation and only some uncertain
knowledge is available, for instance, an interval of possible durations, or a most
likely duration with a certain error margin. Such knowledge can be modelled
using a triangular fuzzy number or TEN, given by an interval [n!, n3] of possible
values and a modal value n? in it. For a TFN N, denoted N = (n!,n?,n?), the
membership function takes the following triangular shape:

1
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In the open shop, we essentially need two operations on processing times (fuzzy
numbers), the sum and the maximum. These are obtained by extending the cor-
responding operations on real numbers using the FExtension Principle. However,
computing the resulting expression is cumbersome, if not intractable. For the
sake of simplicity and tractability of numerical calculations, we follow [8] and
approximate the results of these operations, evaluating the operation only on
the three defining points of each TFN. It turns out that for any pair of TFNs
M and N, the approximated sum M + N =~ (m! + nt, m? + n? m3 + n3) coin-
cides with the actual sum of TFNs; this is not necessarily so for the maximum
MV N =~ (mtvnl,m?vn2 m3vn3), although they have identical support and
modal value.

The membership function of a fuzzy number can be interpreted as a possibil-
ity distribution on the real numbers. This allows to define its expected value [13],
given for a TFN N by E[N] = 1(n' + 2n? 4+ n?). It coincides with the neutral
scalar substitute of a fuzzy interval and the centre of gravity of its mean value [5].
It induces a total ordering <z in the set of fuzzy intervals [8], where for any two
fuzzy intervals M, N M <g N if and only if F[M] < E[N].



Require: an instance of FuzO||E[Cmaz], P
Ensure: a schedule for P
1. generate and evaluate the initial population;
while No termination criterion is satisfied do
2. select chromosomes from the current population;
3. apply recombination operators to the chromosomes selected at step 2.;
4. evaluate the chromosomes generated at step 3;
5. apply replacement using chromosomes from step 2. and step 3.;
return the schedule from the best chromosome evaluated so far;

Alg. 1: Genetic Algorithm

2.2 Fuzzy Open Shop Scheduling

If processing times of operations are allowed to be imprecise and such imprecision
or uncertainty is modelled using TFNs, the resulting schedule is fuzzy in the sense
that starting and completion times for each operation and hence the makespan
are TFNs. Each TFN can be seen as a possibility distributions on the values
that the time may take. Notice however that there is no uncertainty regarding
the task processing ordering given by the schedule.

An important issue with fuzzy times is to decide on the meaning of “optimal
makespan”. It is not trivial to optimise a fuzzy makespan, since neither the
maximum nor its approximation define a total ordering in the set of TFNs.
Using ideas similar to stochastic scheduling, we follow the approach taken for
the fuzzy job shop in [9] and use the total ordering provided by the expected
value and consider that the objective is to minimise the expected makespan
E[Chnaz]- The resulting problem may be denoted FuzO||E[Chaz]-

3 Genetic Algorithms for the FOSP

The open shop scheduling problem is NP-complete for a number of machines
m > 3 [12].This motivates the use of metaheuristic techniques to solve the
general m-machine problem. For instance, [1] proposes two heuristic methods
to obtain a list of operation priorities later used in a basic algorithm of list
scheduling. Also, local search and genetic algorithms are used, by themselves
or combined with each other and with dispatching rules: [14] presents an iter-
ative improvement algorithm with a heuristic dispatching rule to generate the
initial solutions; [15] proposes a tabu search algorithm, [2] introduces a genetic
algorithm hybridised with local search, and a genetic algorithm using heuristic
seeding is proposed in [16]. In [17], a local search with constraint propagation
and conflict-based heuristics framework is applied to OSP, and [3] proposes a
solution based on particle swarm optimisation. However, to our knowledge, none
of these metaheuristic techniques have been adapted to the case where durations
are fuzzy numbers.

From all heuristic strategies, genetic algorithms (GAs) have proved effective
techniques to solve scheduling problems, specially when hybridised with other



strategies, such as local search. The structure of a standard genetic algorithm is
described in Algorithm 1. First, the initial population is generated and evaluated.
Then the genetic algorithm iterates for a number of steps or generations and in
each iteration, a new population is built from the previous one by applying the
genetic operators such as selection, mutation, crossover, etc,. Clearly, the choice
of chromosome codification and genetic operators is decisive in order to obtain
a competitive GA.

