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Abstract. We determine the linear complexity of p2-periodic binary
threshold sequences derived from polynomial quotient, which is defined
by the function (uw−uwp)/p (mod p). When w = (p−1)/2 and 2p−1 6≡ 1
(mod p2), we show that the linear complexity is equal to one of the
following values

{
p2 − 1, p2 − p, (p2 + p)/2 + 1, (p2 − p)/2

}
, depend-

ing whether p ≡ 1, −1, 3, −3 (mod 8). But it seems that the method
can’t be applied to the case of general w.
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1 Introduction

For an odd prime p and an integer u with gcd(u, p) = 1, the Fermat quotient
qp(u) modulo p is defined as the unique integer with

qp(u) ≡ up−1 − 1

p
(mod p), 0 ≤ qp(u) ≤ p− 1.

We extend the definition,

qp(kp) = 0, k ∈ Z.

An alternative definition of qp(u) is given by

qp(u) ≡ up−1 − u(p−1)p

p
(mod p) (1)

for all u. There are several results which involve the distribution and structure of
Fermat quotients qp(u) modulo p and it has numerous applications in computa-
tional and algebraic number theory, see [1, 2]. The papers [3–6] studied character
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sums with Fermat quotients and [7, 8] investigated the value sets of Fermat quo-
tients. Even recently, Fermat quotients have been studied from the viewpoint of
cryptography and dynamical systems, see [9–14].

Chen and Winterhof in [4] generalized the function (1) introducing a param-
eter w ∈ {1, . . . p− 1}, to define

Fw(u) ≡ uw − uwp

p
(mod p), 0 ≤ Fw(u) ≤ p− 1, u ≥ 0, (2)

which is called a polynomial quotient modulo p.
Du, Klapper and Chen used the construction of [11] for Fermat quotients to

define a family of binary threshold sequences (eu) by

eu =

{
0, if 0 ≤ Fw(u) < p/2,

1, otherwise,
(3)

for u ≥ 0, see [12]. We note that (eu) is p2-periodic since

Fw(u+ kp) = Fw(u) + wkuw−1 (mod p). (4)

Certain interesting properties have been investigated for (eu) under some special
conditions. If w = p− 1, Chen, Ostafe and Winterhof considered the correlation
measure and linear complexity profile of (eu) using certain exponential sums
in [11]. Chen, Hu and Du determined the linear complexity (see below for the
definition) of (eu) if 2 is a primitive root modulo p2 in [10].

We recall that the linear complexity L((su)) of a T -periodic sequence (su)
over the binary field F2 is the least order L of a linear recurrence relation over
F2

su+L = cL−1su+L−1 + · · ·+ c1su+1 + c0su for u ≥ 0

which is satisfied by (su) and where c0 = 1, c1, . . . , cL−1 ∈ F2. The polynomial

M(x) = xL + cL−1x
L−1 + · · ·+ c0 ∈ F2[x]

is called the minimal polynomial of (su). The generating polynomial of (su) is
defined by

s(x) = s0 + s1x+ s2x
2 + · · ·+ sT−1x

T−1 ∈ F2[x].

It is easy to see that

M(x) = (xT − 1)/gcd
(
xT − 1, s(x)

)
,

hence
L((su)) = T − deg

(
gcd(xT − 1, s(x))

)
, (5)

which is the degree of the minimal polynomial, see [15–17] for a more detailed
exposition.

Du, Klapper and Chen extended the corresponding results of [10] in [12] to
the case of all w ∈ {1, . . . , p− 1} as the following theorem.
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Theorem 1. [12] Let (eu) be the p2-periodic binary sequence defined as in (3).
If 2 is a primitive root modulo p2, then the linear complexity of (eu) is

L((eu)) =


p2 − p, if p ≡ 1 (mod 4),

p2 − 1, if p ≡ 3 (mod 4) and w > 1,

p2 − p+ 1, if p ≡ 3 (mod 4) and w = 1.

We have extended Theorem 1 in [9] for the case of w = p − 1 under a more
general condition of 2p−1 6≡ 1 (mod p2). If 2 is a primitive root modulo p2, then
we always have 2p−1 6≡ 1 (mod p2). But the converse is not true, because there
do exist such primes p, e.g., p = 43. We find that the idea of [9] can help us to
study the linear complexity of (eu) under the condition of w = (p − 1)/2 and
2p−1 6≡ 1 (mod p2), as described in the following theorem.

