
Semantics of Schedules for the Fuzzy Job Shop
Problem

Inés González-Rodrı́guez, Jorge Puente, Camino R. Vela, and Ramiro Varela

Abstract— In the sequel we consider the fuzzy job shop problem,
a variation of the job shop problem where duration of tasks may
be uncertain and where due-date constraints are allowed to be
flexible. Uncertain durations are modelled using triangular fuzzy
numbers and due-date constraints are fuzzy sets with decreasing
membership functions expressing a flexible threshold “less than”.
Also, the objective function is built using fuzzy decision-making
theory. We propose the use of a genetic algorithm to find solutions
to this problem. Our aim is to provide a semantics for this type
of problems and use this semantics in a methodology to analyse,
evaluate and therefore compare solutions. Finally, we present the
results obtained using the genetic algorithm and evaluate them
using the proposed methodology.

Index Terms— Fuzzy systems, Scheduling, Genetic algorithms

I. INTRODUCTION

In the last decades, scheduling problems have been subject
to intensive research due to their multiple applications in dif-
ferent areas of industry, finance and science [2]. In particular,
considerable effort has been made to develop heuristic strate-
gies, for instance genetic algorithms, local search, etc, that
are used as solving methods for highly complex scheduling
problems such as shop problems [3].

Genetic Algorithms, or GAs, constitute one of the
paradigms of general purpose search meta-heuristics. Since
their appearance towards the end of the 1960s [4], they have
demonstrated to be a powerful and flexible tool to confront
certain problems in industry that had proved difficult if not
impossible to solve with the classical methods available at
the time. In particular, due to their ability to cope with
huge search spaces involved in optimizing schedules [5], GAs
have been successfully and widely used to solve scheduling
problems [6],[7].

In most cases, scheduling has been treated as a deterministic
problem that assumes precise knowledge of all data involved,
such as durations, due dates, etc. Unfortunately, this is not
a realistic approach in some applications. Indeed, modelling
real-world problems usually involves processing uncertainty
and flexibility, either due to a lack of knowledge relating to
concepts, to inherent vagueness in concepts themselves or to a

This work was supported by MCYT-FEDER Grant TIC2003-04153. A
preliminary version was presented at IWINAC2005 Conference [1].

Inés González Rodrı́guez is with the Department of Mathematics, Statistics
and Computing, University of Cantabria, Los Castros s/n, Santander, 39005,
Spain (phone: +34 942201532; email: ines.gonzalez@unican.es).

Jorge Puente, Camino R. Vela and Ramiro Varela are with the A.I. Centre
and Department of Computer Science, University of Oviedo, Campus de
Viesques s/n, Gijón, 33271, Spain (phone: +34 985182479, +34 985182134,
+34 985182508; email: {puente,crvela,ramiro}@uniovi.es).

relaxation in certain constraints. Many papers have been pub-
lished recently that use evolutionary strategies to solve flexible
and dynamic scheduling problems. Research on evolutionary
optimisation in presence of uncertainty is reviewed in [8] in a
unified framework: uncertainty appearing in evolutionary com-
putation is classified in four classes and several references are
included that justify that evolutionary strategies “perform bet-
ter than several local search methods on noisy environments”.
A recent paper [9] considers the dynamic job shop problem,
a variant of JSSP where new orders may arrive dynamically
over the time and have to be integrated into the schedule.
The authors propose and compare two solving methods: a
randomized priority rule-based approach and an evolutionary
algorithm. In [10], a GA with dominant genes is proposed to
deal with distributed scheduling problems, specially in flexible
manufacturing systems environments; compared with other
classical heuristic approximations to scheduling problems, the
GA obtains satisfactory results. In [11] and [12], other GAs
have been proposed to solve the flexible job shop scheduling,
which allows for an operation to be processed by any machine
from a given set of resources. The proposed GAs need to
solve two subproblems: the first one is to assign operations
to a subset of machines and the second one is to determine
the processing order of jobs in each machine. In [11] the
objective is to find a schedule with minimal makespan and
four different codifications of the chromosomes are analysed.
In [12], the objective is to both minimise the makespan and the
idle machine cost, and the objective function is defined as a
linear combination of both values. Two GAs are described, one
for each subproblem and the presented experimental results are
obtained on benchmark problems, obtained after modifying
well-known job shop problems, which had been proposed in
previous works.

A possible approach to modelling uncertainty and flexibility
is to use fuzzy sets. This has resulted in a particular branch
of scheduling, known as fuzzy scheduling [13] [14]. Here
we find a great variety of approaches, connected with the
three semantics of fuzzy sets. They range from representing
incomplete or vague states of information to using fuzzy
priority rules with linguistic qualifiers or preference modelling.
It is also possible to find models combining more than one of
these approaches.

There are many examples in the literature where fuzzy
numbers are used to represent uncertain processing times and
heuristic strategies are considered. A job shop problem is
introduced in [15], where durations are modelled using 6-point
fuzzy numbers, there are no due dates, and the single objective
of minimising makespan is achieved based on fuzzy num-

Authors' version of the paper published at http://ieeexplore.ieee.org/abstract/document/4481218/
DOI: 10.1109/TSMCA.2008.918603
Reference as:
Gonzalez-Rodriguez, I., Puente, J., Vela, C. R., & Varela, R. (2008).
Semantics of schedules for the fuzzy job-shop problem. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(3), 655-666.

ber comparison using simulated annealing. In [16], uncertain
durations are modelled using both triangular fuzzy numbers
or λ-sets; the authors minimise the makespan by solving a
crisp job shop problem that results from defuzzifying the
durations. Job shop problems with triangular fuzzy numbers as
processing times are also considered in [17], [18] and [19]. All
papers propose the use of GAs to confront this problem but
with different objectives. In [17], there is a single objective
of satisfying flexible due-date constraints whilst both [18]
and [19] use multiobjective GAs. In the first case, they try to
maximise due-date satisfaction and minimise the makespan.
In the second case, the authors concentrate on satisfying due
dates and try to maximise the satisfaction degree of the average
tardiness and minimise the number of tardy jobs. A simpler
problem, the fuzzy flow shop scheduling problem, has been
considered in various papers [14], [20],[21], with different
definitions of the objective function and different methods
used to solve it. In [21], the two-machine fuzzy flow shop
problem is solved using Johnson’s algorithm (that provides
the optimal solution for a non-fuzzy problem) combined with a
ranking method for triangular fuzzy numbers. In [20] different
objective functions are compared to solve generic fuzzy flow
shop problems with an evolutionary algorithm. In [14], two
GAs are described to solve a fuzzy flow shop problem and
a sequencing job problem. Finally, in [22] the authors study
how the use of triangular fuzzy numbers to model uncertain
durations in activity networks affects critical paths.

In the following, we shall define a job shop problem where
task durations are uncertain and where due-date constraints
may be flexible. A genetic algorithm will be described to solve
the fuzzy job shop problem. We shall then propose a semantics
for this type of problem that will provide a methodology to
evaluate and, hence, compare different solutions to the same
fuzzy job shop. Finally, we will analyse the solutions obtained
by the GA on problems from the literature using the proposed
methodology.