3.1 Chromosome Codification and Evaluation

Following [2], we use operation-based chromosomes. This representation encodes
a schedule as an ordered sequence of operations, with one gene per operation.
Operations are listed in the order in which they are scheduled, so a chromosome
is just a permutation of numbers from 1 to nm, where number ¢ corresponds to
operation O;. Such a permutation expresses partial orders among operations in
each job and each machine.

Decodification of a chromosome may be done in different ways. Here, we con-
sider two approaches. The first one is to schedule every operation so its starting
time is the maximum of the completion times of the previous operation in its
machine and the previos operation in its job, according to the ordering provided
by the chromosome. This strategy produces semi-active schedules, meaning that
for any operation to start earlier, the relative ordering of at least two operations
must be swapped.

The second approach consists in using an insertion strategy, scheduling op-
erations directly from the order expressed in the chromosome: the starting time
of each operation is obtained as the earliest possible time given the operations
which are already scheduled (previous in the chromosome) both on the same
machine and on the same job. It is easy to check that this strategy yields ac-
tive schedules, where a schedule is active if one operation must be delayed for
any other one to start earlier. Active schedules are good in average and, most
importantly, the space of active schedules contains at least an optimal one [12].

To obtain the initial population, chromosomes are obtained as random per-
mutations of (123456 7809). Notice that, given the codification schema, this
initialisation method, albeit simple, always produces feasible individuals.

3.2 Genetic Operators

Selection. In order to select chromosomes from one population to be combined
and generate the next population, we propose to group the chromosomes in pairs
at random, so as to give every individual the opportunity to contribute to the
next generation.

Crossover. Once we have a pair of chromosomes, we consider several crossover
operators proposed in the literature (c.f. [18]):

First, we consider the Partially-Mapped Crossover or PMX, which builds
an offspring by choosing a subsequence from one parent and preserving the



order and position of as many operations as possible from the other parent.
A subsequence is selected by choosing two random cut points, which serve
as boundaries for swapping operations, for instance, we may have as parents
p1=(123456789), po = (452]1876|93) with two cut points marked
by |. The segment between cut points in the first parent is copied in the same
positions onto the first offspring: 01 = (z x 2 |456 7| z z) and similarly with the
segment from the second parent onto the second offspring 03 = (zzz[1876|z )
(the symbol  may be interpreted as ‘unknown at present’). The cut also defines
a mapping between the operations in the same position in both parents: 1 < 4,
8 <« 5,7« 6,6 <« 7. Next, we fill further operations in the first (resp. sec-
ond) offspring from the second (resp. first) parent for which there is no conflict:
01 = (z22]4567|93) and 02 = (£23]1876|x9). Finally, we resolve the conflicts
by replacing the operation from the second (resp. first) parent which already
appears between the cut points with the corresponding operation from the first
(resp. second) parent, according to the obtained mapping: o; = (18245679 3)
and oo = (423]1876|59).

A second operator is Linear-Order Crossover or LOX in short, a modification
of the well-known order crossover so as not to treat chromosomes as circular.
This operator selects a subsequence of operations at random and copies this
subsequence from the first (resp. second) parent onto the first (resp. second)
offspring. It then completes each offspring by placing operations from left to
right in the same order as they appear in the other parent. For instance, for the
same parents as above, p; = (123[4567|89), p2 = (452|1876|93) and the
same selected subsequence, the offsprings would be 01 = (21845679 3) and
02 =(2341]1876|59). LOX is designed so as to preserve as much as possible
both the relative positions between genes and the absolute positions relative to
the extreme operations in the parents, which correspond to the high and low
priority operations.

A modification of LOX is the PBX or Position-Based Crossover where, instead
of selecting one subsequence of operations to be copied, several operations are
selected at random for that purpose.

Mutation. Mutation is applied to a chromosome by randomly modifying its
features, thus helping to preserve population diversity and providing a mecha-
nism to escape local minima. Among the several mutation operators proposed
for permutation-based codification [18], we consider insertion and swap muta-
tions. The insertion operator selects an operation at random and then inserts it
into another random position. The swap or gene swapping operator selects two
positions at random and then swaps the operations in these positions.

Replacement. From each pair of parents we obtain offsprings by applying crossover
and mutation. This forms a set of four solutions from which two will be accepted
as members of the next generation using tournament: the two old chromosomes
and the new ones are put together and the best two are selected to replace the
parents in the next generation. Here, we have two possibilities, namely, accept
two chromosomes with the same fitness (same expected makespan), or force



the two accepted chromosomes to have different fitness. Notice that with this
replacement scheme, inferior solutions are eliminated only through newborn su-
perior solutions. Therefore, both the best and worst makespans of the solutions
in the population at each generation are non-increasing and there is an implicit
elitism.