Theorem 2. Let (eu) be the p2-periodic binary sequence defined as in (3) with
w = (p− 1)/2. Assume that 2p−1 6≡ 1 (mod p2) then,

L((eu)) =


p2 − p or (p2 − p)/2, if p ≡ 1 (mod 8),

p2 − 1 or (p2 + p)/2 + 1, if p ≡ −1 (mod 8),

p2 − p, if p ≡ −3 (mod 8),

p2 − 1, if p ≡ 3 (mod 8).

In order to prove the theorem, we need to introduce the following function,

Hw(u) ≡ u−wFw(u) (mod p), with 0 ≤ Hw(u) ≤ p− 1,

if gcd(u, p) = 1 and otherwise Hw(u) = 0, and define the (p2-periodic) binary
sequence (hu) by

hu =

{
0, if 0 ≤ Hw(u) < p/2,

1, otherwise.
(6)

We will study the linear complexity of (eu) in terms of (hu) if w = (p− 1)/2.

2 Auxiliary Lemmas

From (2), it is easy to check that for gcd(uv, p) = 1

(uv)−wFw(uv) ≡ u−wFw(u) + v−wFw(v) (mod p), (7)

see [4]. So according to (4) and (7), we have

Hw(u+ kp) = Hw(u) + wku−1 (mod p) (8)

if gcd(u, p) = 1, and

Hw(uv) ≡ Hw(u) +Hw(v) (mod p) (9)
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if gcd(uv, p) = 1. Let

Dl = {u : 0 ≤ u ≤ p2 − 1, gcd(u, p) = 1, Hw(u) = l}

for l = 0, 1, . . . , p− 1 and P = {kp : 0 ≤ k ≤ p− 1}, one can give an equivalent
definition for the sequence (hu) in (6),

hu =

{
0, if u ∈ D0 ∪ · · · ∪D(p−1)/2 ∪ P,
1, if u ∈ D(p+1)/2 ∪ · · · ∪Dp−1,

0 ≤ u ≤ p2 − 1.

For l ∈ {0, . . . , p− 1}, we define

Ql =

{
u ∈ Dl :

(
u

p

)
= 1

}
and Nl =

{
u ∈ Dl :

(
u

p

)
= −1

}
,

here and hereafter
(
·
p

)
denotes the Legendre symbol. We use the notation aDl =

{ab (mod p2) : b ∈ Dl}. Using (8) and (9) we have the following basic facts:

1. aDl = Dl+l′ (mod p) if a ∈ Dl′ .
2. aQl = Ql+l′ (mod p) if a ∈ Ql′ .
3. aNl = Nl+l′ (mod p) if a ∈ Ql′ .
4. aQl = Nl+l′ (mod p) if a ∈ Nl′ .
5. aNl = Ql+l′ (mod p) if a ∈ Nl′ .
6. For l ∈ {0, . . . , p − 1}, |Dl|, the cardinality of Dl, is equal to p − 1. |Ql| =
|Nl| = (p− 1)/2.

We note that Facts 1-5 can be easily obtained from (9). Fact 1 implies that
the cardinality of Dl is equal to the cardinality of Dl′ , for any pair l, l′. So each
Dl has p − 1 elements for l ∈ {0, . . . , p − 1}. On the other hand, the following
equality holds

{a (mod p) : a ∈ Dl} = {1, 2, . . . , p− 1}, l ∈ {0, 1, . . . , p− 1}

by (8). In the set {1, 2, . . . , p − 1}, there are (p − 1)/2 quadratic residues and
(p−1)/2 quadratic nonresidues, respectively. So both Ql and Nl contain (p−1)/2
elements.

The definition of the sets Dl, Ql, Nl allows us to show a relationship be-
tween the sequences (eu) and (hu) for w = (p− 1)/2. According to the previous
definitions, we have

eu =


hu, if u ∈ P ∪D0,

hu, if u ∈ Q1 ∪Q2 ∪ · · · ∪Qp−1,

hu + 1, if u ∈ N1 ∪N2 ∪ · · · ∪Np−1.