II. DESCRIPTION OF THE PROBLEM

A. The Job Shop Scheduling Problem

The classical job shop scheduling problem, also denoted
JSSP, consists in scheduling a set of jobs {J1, . . . , Jn} on a
set of physical resources or machines {M1, . . . ,Mm}, subject
to a set of constraints. There are precedence constraints, so
each job Ji, i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to
be sequentially scheduled. Also, there are capacity constraints,
whereby each task θij requires the uninterrupted and exclusive
use of one of the machines for its whole processing time.
Hence, the execution of two tasks requiring the same machine
cannot overlap in time. In addition, we may consider due-date
constraints, where each job has a maximum completion time
and all its tasks must be scheduled to finish before this time.

The goal of this problem is twofold: we need to find a
feasible schedule, so that all constraints hold and then we want
this schedule to be optimal, in the sense that its makespan (i.e.,
the time it takes to finish all jobs) is minimal.

B. Uncertain Processing Times

It is common in the literature to use fuzzy numbers to
represent uncertain processing times. Fuzzy sets proved an
alternative to probability distributions, which require a deeper
knowledge of the problem and usually yield a complex cal-
culus. When there is little knowledge available, the crudest
representation for uncertain processing times would be a
human-originated confidence interval. If some values appear
to be more plausible than others, a natural extension is a
fuzzy interval or a fuzzy number. The simplest model of fuzzy
interval is a triangular fuzzy number or TFN, using only an
interval [a1, a3] of possible values and a single plausible value
a2 in it. That is, for a TFN A, denoted A = (a1, a2, a3),
the membership function takes a triangular shape completely
determined by the three real numbers, a1 ≤ a2 ≤ a3 as
follows:

µA(x) =

0, for x < a1

x−a1

a2−a1 , for a1 ≤ x ≤ a2

x−a3

a2−a3 , for a2 < x ≤ a3

0, for a3 < x.

(1)

Any real number r ∈ R can be seen as a special case of TFN;
this allows us to deal with problems where tasks have both
uncertain and precise processing times, which is usually the
case in real-life applications.

In this framework, the completion time of a task is found
by adding the task’s duration to its starting time. Given two
TFNs A = (a1, a2, a3) and B = (b1, b2, b3), fuzzy number
addition is defined as

A+B = (a1 + b1, a2 + b2, a3 + b3) (2)

so completion times are TFNs as well [23]. Secondly, the start-
ing time for a given task θ is given by the maximum between
two TFNs: the completion times of the tasks preceding θ in
its job and in its resource. The maximum A∨B of two TFNs
is obtained by extending the lattice operation max on real
numbers using the Extension Principle. However, computing
the membership function is not trivial and the result is not
guaranteed to be a TFN. For these reasons, we approximate
A ∨B by the following TFN

A ⊔B = (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3). (3)

This approximation was first proposed in [15] for 6-point fuzzy
numbers, a particular case of which are TFNs. Both sets A∨B
and A⊔B have identical support and the modal point in A⊔B
also has full membership in A ∨B.

Finally, given the completion time for each job, the
makespan Cmax corresponds to the greatest of these TFNs.
Unfortunately, neither the maximum ∨ nor its approximation
⊔ define a total ordering in the set of TFNs. Hence, we use a
method for fuzzy number ranking [24] that establishes a total
ordering based on using the following three real numbers for
each TFN A:

Cr1(A) =
a1 + 2a2 + a3

4
, Cr2(A) = a2, Cr3(A) = a3 − a1.

(4)

Given these real numbers, it is possible to establish a total
ordering in a set of TFNs using lexicographical ordering,
as shown in Algorithm 1. For instance, let us consider
four TFNs A1, A2, A3, A4, where A1 = (2, 5, 8), A2 =
(3, 4, 9), A3 = (3, 5, 7), and A4 = (4, 5, 8). Using the first
criterion Cr1, Cr1(A4) = 5.5 and Cr1(A1) = Cr1(A2) =
Cr1(A3) = 5.0. Hence, the maximal element is Amax = A4.
By the second criterion Cr2, Cr2(A1) = Cr2(A3) = 5 and
Cr2(A2) = 4. Thus, the minimal element Amin = A2. The
third criterion Cr3 shows Cr3(A1) = 6 and Cr3(A3) = 4.
In this way, the increasing ordering of the four TFNs is
A2 ≪ A3 ≪ A1 ≪ A4.

1: order the TFNs according to the value of Cr1
2: if there are TFNs with identical value of Cr1 then
3: order these TFNs using the real value Cr2
4: if there are TFNs with identical value of Cr1 and Cr2 then
5: rank them using Cr3

Alg. 1: Ranking Method for TFNs.

In practice, if due-date constraints exist, they are often
flexible: we are completely satisfied if the job finishes before
a delivery date d1 and after this time our satisfaction decreases
until a later date d2, after which we are clearly dissatisfied. A
common approach to modelling such satisfaction degrees is to
use a fuzzy set D with linear decreasing membership function
as follows:

µD(x) =

1, x < d1

x−d2

d1−d2 , d1 < x ≤ d2

0, d2 < x.

(5)

According to Dubois et al [13], the above membership func-
tion expresses a flexible threshold “less than” and expresses
the satisfaction degree sat(t) = µD(t) for the ending date t
of the job.

When the job’s completion time is a TFN C, the degree to
which C satisfies the due-date constraint D is measured by
the agreement index [25],[18],[20]

ai(C,D) =
area(D ∩ C)

area(C)
(6)

where, area(D ∩ C) and area(C) denote the areas under
the membership functions of D ∩ C and C respectively
(see Figure 1). It could be the case that D ∩ C is not a
triangle; for the sake of simplicity, we shall then approximate
area(D ∩C) by the area of the greatest triangle contained in
D∩C. This provides a lower bound for area(D∩C) and, in
consequence, for the agreement index ai(C,D).

C. Objective of FJSSP

Having established how to model uncertain duration times
and flexible due-dates, it is possible to find a schedule for
a given problem and, for every job Ji, i = 1, . . . , n, we
may decide to what degree its completion time Ci satisfies
the flexible due-date Di, as given by the agreement index
AIi = ai(Ci, Di). We may also obtain a fuzzy makespan,
Cmax, a TFN indicating the time when all jobs are finished.
The goal of a classical job shop problem is to find a feasible

0

1
C

D

x

µ

Fig. 1. Agreement Index ai(C,D)

schedule with a minimum makespan. Let us see how this
translates into the fuzzy scheduling framework.

The agreement index AIi measures the degree to which the
due-date constraint for job Ji is satisfied for i = 1, . . . , n. It
seems then natural to decide on the feasibility of the given
schedule by somehow combining these satisfaction degrees.
We use two different aggregation operators, the average and
the minimum aggregation operators, and define the follow-
ing [18],[20]:

z1 =AIav =
1

n

n∑
i=1

AIi (7)

z2 =AImin = min
i=1..n

AIi. (8)

The expression for z1 can be interpreted as the probability
Pr(F) of the fuzzy event F “the schedule is feasible” over
the finite domain of jobs D = {J1, . . . , Jn}, provided that the
membership of job Ji in F is µF (Ji) = AIi, i = 1, . . . , n.
Similarly, z2 corresponds to asking that all due dates be
satisfied and can be interpreted as the necessity measure N(F)
of the fuzzy event F over the finite domain D [26] [27]. For
both approaches, z1 ∈ [0, 1] and z2 ∈ [0, 1] measure the degree
to which due-date constraints are satisfied and our aim should
be to maximise both.