As we can see, by selecting one operator or another from those explained
herein, we obtain a wide range of configurations for a GA. Our goal is to choose
the best possible configuration based on thorough experimentation.

4 Experimental Results

For the experimental study, we follow [8] and generate a set of fuzzy problem
instances from well-known benchmark problems. In particular, we consider a
subset of the problems proposed by Taillard [19], consisting of four families of
problems of sizes 4 x 4, 5 x 5, 7 x 7 and 10 x 10 and where each family contains
10 problem instances. From each of these crisp problem instances, we gener-
ate 10 fuzzy instances, so we have 400 fuzzy problem instances in total. To
generate a fuzzy instance from a crisp one, we transform each crisp process-
ing time z into a symmetric fuzzy processing time p(z), so its modal value is
p? = x and p!, p* are random values, symmetric w.r.t. p?> and generated so
the TFN’s maximum range of fuzziness is 30% of p?. By doing this, the op-
timal solution to the crisp problem provides a lower bound for the fuzzified
version [8]. The obtained benchmarks for the fuzzy open shop are available at
http://www.aic.uniovi.es/tc/spanish/repository.htm

4.1 Configuration and Parameter Setting

A first set of experiments is conducted to choose the GA’s configuration, in an
incremental approach, where the first step is to fix the population size and the
number of generations, to ensure convergence. We outline the experimentation
process and give a summary of results, but we omit a more detailed exposition,
due to lack of space and the large number (400) of problem instances used.
The convergence study is performed using the following base configuration:
fitness, active scheduling; crossover, LOX with probability p, = 0.70; mutation,
insertion with probability p,, = 0.05; selection, random pairs; replacement, tour-
nament with repetition. For this base configuration, the GA has been run varying
the number of maximum iterations depending on the problem sizes: 1000 (4 x 4),
5000 (5% 5), 10000 (7 x 7 and 10 x 10). Tests have been repeated with two differ-
ent population sizes: 100 and 200 and for each possibility we have considered the
average performance across ten runs. The quality of a solution is assessed using
the following makespan relative error w.r.t. a lower bound: (E[C),e.] — LB)/LB
with LB = max(max;{)°;_, pi;}, max;{d>_7_, pij}), where p;; is the crisp pro-
cessing time of the operation belonging to job J; which has to be processed
on machine M;. Here, we have considered the relative makespan error of the
best individual in each generation and have followed the error evolution along
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Fig. 1. Convergence of base configuration of GA for problem tail0-1_05

the generations for both population sizes, establishing as convergence point the
point where the difference between the generation’s error and the minimum error
obtained with the maximum number of generations is less than 1%. With this
criterion, we set the population size as 100 for all problems, with the number of
generations depends on the size as follows: 4 x 4 : 40, 5 x 5: 130, 7 x 7 : 1600,
10 x 10 : 3000.

Having fixed the base configuration for population size and number of gener-
ations, we decide on the type of chromosome evaluation: active or semi-active
scheduling. To compare both approaches, we extend the running time for the GA
with semi-active scheduling so it is approximately the same as that of the GA
with active scheduling. The conclusion is that, under equivalent conditions, the
relative makespan error for semi-active scheduling is between 3.074% and 4.438%
worse than for active scheduling. We therefore opt for the latter. Figure 1 illus-
trates the convergence of the GA with both active and semi-active scheduling
for problem tail0_1_05, that is, the fifth fuzzy instance obtained from the first
problem proposed by Taillard of size 10 x 10. The z axis represents the time
taken in seconds and the y axis represents the expected makespan.

To perform replacement, we only need choose whether to filter those chro-
mosomes with the same expected makespan or not. Again, with the base config-
uration and using active scheduling, the experimental results show that the cost
of filtering individuals with identical makespan is insignificant w.r.t. the total
running time of the algorithm and it always generates slightly better results.

Using the GA with active scheduling and replacement with no repetition,
we analyse the performance of the three different crossover operators using as
crossover probability values 0.7,0.8,0.9. Again, the conclusions are drawn based
on the relative makespan error w.r.t. LB and also on computational cost. The
results show that there is no significant difference between PMX and LOX, both for
the makespan error and running times, being 0.7 the best value for the crossover
probability. PMX is always better, although the improvement w.r.t. LOX is less



Table 1. Average relative makespan error (in %) for all families of problems.