The reason is that when w = (p− 1)/2, we have

H p−1
2

(u) ≡
(
u

p

)
F p−1

2
(u) (mod p).
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This implies a relation between the generating polynomials of the sequences (eu)
and (hu). Define

Dl(x) =
∑
u∈Dl

xu ∈ F2[x], Ql(x) =
∑
u∈Ql

xu ∈ F2[x], Nl(x) =
∑
u∈Nl

xu ∈ F2[x]

for l ∈ {0, . . . , p− 1}. We see that the generating polynomial of (hu) is

h(x) =

p2−1∑
u=0

hux
u =

p−1∑
l= p+1

2

Dl(x) ∈ F2[x]

and the generating polynomial of (eu) is

e(x) =

p2−1∑
u=0

eux
u = h(x) +

p−1∑
l=1

Nl(x) ∈ F2[x].

Below we will consider the common roots of e(x) and xp
2 − 1. The number of

the common roots will lead to the values of linear complexity of (eu) by (5).
In the following, let d be the multiplicative order of 2 modulo p2, i.e., d is the

least positive integer such that 2d ≡ 1 (mod p2). Let F2d be the field of order 2d

and β ∈ F2d a primitive p2-th root of unity. We note that most calculations below
are mainly performed in finite fields with characteristic two. In the context, we
denote by Zp = {0, 1, . . . , p − 1} (respectively Zp2 = {0, 1, . . . , p2 − 1}) the
residue class ring modulo p (respectively p2) and by Z∗p2 the unit group of Zp2 .

Lemma 1. Let β ∈ F2d be a primitive p2-th root of unity. We have

e(βn) =

{
0, if n = 0,
p−1
2 , if n = kp, k = 1, . . . , p− 1.

Proof. If n = 0, we have e(β0) = h(1)+
p−1∑
l=1

Nl(1) = (p−1)2
2 + (p−1)2

2 ≡ 0 (mod 2).

For n = kp with 1 ≤ k ≤ p − 1, we use the following facts to find the value
of the sum,

{a (mod p) : a ∈ Dl} = Zp and {a (mod p) : a ∈ Nl} = N

where N is the set of quadratic nonresidues of Zp. Using the notation N(x) =∑
u∈N

xu, we find

h(βkp) =

p−1∑
l= p+1

2

∑
u∈Dl

βkpu =

p−1∑
l= p+1

2

∑
u∈Dl

(βpk)u

=

p−1∑
l= p+1

2

(βpk + β2pk + · · ·+ β(p−1)pk) =
p− 1

2



6 Zhixiong Chen, and Domingo Gómez-Pérez

and hence

e(βkp) = h(βkp) +

p−1∑
l=1

Nl(β
kp) =

p− 1

2
+

p−1∑
l=1

N(βkp)

=
p− 1

2
+ (p− 1)

∑
u∈N

βkup =
p− 1

2
.

With this remark, we finish the proof.

Lemma 2. Let β ∈ F2d be a primitive p2-th root of unity. For all n ∈ Z∗p2 , we

have
p−1∑
l=0

Nl(β
n) = 0.

Proof. If a : 0 < a < p is a quadratic nonresidue modulo p, we find that a+ kp
is also a quadratic nonresidue modulo p for all 0 ≤ k ≤ p− 1. So we have

p−1∑
l=0

Nl(β
n) =

p−1∑
a=1

( a
p )=−1

p−1∑
k=0

βn(a+kp) =

p−1∑
a=1

( a
p )=−1

βna

p−1∑
k=0

βnkp.

This finishes the proof.

The next lemma is a technical lemma, which will be used in the proof of the
main theorem.

Lemma 3. Let β ∈ F2d be a primitive p2-th root of unity. If 2 ∈ D`0 for some
1 ≤ `0 ≤ p− 1, we have Dl(β

n) 6= 0 for all 0 ≤ l ≤ p− 1 and n ∈ Z∗p2 .

Proof. Since 2 ∈ D`0 , i.e.,H p−1
2

(2) = `0, by (9) we haveH p−1
2

(2j) ≡ j`0 (mod p)

and hence each Dl (0 ≤ l ≤ p− 1) exactly contain one element 2j (mod p2) for
0 ≤ j ≤ p− 1.