Another goal is to minimise the makespan of the pro-
posed schedule, Cmax = maxi=1,...,n Ci, where max denotes
the maximum obtained using the ranking method. If we
consider the total ordering defined by the proposed rank-
ing method, this would mean to minimise the defuzzified
makespan Cr1(Cmax):

z3 = Cr1(Cmax). (9)

Overall, we have three different goals: maximise z1 and z2
(maximise feasibility) and minimise z3 (minimise makespan).
Hence, given a set of possible schedules S, we need to find a
schedule s ∈ S satisfying the following goals:

G1 : maximise z1 =
1

n

n∑
i=1

AIi (10)

G2 : maximise z2 = AImin = min
i=1,...,n

(AIi) (11)

G3 : minimise z3 = Cr1(Cmax). (12)

If we solve this problem in the framework of fuzzy decision
making [28], the degree to which a given schedule s ∈ S
satisfies the three goals G1, G2, G3 would be given by:

µD(s) = min (µG1(s), µG2(s), µG3(s)) (13)

where µGi represents the degree to which s satisfies goal Gi,
i = 1, 2, 3. Our aim is to find a schedule s ∈ S maximising
this satisfaction degree µD(s).

For the problem to be well-posed, the satisfaction degrees
µGi must be defined. For the first two goals G1 and G2, if
zi = 0, i = 1, 2, our satisfaction degree should be null, and
if zi = 1, i = 1, 2 we should be totally satisfied. Moreover,
as zi increases from 0 to 1, satisfaction should also increase.
Hence, the satisfaction degrees for the first two goals are given
by µGi(s) = µi(zi), i = 1, 2, where µi : [0, 1] → [0, 1] is an
increasing function such that µi(0) = 0, µi(1) = 1, i = 1, 2.
Its exact definition should be dependent on the nature of the
scheduling problem. Ideally, µi should be elicited by an expert.
In practice, such an expert might not be available; in this case,
we take a standard approach in the literature [14],[18] and use
a simple linear function of the form:

for i = 1, 2 µi(zi) =

0, zi ≤ z0i ,
zi−z0

i

z1
i −z0

i
, z0i < zi < z1i ,

1, zi ≥ z1i

(14)

where z0i < z1i represent the values providing minimum
and maximum satisfaction respectively (see Figure 2). The
adequate values for these two parameters need then to be
obtained in the experimentation process. Notice that, in the
absence of an expert, this is, in itself, a hard problem which,
to our knowledge, has not been considered in the literature.

(a)

()
33

zµ

0

3

z

1

3

z
0

3

z

1

()
ii

zµ

0

i

z

1

i

z

1

i

z

(b)

Fig. 2. Satisfaction degrees for the objectives: (a) µGi
(s) = µi(zi) for

i = 1, 2 and (b) µG3 (s) = µ3(z3).

Finally, the satisfaction degree for the third goal G3 is
given by µG3

(s) = µ3(z3) where µ3 : [0,∞] → [0, 1] is
some decreasing function. Here, the exact definition of µ3 is
even more dependent on the nature of the problem and ideally
should also be elicited by some expert. In practice, if no expert
is available, we take a standard approach as above and µ3 is
defined as a lineal function of the form:

µ3(z3) =

1, z3 ≤ z03 ,
z3−z1

3

z0
3−z1

3
, z03 < z3 < z13 ,

0, z3 ≥ z13

(15)

where z03 < z13 represent the values providing maximum and
minimum satisfaction respectively (see Figure 2). Again, the
adequate values for these two parameters need to be obtained
in the experimentation process.

The above definition of the satisfaction degrees µGi , i =
1, 2, 3 may be incorporated to the expression in (13), so the
objective function of the FJSSP is:

f(s) = min{µ1(z1), µ2(z2), µ3(z3)} (16)

where s is a possible schedule. The solution to the FJSSP will
be a schedule maximising the value of such objective function.

III. SOLVING FJSSP USING GENETIC ALGORITHMS

Essentially, GAs perform an stochastic search in the space
of possible solutions to a given problem. A GA starts with an
initial population, where individuals represent potential solu-
tions to the problem. This population undergoes an evolution
process, where new (and hopefully better) populations are
iteratively generated. At each stage of the process, evolution is
modelled via selection, crossover and mutation of individuals.
To perform selection, the quality of each individual, i.e.
the degree to which the individual has adapted itself to the
environment, is evaluated according to a fitness function. If
the algorithm converges adequately, the average quality of
individuals will increase with the successive generations. In
order to characterise a GA, we need to define its key aspects,
namely, the codification of individuals as chromosomes, the
generation of the initial population, the evaluation of individu-
als (fitness function), and the operations of selection, crossover
and mutation.

Let us describe a possible GA for the FJSSP, inspired by
that proposed in [18] and based in finding active schedules as
described in the following.

A. Generation of Active Schedules

In classical JSSP, the search for an optimal schedule is
usually limited to the space of active schedules. A schedule
is active if one task must be delayed for any other one to
start earlier. One of the best-known algorithms to find active
schedules is the G&T Algorithm [29], which allows to use
complementary techniques to reduce the search space [7].
Also, it can be used as a basis for efficient GAs successful
in solving job shop problems. In Algorithm 2 we propose a
possible extension of G&T. It should be noted nonetheless that,
due to the uncertainty in task durations, we cannot guarantee
that the produced schedule will indeed be active when it is
actually performed (and tasks have exact durations). We may
only say that the obtained fuzzy schedule is possibly active.
Throughout the algorithm, given any task θ, its starting time
will be denoted by ST (θ) and its duration will be denoted by
du(θ). Also, remember that its completion time is simply a
TFN given by:

C(θ) = (C(θ)1, C(θ)2, C(θ)3) = ST (θ) + du(θ). (17)

Notice that at certain stages of this fuzzy G&T, some
heuristic decisions have been taken and other alternatives
might as well be implemented. In general, we have opted for
the alternatives with low computational cost. The reason is
the intensive use that the GA makes of G&T algorithm. The
criterion applied to select a task from the conflict set depends
on the use of the algorithm. When it is used to generate the
initial population, the task is chosen at random and, when it
is used in the crossover operator, the task is chosen according
to the information given by the parents, as we shall see.

1: A = {θi1, i = 1, . . . , n}; /*first task of each job*/
2: while A ̸= ∅ do
3: Find the task θ′ ∈ A with minimum earliest completion time

/*C(θ′)1*/;
4: Let M ′ be the machine required by θ′ and B the subset of

tasks in A requiring machine M ′;
5: Remove from B any task θ that cannot overlap with θ′;

/*ST (θ)1 > C(θ′)3*/
6: Select θ⋆ ∈ B according to some criterion (e.g. randomly) to

be scheduled;
7: Remove θ⋆ from A and insert in A the task following θ⋆ in

the job if θ⋆ is not the last task of its job;

Alg. 2: Fuzzy G&T

B. A Genetic Algorithm for FJSSP

The GA used in this paper to solve the FJSSP was first
proposed in [18]. Chromosomes are a direct codification of
schedules and the fitness function for a chromosome is given
by the expression for the objective function in (16), assuming
that satisfaction degrees µi, i = 1, 2, 3 are known. Crossover
and mutation (with probability pc and pm respectively) are
based on the extended G&T. Let us suppose that two in-
dividuals have been selected to cross and a new individual
is being generated using fuzzy G&T. Each time the conflict
set B has more than one element (step 6 of Algorithm 2),
one of the parents I is selected at random and for each task
θi ∈ B, i = 1, . . . , |B|, we consider its completion time in
that parent, C(θi|I). In total, there are |B| completion times,
TFNs that can be ranked according to Algorithm 1. The task
with the minimum completion time is the one selected from
the conflict set. The mutation operator is embedded in the
crossover operator, so with a given probability, the task from
the conflict set B is selected at random.