Problem GA Random Pop. DS/LRPT
B A
4 x4 ]3.002 4.020 4.774 12.473
5x5 |3.432 6.263 9.840 16.100
7TxT7 11480 4.123 11.698 10.938
10 x 10 | 1.382 3.624 13.723 7.069

than 0.4%. PMX is also preferred to PBX, since the latter takes approximately
28.38% more running time and the makespan does not always improve. For the
ten sets of fuzzy problems of size 10 x 10, PBX with p, = 0.9 (the best of the
three values) only improves the makespan obtained with PMX with p, = 0.7 in
three of the sets and this improvement is less than 0.9%. We conclude that the
crossover for the final configuration will be PMX with p,, = 0.7 (although LOX is
very similar).

As above, we try the two mutation operators and adjust the mutation prob-
ability choosing from 0.05,0.10,0.15. Here the best results for insertion are ob-
tained with p,, = 0.05 and the best results for swap are obtained with p,, = 0.10;
overall, insertion behaves better than swap.

After this experimental analysis, the chosen configuration for the GA will
be: fitness, active scheduling; crossover, PMX with probability p, = 0.70; muta-
tion, insertion with probability p,, = 0.05; selection, random pairs; replacement,
tournament without repetition.

4.2 Performance

To evaluate the performance of the proposed GA, we run the GA 30 times for
each problem instance and consider the average value across these 30 runs of the
relative makespan error for the best individual (B) and the average (A) in the last
generation. Table 1 shows these values averaged across the 100 problem instances
of each size, as a summary of the GA’s behaviour, compared to the makespan
relative error obtained by a dispatching rule bs/LRPT proposed in [14], adapted
to fuzzy durations, and also compared to relative error of the best individual
from a population of random permutations, with as many individuals as the
total number of chromosomes evaluated by the GA. No other comparisons are
made since, to our knowledge, there are no heuristic methods proposed in the
literature for FuzO||E[Cpmaz]-

Each row of Table 1 summarises the information relative to 100 problem
instances: 10 fuzzy versions of each of the 10 crisp instances of one size. More
detailed results are presented in Table 2, where each row corresponds to one set of
10 fuzzy versions of a crisp instance of size 10x 10. As expected, the GA compares
favourably with the random population. Concentrating on the second table, the
makespan for the latter is between 9.259% and 10.904% worse (it also takes
between 36.238% and 37.959% more running time). The GA also performs better



Table 2. Average relative makespan error (in %) for sets of problems of size 10 x 10.

Problem GA Random Pop. DS/LRPT
B A
tail0_1 | 2.743 5.245 16.044 7.508
tail0_2 | 0.923 2.842 12.904 5.940
tail0.3 | 2.140 4.591 14.101 7.738
tail0_4 | 0.568 2.404 11.659 5.884
tail0.5 | 1.687 3.987 13.559 8.160
tail0_6 | 0.520 2.608 14.150 6.018
tail0.7 | 1.088 3.497 12.890 6.920
tail0.8 |1.361 3.839 14.063 7.815
tail09 | 1.366 3.541 14.513 8.105
tail0.10 | 1.422 3.686 13.343 6.607

than the priority rule DS/LRPT with, of course, smaller difference in makespan
error (between 2.263% and 4.564% compared to the average performance of
the GA). Notice as well that the relative errors for the best (B) and average
(A) solution do not differ greatly, which means that the GA is quite stable.
Also, relative errors are relatively small, showing that the GA either obtains an
optimum solution or is quite close, even for the problems of greater size.

5 Conclusions and Future Work

We have considered an open shop problem with uncertain durations modelled
as triangular fuzzy numbers, FuzO||E[C),q.], and have proposed a genetic al-
gorithm to solve this problem. Using a permutation-based codification, we have
considered several genetic operators and have conducted a thorough experimen-
tation in order to select operators and set GA parameters to obtain a final
competitive configuration. The performance of the GA has been assessed on
a set of problems obtained from classical ones in what would constitute a first
benchmark for FuzO||E[Ci,az]- The GA has obtained good results both in terms
of relative makespan error and also in comparison to a priority rule and a popu-
lation of random solutions. These promising results suggest directions for future
work. First, the GA should be tested on more difficult problems, fuzzy versions
of other benchmark problems from the literature. Also, the GA provides a solid
basis for the development of more powerful hybrid methods, in combination
with local search techniques, an already successful approach in classical shop
problems [15],[2] and also in fuzzy open shop [7] and fuzzy job shop [9],[20].
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