Now we show Dl(β
n) 6= 0 for all 0 ≤ l ≤ p − 1 and n ∈ Z∗p2 . Suppose that

there is an n0 ∈ Di0 for some 1 ≤ i0 ≤ p − 1 such that Dl0(βn0) = 0 for some
0 ≤ l0 ≤ p− 1. Then we have

0 = (Dl0(βn0))2
j

= Dl0(β2jn0) = Dl0+i0+j`0 (mod p)(β)

for all 0 ≤ j ≤ p − 1. That is, for all 0 ≤ l ≤ p − 1, Dl(β) = 0. This implies
Dl(β

n) = 0 for all n ∈ Z∗p2 , which indicates that, for any l = 0, 1, . . . , p − 1,

the polynomial Dl(x) has at least p(p − 1) many roots. However, the proof of
[9, Lemma 4] told us that at least one Dl(x) has degree < p2 − p, which is a
contradiction. Therefore, Dl(β

n) 6= 0 for all 0 ≤ l ≤ p− 1 and n ∈ Z∗p2 .

Lemma 4. Let β ∈ F2d be a primitive p2-th root of unity, then

1. If 2 ∈ Q`0 for some 1 ≤ `0 ≤ p− 1 and e(βn0) = 0 for some n0 ∈ Z∗p2 , then

there exist exactly (p2 − p)/2 many n ∈ Z∗p2 such that e(βn) = 0.
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2. If 2 ∈ N`0 for some 1 ≤ `0 ≤ p− 1, then e(βn) 6= 0 for all n ∈ Z∗p2 .

Proof. It is easy to see that for all n ∈ Z∗p2

e(βn) = h(βn) +

p−1∑
l=1

Nl(β
n) = h(βn) +N0(βn)

by Lemma 2. Let

∆j(x) =

p−1+j∑
l= p+1

2 +j

Dl mod p(x) ∈ F2[x], j ∈ {0, . . . , p− 1}.

Then together with Facts 1, 3 and 5, we have

e(βn) = h(βn) +N0(βn) =

{
∆l(β) +Nl(β), if n ∈ Ql,

∆l(β) +Ql(β), if n ∈ Nl,

which indicates e(βm) 6= e(βn) for m ∈ Ql and n ∈ Nl by Lemma 3.

We suppose that n0 ∈ Di0 for some 1 ≤ i0 ≤ p− 1. If n0 ∈ Qi0 and 2 ∈ Q`0 ,
then 2jn0 ∈ Qj`0+i0 (mod p) for 0 ≤ j ≤ p− 1. We derive

e(βn) = ∆j`0+i0 (mod p)(β) +Nj`0+i0 (mod p)(β)

= e(β2jn0) = (e(βn0))2
j

= 0

for all n ∈ Qj`0+i0 (mod p) and hence e(βn) 6= 0 for all n ∈ Nj`0+i0 (mod p). So we
have for n ∈ Z∗p2

e(βn) = 0 iff n ∈ Q0 ∪Q1 ∪ · · · ∪Qp−1.

Similarly, if n0 ∈ Ni0 and 2 ∈ Q`0 , we have

e(βn) = 0 iff n ∈ N0 ∪N1 ∪ · · · ∪Np−1.

Thus we conclude that there exist p(p−1)/2 many n ∈ Z∗p2 such that e(βn) =

0 since both Ql and Nl contain (p− 1)/2 elements.

For the case of 2 ∈ N`0 , i.e.,
(

2
p

)
= −1, if e(βn0) = 0 for some n0 ∈ Qi0 ,

then we have 2pn0 ∈ Ni0 and

e(β2pn0) = (e(βn0))2
p

= 0,

and so e(βn) = 0 for all n ∈ Ni0 ∪Qi0 (= Di0), a contradiction. So in this case,
e(βn) 6= 0 for all n ∈ Z∗p2 . Similarly, the assumption of e(βn0) = 0 for some
n0 ∈ Ni0 will also lead to a contradiction.
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3 Proof of Main Theorem and Final Remarks

Proof (Proof of Theorem 2). In order to use Lemmas 3 and 4, we first prove
H p−1

2
(2) 6= 0 if 2p−1 6≡ 1 (mod p2). Suppose that

2p−1 ≡ 1 + zp (mod p2)

for some 0 < z < p. According to the definition of F p−1
2

(u), we have

F p−1
2

(4) ≡ 4
p−1
2 − 4

p−1
2 p

p

≡ 2p−1 − 2(p−1)p

p

≡ (1 + zp)− (1 + zp)p

p

≡ z 6≡ 0 (mod p).

So we derive

H p−1
2

(2) ≡ 2−1H p−1
2

(4) ≡ 2−1
(

4

p

)
F p−1

2
(4) 6≡ 0 (mod p).