The extended G&T is also used to generate initial in-
dividuals. These are incorporated to the initial population
only if similarity to other chromosomes is less than a given
threshold σ, thus ensuring diversity. The similarity between
two individuals I1 and I2 is defined as:

Sim(I1, I2) =∑n
i=1

∑m
j=1 (|PrI1∩I2(θij)|+ |SuI1∩I2(θij)|)

n ·m · (m− 1)
(18)

where |PrI1∩I2(θij)| denotes the cardinal of PrI1(θij) ∩
PrI2(θij) and |SuI1∩I2(θij)| denotes de cardinal of
SuI1(θij) ∩ SuI2(θij), being Pred(θ|I) the set of tasks
preceding θ in its machine given the ordering induced by
individual I and Su(θ|I) the set of tasks following θ in its
machine given that ordering. Using this similarity measure,
Sakawa and Kubota [18] recommend to use a similarity
threshold of 0.8 when generating the initial population.

Finally, the GA uses a niche-based system to avoid pre-
mature convergence: the population is initially divided in
sub-populations, that evolve separately for Imin generations
(termination condition T1 in Algorithm 3) and are later merged
into a single population of N individuals, to further evolve
for a total of Imax generations (termination condition T2 in
Algorithm 3).

A pseudo-code description of the resulting GA can be seen
in Algorithm 3.

1: Generate initial population divided in K groups P1, . . . , PK

containing k individuals each;
2: while terminating condition T1 is not satisfied do
3: for i = 1; i ≤ K; i++ do
4: repeat
5: select 2 parents from Pi at random;
6: obtain 3 children by crossover and mutation;
7: select the best of 3 children and the best of remaining

children and parents for the new population NPi;
8: until a new population NPi is complete
9: Replace the worst individual in NPi with the best of Pi.

10: Join P1, . . . , PK into a single population P ;
11: while Terminating condition T2 is not satisfied do
12: Obtain a new population from P following the scheme above;

Alg. 3: Genetic Algorithm for FJSSP

IV. SEMANTICS FOR A SOLUTION TO THE FJSSP

A. Motivation

In the traditional deterministic framework, a solution to the
JSSP provides an ordering according to which tasks are to be
performed and consequently a time-schedule for these tasks.
This provides an exact makespan for the whole project, as
well as crisp completion times for each job. It is possible
to compare two solutions in terms of makespan and check
whether due-date constraints are satisfied, i.e., whether a given
solution is indeed a feasible one.

As in the deterministic case, a solution to the FJSSP
also provides an ordering according to which tasks are to
be performed. However, it cannot provide a precise time-
schedule for the tasks. Instead, it gives a fuzzy time-schedule,
a possibility distribution on the values of each time-related
parameter. It becomes more difficult to evaluate the quality of
a solution and, hence, to compare different solutions to the
same problem in order to select the best one.

The value of the objective function is the degree to which
a solution satisfies the three objectives. However, this value is
strongly dependent on the definition of the satisfaction degrees,
so it is only informative as long as we know and agree with
such definitions. Even in this case, it is possible to obtain two
different solutions to the FJSSP with the same value of the
objective function.

A solution to the FJSSP also provides a completion time for
each job in the form of a TFN. This is a possibility distribution
on the values that the completion time might take. To obtain an
estimation for the makespan, a ranking method must be used.
Unfortunately, different ranking methods yield different esti-
mations for the makespan. Moreover, to compare the makespan
of different solutions, a ranking method must be used again
and depending on the chosen method, a solution might be
considered to be better or worse than other. In consequence,
our estimations of makespan and our choice of a solution
over other are strongly dependent on the ranking method used
(see [30] for a study of the influence of ranking methods).
To illustrate this dependency, let us recall the example from
SectionII-B. Three criteria were applied in ascending order,

Cr1, Cr2, Cr3, and the obtained total ordering for the TFNs
was A2 ≪ A3 ≪ A1 ≪ A4. However, if the three criteria are
applied in a different order Cr3, Cr2, Cr1, the new ordering
of TFNs becomes A3 ≪ A4 ≪ A2 ≪ A1.

In summary, for a given solution we may evaluate our
satisfaction degree (knowing the definition of µi, i = 1, 2, 3)
and we may obtain an estimation of the completion time for
each job. These certainly help us to interpret the solution.
However, this information is not enough to fully evaluate a
single solution or to discriminate between different ones. The
need arises of further studying a solution to obtain a thorough
understanding of it.

B. Interpretation as A-priori Solutions

Given the above, our aim is to provide some semantics for
the FJSSP to analyse its solutions. The underlying concept is
that solutions to the FJSSP are a-priori solutions, found when
the duration of tasks is not exactly known. It is impossible
to predict what the exact time-schedule will be, because it
depends on the realisation of the task’s durations, which is not
known yet. Each schedule provides an ordering of tasks and,
it is not until tasks are executed according to this ordering
that we know their real duration and, hence, obtain a real
schedule, the a-posteriori solution with crisp job completion
times and makespan. Similar ideas although in a somewhat
different framework can be found in [31].

According to this interpretation, the main interest of a
solution to the FJSSP lies in the ordering of tasks that it
provides a priori, when information about the problem is
incomplete. Ideally, this ordering should yield good schedules
in the moment of its practical use, when tasks do have
real durations. For this reason, we propose to evaluate the
behaviour of a solution to the FJSSP when faced with a
family of N crisp job shop problems, generated from the fuzzy
problem so that they can be interpreted as its realisations.

A means of simulating possible realisations of the FJSSP
is to generate durations for each task at random, according
to a probability distribution which is coherent with the fuzzy
durations (namely, the TFNs membership functions normal-
ized so that the additivity axiom holds). We thus obtain a job
shop problem with crisp durations (the real durations of tasks).
Fuzzy sets modelling due-date constraints do not represent
partial ignorance. Instead, they represent preference related to
finishing times. It is not until the latest possible date d2 that
a schedule becomes unfeasible (however little satisfactory it
might be). For this reason, when transforming due dates into
a crisp number, we choose d2.

Having thus generated a family of N crisp versions of the
FJSSP, we use them to evaluate the fuzzy solution. More
precisely, a solution to the FJSSP provides an ordering of tasks
ord. Given this ordering and a crisp version of the FJSSP
(a possible a posteriori realisation), an algorithm of direct
ordering (semiactive schedules building) can be used to obtain
a crisp time-schedule. For such crisp schedule, we define the
following quality measures:

• the Feasibility Error, F , the proportion of due-date con-
straints that do not hold;

• the Relative Makespan Error, E, the relative difference in
time units between the obtained crisp makespan Cmax =
maxi=1,...,n Ci and a given lower bound for the makespan
LB, that is:

E =
Cmax − LB

LB
(19)

where this lower bound may be obtained with some of
the existing methods from the literature, as explained in
Section V.

The above provide a means of evaluating the solution to the
FJSSP on a single possible realisation, a crisp JSSP. If we
consider the whole family of N crisp problems, for each of
them we may obtain the values of F and E, denoted by
Fl and El, l = 1, . . . , N . The overall performance of the
fuzzy solution across the family of N crisp problems can be
measured by the average value of F and E as follows:

F =

∑N
l=1 Fl

N
E =

∑N
l=1 El

N
(20)

We may now compare different solutions to the FJSSP based
on feasibility (using F), based on makespan (using E) or even
based on the overall achievement of both objectives (using
some combination of F and E). In any case, we should bear
in mind that the quality of a given ordering ord is measured
on a family of problems which may be quite diverse. In fact,
the greater the uncertainty in the FJSSP, the greater the variety
of possible crisp realisations and hence, the diversity within
the family of associated crisp JSSPs.

Let us illustrate this semantics with a toy example of size
3× 3. The fuzzy durations are given by:

T =

(9, 13, 17) (5, 8, 11) (9, 11, 15)
(5, 8, 9) (3, 4, 5) (4, 7, 10)
(3, 5, 6) (3, 4, 5) (1, 3, 4)

where Ti,j is the processing time of task j of job i, θi,j , i, j =
1, 2, 3. Resource constraints are specified by the following:

M =

1 2 3
1 2 3
3 1 2

where Mi,j indicates the machine where task θi,j must be
processed, i, j = 1, 2, 3. Finally, due dates are given by:

D1 = (39, 48), D2 = (34, 38), D3 = (19, 23).

A solution to this problem can be found with the above GA,
with fitness calculated according to (16), where the satisfaction
degrees are defined by z01 = 0.6, z11 = 1, z02 = 0.0, z12 = 1,
z03 = 39, z13 = 54. The solution provides the following task
processing order:

θ3,1θ2,1θ2,2θ3,2θ3,3θ2,3θ3,1θ3,2θ3,3

For this solution, the objective values are z1 = 0.835081,
z2 = 0.505245 and z3 = 44, which yield a fitness value of
0.505245 according to the given satisfaction degrees.

Three possible crisp realisations of task durations may be
given by matrices T1, T2 and T3 as follows:10 9 12

8 4 9
3 4 4

11 7 14
8 5 10
4 4 3

16 10 15
9 4 9
5 4 2

 .

Lower bounds for the makespan of the resulting crisp job
shop problems would be 39, 40 and 50 respectively. The
following table shows, for each of these crisp problems, the
results obtained when tasks are executed according to the
above ordering: makespan Cmax, relative makespan error E,
number of respected due dates Ndd and feasibility error F .

Realisation Cmax E Ndd F

T1 43 0.102 3 0
T2 44 0.1 3 0
T3 54 0.074 2 0.333

Average 0.092 0.111

V. EXPERIMENTAL RESULTS

The results shown hereafter correspond to the benchmark
problems from [18], three problems of size 6 × 6 and three
problems of size 10 × 10. For each problem, we are given
the duration of each task as a TFN, du = (t1, t2, t3), and
the flexible due-date for each job, D = (d1, d2). However,
no definition of the satisfaction degrees used in the objective
function are provided, so the problem definitions are not
complete.

We shall now see how the semantics of schedules of FJSSP
proposed in Section IV can be used for two different purposes.
First, we shall propose a methodology to fully determine the
objective function in the absence of an expert. Secondly, we
will evaluate the quality of solutions obtained by the GA
presented in Section III.

A. Heuristic Definition of Objective Function

Before doing any experimental analysis of the problem, it
is necessary to completely define the objective function, i.e.
define functions µi, i = 1, 2, 3. In the absence of an expert who
elicits them, it is necessary to somehow find the minimum and
maximum satisfaction degrees z0i , z

1
i , i = 1, 2, 3, to complete

the problem’s statement.
According to the semantics proposed in Section IV, any

solution to the FJSSP is an a-priori solution providing an or-
dering for the execution of tasks when durations are ill-known.
This is then evaluated on a family of N crisp realisations of
the FJSSP, using the overall feasibility error F and the overall
makespan error E. To compute the latter, it is necessary to
obtain a lower bound for the makespan. Here, we consider a
relaxed crisp problem without due-date constraints and use the
Branch & Bound Method [2] to find an optimal solution. This
may not satisfy the due dates but provides a lower bound for
the makespan of feasible solutions.

The methodology to automatically determine the satisfac-
tion degrees µi, i = 1, 2, 3, consists in running the GA from
Section III with different values of the parameters z0i , z

1
i , i =

1, 2, 3 and evaluate the fuzzy solutions, in order to select the
parameter values that minimise the overall errors. For this
experiments, the GA parameters are those proposed in [18]
(see Table I). Due to the stochastic nature of GAs, for every
fixed set of values for the parameters z0i , z

1
i , i = 1, 2, 3 we run

the GA M times. Each of the M executions yields an overall
feasibility error Fk and an overall makespan error Ek. The

average performance of the GA is then evaluated using the
following average quality measures:

F =

∑M
k=1 Fk

M
, E =

∑M
k=1 Ek

M
(21)

The optimal configuration would be that which simultaneously
minimises the average relative makespan error E and the
average feasibility error F . However, it is very rare that a
configuration exists optimising both criteria simultaneously.
For most problems, there is a tradeoff between feasibility and
makespan. For this reason, we choose to compromise between
both error measures, so the optimal configuration will be that
which minimises max(E,F).

TABLE I
PARAMETERS FOR THE GA PROPOSED IN [18]

Problem K k Imin Imax Pc Pm

6× 6 10 10 50 100 0.9 0.03
10× 10 20 10 100 200 0.9 0.03

Figure 3 shows the average values across 20 executions of
the GA of E, F and f for approximately 200 different defi-
nitions of satisfaction degrees µ = (µ1, µ2, µ3), in problem
10 × 10-3. The different definitions of satisfaction degrees
are obtained for varying values z0i , z

1
i ∈ [0, 1], i = 1, 2, and

z03 , z
1
3 ∈ [minni=1(d

1
i),maxni=1(d

2)], where Di = (d1i , d
2
i) is

the due date of job Ji, i = 1, . . . , n. The resulting definitions
µ = (µ1, µ2, µ3) are ordered in the coordinate axis according
to the fitness value they yield. The plotted values of E and
F illustrate the difficulty of simultaneously optimising both
errors. It also shows that there exist different definitions of
(µ1, µ2, µ3) that yield maximum fitness value f but perform
differently on the family of crisp problems. Here, E and F
may help to select the “best” solution.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

fitness
F
E

Fig. 3. Average values E and F and objective function f for 211 different
definitions of µi, i = 1, 2, 3 in problem 10 × 10-3 when M = 20 and
N = 50.

Not surprisingly, there exists a strong correlation between
E and goal G3 and F and goals G1, G2. In all six problems,
for those configurations of z0i , z

1
i i = 1, 2, 3 with the best

values for E, the satisfaction function µ3 does have influence
in the fitness value, whilst in those configurations with the best

values for F , it is mainly function µ2 the one that determines
the fitness value.

For our experimental results, we explored approximately
200 configurations of values for z0i , z

1
i , i = 1, 2, 3 as explained

above. According to the proposed methodology, from these
configurations we chose that with the minimum value of
max(E,F) as the optimal one. Interestingly, for all problems
of the same size we also found two configurations, denoted
z⋆6 and z⋆10, which performed very well despite not being the
optimal ones. This specific configuration corresponds to that
obtaining the best average performance across all problems
of the same size. For z⋆6 we have z01 = 0.5, z11 = 1;
z02 = 0.1, z12 = 0.4; z03 = LB(t3), the lower bound for
the makespan of the crisp JSSP where all tasks have their
maximum durations, and z13 = maxi=1,...,n d

1
i , the maximum

of the due-date upper bounds. For z⋆10 we have z01 = 0.3, z11 =
0.8; z02 = 0, z12 = 0.3; z03 = LB(t3) and z13 = maxi=1,...,n d

1
i .