Now we suppose that
(

2
p

)
= 1. In this case, p ≡ ±1 (mod 8). If p ≡ 1

(mod 8), we have e(βn) = 0 if n ∈ {kp : 0 ≤ k ≤ p− 1} by Lemma 1 and there
are either no numbers in Z∗p2 or p(p−1)/2 many n ∈ Z∗p2 such that e(βn) = 0 by

Lemma 4. Then the number of the common roots of e(x) and xp
2 − 1 is either

p or (p2 + p)/2 and hence the linear complexity of (eu) is p2 − p or (p2 − p)/2.
For the case of p ≡ −1 (mod 8), the result follows similarly.

Under the condition of
(

2
p

)
= −1, it can be proved in a similar way.

In this article, we estimate possible values of linear complexity of certain binary
sequences of period p2 defined by polynomial quotients Fw with w = (p−1)/2 un-
der the condition of 2p−1 6≡ 1 (mod p2). The results depend on whether p ≡ ±1
or ±3 (mod 8), respectively. Our research partially extends results of linear com-
plexity of the corresponding binary sequences when 2 is a primitive root modulo
p2 in [12]. But it seems that the method can’t be applied to the case of general
w. The reason is the relationship H(p−1)/2(u) ≡ {F(p−1)/2(u),−F(p−1)/2(u)}
(mod p) does not hold for other values of w.

The calculation of linear complexity of (eu) was done for all primes p < 200

and
(

2
p

)
= 1. The experiment results illuminate that the linear complexity only

equals p2 − p or p2 − 1. So we might ask that whether there exist primes p such
that linear complexity equals (p2 − p)/2 or (p2 + p)/2 + 1.

We finally note that, our theorem covers most primes (possessing the property
of 2p−1 6≡ 1 (mod p2)) since the primes p satisfying 2p−1 ≡ 1 (mod p2) are very
rare. To date the only known such primes are p = 1093 and p = 3511 and it was
reported that there are no new such primes p < 4× 1012, see [18].
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1. Ernvall, R., Metsänkylä, T.: On the p-divisibility of Fermat quotients. Math.
Comp. 66(219) (1997) 1353–1365

2. Granville, A.: Some conjectures related to Fermat’s last theorem. In: Number
theory (Banff, AB, 1988). de Gruyter, Berlin (1990) 177–192

3. Chang, M.C.: Short character sums with Fermat quotients. Acta Arith. 152(1)
(2012) 23–38

4. Chen, Z., Winterhof, A.: Additive character sums of polynomial quotients. Preprint

5. Shparlinski, I.: Character sums with Fermat quotients. Quart. J. Math. Oxford.
62(4) (2011) 1031–1043

6. Shparlinski, I.E.: Bounds of multiplicative character sums with Fermat quotients
of primes. Bull. Aust. Math. Soc. 83(3) (2011) 456–462

7. Shparlinski, I.E.: On the value set of Fermat quotients. Proc. Amer. Math. Soc.
140(140) (2011) 1199–1206

8. Shparlinski, I.E.: Fermat quotients: exponential sums, value set and primitive
roots. Bull. Lond. Math. Soc. 43(6) (2011) 1228–1238

9. Chen, Z., Du, X.: On the linear complexity of binary threshold sequences derived
from Fermat quotients. Des. Codes Cryptogr. (In press)

10. Chen, Z., Hu, L., Du, X.: Linear complexity of some binary sequences derived from
Fermat quotients. China Communications 9(2) (2012) 105–108

11. Chen, Z., Ostafe, A., Winterhof, A.: Structure of pseudorandom numbers derived
from Fermat quotients. In: Arithmetic of finite fields. Volume 6087 of Lecture
Notes in Comput. Sci. Springer, Berlin (2010) 73–85

12. Du, X., Klapper, A., Chen, Z.: Linear complexity of pseudorandom sequences
generated by Fermat quotients and their generalizations. Inf. Proc. Letters 112(6)
(2012) 233 – 237

13. Gomez, D., Winterhof, A.: Multiplicative character sums of fermat quotients and
pseudorandom sequences. Period. Math. Hungar. (In press)

14. Ostafe, A., Shparlinski, I.E.: Pseudorandomness and dynamics of Fermat quotients.
SIAM J. Discrete Math. 25(1) (2011) 50–71

15. Lidl, R., Niederreiter, H.: Finite fields. Second edn. Volume 20 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge (1997)

16. Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the
discrete Fourier transform. J. Complexity 18(1) (2002) 87–103



10 Zhixiong Chen, and Domingo Gómez-Pérez
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