Notice that, with these values, µ2 is less strict than µ1, which is
coherent with the property z2 ≤ z1. Table II contains both the
optimal configuration and z⋆ for all problems of size 10×10.

TABLE II
OPTIMAL CONFIGURATION FOR z0i , z

1
i , i = 1, 2, 3 COMPARED WITH z⋆ ON

PROBLEMS OF SIZE 10× 10

Problem Conf. z01 z11 z02 z12 z03 z13

10× 10-1 optimal 0.5 1 0 0.3 151 169
z⋆ 0.3 0.8 0 0.3 158 184

10× 10-2 optimal 0.5 1 0 0.5 89 158
z⋆ 0.3 0.8 0 0.3 154 158

10× 10-3 optimal 0 1 0 0.3 143 170
z⋆ 0.3 0.8 0 0.3 143 178

TABLE III
RESULTS OF THE OPTIMAL CONFIGURATION COMPARED WITH z⋆ ON

PROBLEMS OF SIZE 10× 10 (IN BOLD, THE VALUE OF %max(E,F).)

Problem Conf. %F %E

10× 10-1 optimal 17.25 19.69
z⋆ 23.73 18.13

10× 10-2 optimal 6.48 6.34
z⋆ 10.15 18.53

10× 10-3 optimal 25.01 25.15
z⋆ 27.44 26.75

Table III shows the results on problems of size 10 × 10
with both the optimal configuration and z⋆. Figures 4–7 show
the average value of µi, i = 1, 2, 3, for problem 10 × 10-
3 on a second family of N crisp realisations (that used in
Section V-C) and illustrates the evolution of these satisfaction
degrees along 200 generations for four different configurations
of z0i , z

1
i , i = 1, 2, 3: a) that minimising E, b) that maximising

F , c) that minimising max(E,F) and d) the heuristic config-
uration z⋆.

In summary, for each problem, we may obtain an optimal
configuration for µi, i = 1, 2, 3, through intensive experimen-
tation using the methodology proposed above. Alternatively,
we may use configuration z⋆. Despite not being the optimal

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

µ1
µ2
µ3Fig. 4. Evolution of µi, i = 1, 2, 3 in problem 10×10-3 with configuration

minimising E.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

µ1
µ2
µ3Fig. 5. Evolution of µi, i = 1, 2, 3 in problem 10×10-3 with configuration

minimising F .

one, it performs very well and avoids any further experimenta-
tion. Therefore, in the absence of an expert, we propose to use
z⋆ to provide a heuristic definition of the satisfaction degrees
for the objective function.

B. Parameter Analysis for the GA

Once the problems are completely defined, it is interesting
to see if the GA parameters from Table I are the optimal
ones. We have done some preliminary testing, similar to
that in [32]. We performed 3 × 3 × 2 factorial design of
experiments involving three parameters: we considered three
different values for the crossover and mutation probabilities,
pc = 0.7, 0.9, 1 and pm = 0.03, 0.05, 0.07 and two values for
the number of generations for which the population evolves
in different niches, Imin = 50, 100. The remaining parameters
are more dependent on the problem size, so we decided to fix
them as in [18]. The GA was executed 50 times with the same
seed for the random generator, in order to avoid any bias in
the initial population. To determine the best combination of
parameter values, we analysed the maximum of the makespan
and feasibility errors obtained on a posterior evaluation on 53
crisp problems. The results showed that for a small value of pc,
the error was never too big nor were the best results obtained.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

µ1
µ2
µ3Fig. 6. Evolution of µi, i = 1, 2, 3 in problem 10×10-3 with configuration

minimising max(E,F).

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

µ1
µ2
µ3Fig. 7. Evolution of µi, i = 1, 2, 3 in problem 10 × 10-3 with heuristic

configuration z⋆.

It was also the case that the best value for the number of
generations prior to niche fusion is different for each value of
pc. Regarding pm, the best results are always for the largest
value of this parameter (pm = 0.07). Given this, we performed
new experiments with pm taking values larger or equal to 0.1,
but the error would increase as the value of pm increased.
We concluded that changes in the parameters original values
do not produce significant improvements in the GA solutions.
Therefore, we decided to keep the parameter values proposed
in [18].

C. Analysis of GA Solutions

Once the objective function has been completely defined
and the GA parameters have been fixed, it is possible to obtain
solutions to the FJSSP. To analyse the GA’s performance, we
first consider the fitness value, which is meaningful because it
is accompanied by the definition of the satisfaction degrees
µi, i = 1, 2, 3. Secondly, the proposed semantics suggest
evaluating the fuzzy solution in terms of its meaning as an
a-priori solution, using F and E.

1) Performance: Following these ideas, Tables IV and V
present the results obtained with the proposed GA (labelled
as FGA). They correspond to 20 executions of the GA and,

for each execution, to the individual with best fitness value.
Table IV includes the number of GA executions where the
best fitness value is obtained NB, the best fitness value Best,
the average best fitness value across the 20 executions Av,
the worst out of the 20 best fitness values Worst and the
variance in the best fitness value Var. The table also presents
the fitness values obtained in [18] (denoted by S&K). These
values are included for the sake of completeness, but it should
be noticed that it is not known to which definition of the
objective function they correspond (the satisfaction degrees
µi are not known). Table V shows the values of E and F on
a new family of N = 50 crisp problems, in order to further
illustrate the quality of the obtained solutions, as well as the
average due-date satisfaction, given by:

S =
1

NMn

N∑
k=1

M∑
j=1

n∑
i=1

µDi(Ci) (22)

where Ci denotes the crisp completion time for job Ji and Di

its flexible due date, i = 1, . . . , n.

TABLE IV
RESULTS OBTAINED BY THE GA (I).

Problem NB Best Av. Worst Var.

6x6-1 S&K 18 0.775 0.761 0.628 0.002
FGA 3 1.00 0.819 0.595 1.34E-02

6x6-2 S&K 19 0.792 0.779 0.542 0.003
FGA 4 0.798 0.780 0.683 1.00E-03

6x6-3 S&K 20 0.580 0.580 0.580 0.00
FGA 20 1.000 1.000 1.000 0

10x10-1 S&K 1 0.714 0.574 0.439 0.010
FGA 14 1.000 0.977 0.831 1.90E-03

10x10-2 S&K 8 0.818 0.722 0.545 0.008
FGA 20 1.000 1.000 1.000 0

10x10-3 S&K 1 0.560 0.525 0.475 0.003
FGA 3 1.000 0.848 0.723 6.79E-03

Average execution time on a Pentium IV at 3Ghz:
size 6× 6: 9 seconds (0.88 to generate the initial population)
size 10× 10: 97 seconds (27 to generate the initial population)

TABLE V
RESULTS OBTAINED BY THE GA (II).

Problem %F %E %S

6x6-1 8.95 9.02 80.12
6x6-2 0.93 6.23 95.09
6x6-3 5.22 5.26 75.94

10x10-1 23.73 18.25 62.92
10x10-2 10.15 18.68 78.18
10x10-3 27.44 26.62 55.86

2) Need of the A-Posteriori Semantics: We have argued
that different solutions with equal fitness value may not be
equally good a posteriori, when tasks have exact durations.
This point is illustrated by variance analysis on the results
of the GA. Once normality is checked in all sets of crisp
problems and taking into account that these sets have been
generated independently, we run an ANOVA test with factor
95% for each of the six problems. The obtained p-value

(0.00 in all 6 cases) concludes that differences in terms of
relative makespan error E and degree of feasibility F among
different solutions are important. The values of these quality
measures differs greatly within different executions. This is not
surprising, since we have already seen that low fitness values
imply high errors, but high fitness values may correspond to
different solutions with different errors E and F . This simply
confirms that two different solutions to the FJSSP may yield
identical satisfaction degrees; it is then necessary to use E and
F to further discriminate between them.

3) Comparison with Random Orderings: The proposed
semantics assumes that the solution to the FJSSP is used
to provide an ordering for the execution of tasks. Someone
sceptical might argue that it would be better just to obtain
a task ordering with a simpler method and avoid the cost of
finding a solution to the FJSSP. However, we would expect
the solution to the FJSSP to produce a “better” ordering,
given that it is using all the available information. An obvious
experiment is to compare the ordering provided by the solution
to the FJSSP with a random ordering of tasks (the simplest
ordering we can think of). Results in Table VI correspond to
the average feasibility and makespan errors obtained with 100
random permutations of tasks and with M = 20 executions of
the proposed GA. They confirm that the solution to the FJSSP
obtained with the GA is indeed making use of the available
information and provides a better ordering of tasks than a
simple random ordering.

TABLE VI
GA VS. RANDOM ORDERINGS 10× 10.

Problem Ordering %F %E

10x10-1 GA 23.73 18.25
random 81.79 47.80

10x10-2 GA 10.15 18.68
random 85.76 40.91

10x10-3 GA 27.44 26.62
random 79.23 46.55

4) Convergence: The average fitness value and its variance
across several executions of the GA in Table IV suggest that
this algorithm converges adequately with an average fitness
value in all executions close to 1. To further confirm this
fact, a t-test at 95% was performed for problems 10 × 10-
1 and 10 × 10-3, after checking the normality hypotheses.
These problems were chosen for being the only ones where the
optimal solution is not always obtained. The null hypothesis
H0 was “mean=0.97” for problem 10×10-1 and “mean=0.81”
for problem 10 × 10-3. The alternative hypothesis Ha was
“mean < 0.97” and “mean< 0.81” respectively. The obtained
p-value (0.183 and 0.462 respectively) is too big to reject
the null hypotheses. Hence, nothing seems to indicate that
the fitness value converges to a value lower than 0.97 and
0.81 respectively. All data related to this statistical analysis for
problem 10× 10-3 can be seen in Table VII. Figure 7 further
illustrates the convergence of the GA for problem 10 × 10-
3, showing the evolution of the values of µi, i = 1, 2, 3,
along the 200 generations. We observe a decrease in the
satisfaction degrees when niches are merged into a single

population, but only few generations are needed to recover
previous satisfaction values and the slope of the evolution
curves is then higher.

TABLE VII
t-TEST ANALYSIS FOR FITNESS VALUE f IN PROBLEM 10× 10-3.

Parameters
Analysis 1 Sample t H0: Mean = 0.81 0.81
Input Variable(s) f Ha: Mean < 0.81 -1

Confidence 95

t-Test Analysis
N Mean Std. Dev. Std. Err. t df p-value

f 100 0.81 0.083 0.008 -0.095 99.0 0.462

5) Comparative analysis: We have proposed a methodol-
ogy to deal with uncertainty in the solutions to FJSSP obtained
by the GA. Let us compare this with classical methodologies
used for evolutionary algorithms in uncertain environments,
as described in [8]. Although the problems considered in our
work do not fall clearly in any of the described categories,
according to the a-posteriori interpretation, we might consider
that durations are somehow subject to changes once the opti-
mal solution has been found. Our algorithm tries to take these
changes into account in the optimisation process. In that sense,
we are looking for robust solutions and, in consequence, they
are not optimal solutions. This is also the case in [9], where
the authors argue that “there is usually a tradeoff between the
quality and robustness”.

There are many possible kinds of robustness [8]. The
robustness we are looking for in our solutions refers only to
the optimal solution being insensitive to small variations in
the task durations. It would not be natural that the solution be
insensitive to variations in environmental parameters, specially
for z0i , z

1
i , because these parameters determine the definition

of the objective function. To measure the robustness of our
solutions, we have studied the variation of the error for a
processing order obtained by the GA on a set of 50 crisp
problems. After all, these problems are a sample of possible
variations in the variable values generated according to their
probability distributions. More precisely, we have looked at
the standard deviation for these errors, and we have obtained
deviations between 2% and 4%, depending on the problem
and processing order used.

In this case, fitness evaluation is similar to that defined in
the presence of noise [8]. In fact, there are certain similarities
between the “Explicit Averaging” methodology proposed in
this paper and the one that we propose herein to evaluate
solutions. In [8], a sample is generated to estimate the fitness
value. Here, we generate a sample to select a task-processing
order from the solutions obtained by the fuzzy optimisation
algorithm.

VI. CONCLUSIONS AND FUTURE WORK

We have considered the fuzzy job shop problem or FJSSP,
a job shop problem where durations of tasks are uncertain,
due-dates are allowed to be flexible and where the objective
function is obtained in the framework of fuzzy decision

making. We have also described a genetic algorithm from
the literature that finds solutions to this problem. We have
proposed a new semantics for this type of problem and its
solutions, which are seen as a-priori schedules, obtained before
durations of tasks can be precisely known. This semantics
suggests an evaluation methodology for solutions, based on
simulating possible realisations of task durations and using
the obtained family of crisp problems to provide two new
measures for the quality of a solution. Finally, we have shown
some results on problems from the literature. These problems
are not complete, in the sense that the objective function is
not completely defined. For this reason, we have first used
the proposed quality measures to obtain a heuristic definition
of satisfaction degrees used in the objective function. Having
done this, the potential of the proposed approach has been
illustrated with results obtained with the genetic algorithm,
analysed based on both the objective function values and the
proposed evaluation methodology.

In the future, it would be interesting to obtain more bench-
mark problems, based on those available for the classical JSSP.
These problems could be used to further test the existing
methods and new ones. Moreover, the proposed semantics
could be used both to design these new methods and compare
the different solutions obtained. It is also possible to extend
some of the proposed ideas to other scheduling problems,
such as flow shop. Finally, it is our view that future work on
critical path analysis and local search and heuristic methods
would help to shed more light on the FJSSP, as well as other
scheduling problems.

ACKNOWLEDGMENTS

We would like to thank our colleague Marı́a Sierra for
her enthusiastic help. We are also grateful to the anonymous
referees for their insightful comments.

REFERENCES

[1] I. González Rodrı́guez, C. R. Vela, and J. Puente, “An evolutionary
approach to designing and solving fuzzy job-shop problems,” Proc. of
IWINAC2005, Lecture Notes in Computer Science, vol. 3562, pp. 74–83,
2005.

[2] P. Brucker, Scheduling Algorithms, 4th ed. Springer, 2004.
[3] P. Brucker and S. Knust, Complex Scheduling. Springer, 2006.
[4] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-

ductory Analysis with Applications to Biology, Control and Artificial
Intelligence. The University of Michigan Press, 1975.

[5] D. C. Mattfeld, Evolutionary Search and the Job Shop Investigations on
Genetic Algorithms for Production Scheduling. Springer-Verlag, 1995.

[6] C. Bierwirth and D. C. Mattfeld, “Production scheduling and reschedul-
ing with genetic algoritms,” Evolutionary Computation, vol. 7, pp. 1–17,
1999.

[7] R. Varela, C. R. Vela, J. Puente, and A. Gómez, “A knowledge-
based evolutionary strategy for scheduling problems with bottlenecks,”
European Journal of Operational Research, vol. 145, pp. 57–71, 2003.

[8] Y. Jin and J. Branke, “Evolutionay optimization in uncertain
environments–a survey,” IEEE Transactions on Evolutionary Compu-
tation, vol. 9, pp. 303–317, 2005.

[9] J. Branke and D. Mattfeld, “Anticipation and flexibility in dynamic
scheduling,” International Journal of Production Research, vol. 43, pp.
3103–3129, 2005.

[10] F. Chan, S. Chung, and P. Chan, “Application of genetic algorithms
with dominant genes in a distributed scheduling problem in flexible
manufacturing systems,” International Journal of Production Research,
vol. 44, pp. 523–543, 2006.

[11] J. Tay and D. Wibowo, “An effective chromosome representation for
evolving flexible job shop schedules,” Genetic and Evolutionay Compu-
tation Conference (GECCO), Lecture Notes in Computer Science, vol.
3103, pp. 210–221, 2004.

[12] F. Chan, T. Wong, and P. Chan, “Flexible job-shop scheduling prob-
lemunder resource constraints,” International Journal of Production
Research, vol. 44, pp. 2071–2089, 2006.

[13] D. Dubois, H. Fargier, and P. Fortemps, “Fuzzy scheduling: Modelling
flexible constraints vs. coping with incomplete knowledge,” European
Journal of Operational Research, vol. 147, pp. 231–252, 2003.

[14] R. Słowiński and M. Hapke, Eds., Scheduling Under Fuzziness, ser.
Studies in Fuzziness and Soft Computing. Physica-Verlag, 2000,
vol. 37.

[15] P. Fortemps, “Jobshop scheduling with imprecise durations: a fuzzy
approach,” IEEE Transactions of Fuzzy Systems, vol. 7, pp. 557–569,
1997.

[16] F.-T. Lin, “Fuzzy job-shop scheduling based on ranking level (λ, 1)
interval-valued fuzzy numbers,” IEEE Transactions on Fuzzy Systems,
vol. 10, no. 4, pp. 510–522, 2000.

[17] M. Sakawa and T. Mori, “An efficient genetic algorithm for job-shop
scheduling problems with fuzzy processing time and fuzzy duedate,”
Computers & Industrial Engineering, vol. 36, pp. 325–341, 1999.

[18] M. Sakawa and R. Kubota, “Fuzzy programming for multiobjective job
shop scheduling with fuzzy processing time and fuzzy duedate through
genetic algorithms,” European Journal of Operational Research, vol.
120, pp. 393–407, 2000.

[19] C. Fayad and S. Petrovic, “A fuzzy genetic algorithm for real-world job-
shop scheduling,” Innovations in Applied Artificial Intelligence, Lecture
Notes in Computer Science, vol. 3533, pp. 524–533, 2005.

[20] G. Celano, A. Costa, and S. Fichera, “An evolutionary algorithm for
pure fuzzy flowshop scheduling problems,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 11, pp. 655–
669, 2003.

[21] S. Petrovic and X. Song, “A new approach to two-machine flow
shop problem with uncertain processing time,” in Fourth International
Symposium on Uncertainty, Modeling and Analysis (ISUMA), B. Ayyub
and N. Attoh-Okine, Eds. IEEE Computer Society, 2003, pp. 110–115.

[22] S. Chanas, D. Dubois, and P. Zieliński, “On the sure criticality of tasks
in activity networks with imprecise durations,” IEEE Transactions on
Systems, Man and Cybernetics–Part B: Cybernetics, vol. 32, pp. 393–
407, 2002.

[23] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, 2nd ed.
Chapman & Hall, 2000.

[24] G. Bortolan and R. Degani, “A review of some methods for ranking
fuzzy subsets,” in Readings in Fuzzy Sets for Intelligence Systems,
D. Dubois, H. Prade, and R. Yager, Eds. Amsterdam (NL): Morgan
Kaufmann, 1993, pp. 149–158.

[25] A. Kaufmann and M. Gupta, Introduction to Fuzzy Arithmetic. New
York: Van Nostrand Reinhold, 1991.

[26] D. Dubois and H. Prade, “A review of fuzzy set aggregation connec-
tives,” Information Sciences, vol. 36, pp. 85–121, 1985.

[27] ——, “Weighted minimum and maximum operations in fuzzy set
theory,” Information Sciences, vol. 39, pp. 205–210, 1986.

[28] R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy environ-
ment,” Management Science, vol. 17, no. 4, pp. 141–164, 1970.

[29] B. Giffler and G. L. Thomson, “Algorithms for solving production
scheduling problems,” Operations Research, vol. 8, pp. 487–503, 1960.

[30] M. Litoiu and R. Tadei, “Real-time task scheduling with fuzzy deadlines
and processing times,” Fuzzy Sets and Systems, vol. 117, pp. 23–45,
2001.

[31] S. Chanas and A. Kasperski, “Possible and necessary optimality of solu-
tions in the single machine scheduling problem with fuzzy parameters,”
Fuzzy Sets and Systems, vol. 142, pp. 359–371, 2004.

[32] C. Oguz and F. Ercan, “A genetic algorithm for hybrid flow-shop
scheduling with multiprocessor tasks,” Journal of Scheduling, vol. 8,
pp. 321–351, 2005.

Inés González Rodrı́guez received the MSc de-
gree in Mathematics from the University of Oviedo,
Spain, in 1999 and the PhD degree in Artificial Intel-
ligence from the University of Bristol, UK, in 2002.
She is currently a Temporary Lecturer in the De-
partment of Mathematics, Statistics and Computing
of the University of Cantabria, Spain. Previously, she
worked as Teaching Assistant at the University Rey
Juan Carlos and the University of Oviedo, Spain.
Her research interests include uncertainty theories,
soft computing and their application to scheduling

and machine learning problems.

Jorge Puente received the MEng and PhD degrees
in Computer Science from the University of Oviedo,
Spain, in 1995 and 2001 respectively. He is currently
Assistant Professor in the Department of Computer
Science and member of the Artificial Intelligence
Centre of the University of Oviedo. His current re-
search interests include soft computing, evolutionary
computation and other meta-heuristics and Internet
collaborative applications. He is a member of the
Spanish Association for the Artificial Intelligence
(AEPIA).

Camino R. Vela received the MSc degree in Math-
ematics from the University of Zaragoza, Spain,
in 1986 and the PhD degree in Mathematics in
the University of Oviedo, Spain, in 1990. She is
currently Assistant Professor in the Department of
Computer Science and member of the Artificial
Intelligence Centre of the University of Oviedo.
Her research interests include heuristic search, evo-
lutionary computation, soft computing and other
meta-heuristics techniques and their application to
constraint satisfaction problems such as scheduling

She is a member of the Spanish Association for the Artificial Intelligence
(AEPIA).

Ramiro Varela received the MSc degree in Physics
from the University of Santiago de Compostela,
Spain, in 1984 and the PhD degree in Computer
Science from the University of Oviedo, Spain, in
1995. He is currently Assistant Professor with the
Department of Computer Science and member of
the Artificial Intelligence Centre of the University
of Oviedo. His research interests include heuristic
search, evolutionary computation and other meta-
heuristics and the application of these techniques
to problem solving. He is member of the Spanish

Association for Artificial Intelligence (AEPIA).

