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Summary. * We study the distribution of s-dimensional points of digital explicit inversive
pseudorandom numbers with arbitrary lags. We prove a discrepancy bound and derive results
on the pseudorandomness of the binary threshold sequence derived from digital explicit in-
versive pseudorandom numbers in terms of bounds on the correlation measure of order k and
the linear complexity profile. The proofs are based on bounds on exponential sums and earlier
relations of Mauduit, Niederreiter and Sárközy between discrepancy and correlation measure
of order k and of Brandstätter and the third author between correlation measure of order k and
linear complexity profile, respectively.

Summary. We study the distribution of s-dimensional points of digital explicit inversive
pseudorandom numbers with arbitrary lags. We prove a discrepancy bound and derive re-
sults on the pseudorandomness of the binary threshold sequence derived from digital explicit
inversive pseudorandom numbers in terms of bounds on the correlation measure of order k and
the linear complexity profile. The proofs are based on bounds on exponential sums and earlier
relations of Mauduit, Niederreiter and Sárközy between discrepancy and correlation measure
of order k and of Brandstätter and the third author between correlation measure of order k and
linear complexity profile, respectively.
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1 Introduction

Inversive methods are attractive alternatives to the linear method for generating pseudorandom
numbers, see the recent surveys [11, 12, 17]. In this paper we analyze the distribution of
digital explicit inversive pseudorandom numbers introduced in [13] and further analyzed in
[6, 13, 14, 15, 16].

Let q = pr be a prime power and Fq the finite field of order q. Let

γ =
{

γ−1, if γ ∈ F∗q,
0, if γ = 0.

We order the elements of Fq = {ξ0,ξ1, . . . ,ξq−1} using an ordered basis {γ1, . . . ,γr} of Fq
over Fp for 0≤ n < q,

ξn = n1γ1 +n2γ2 + · · ·+nrγr,

if
n = n1 +n2 p+ · · ·+nr pr−1, 0≤ ni < p, i = 1, . . . ,r.

For n ≥ 0 we define ξn+q = ξn. Then the digital explicit inversive pseudorandom number
generator of period q is defined by

ρn = αξn +β , n = 0,1, . . .

for some α,β ∈ Fq with α 6= 0.
If

ρn = cn,1γ1 + cn,2γ2 + · · ·+ cn,rγr

with all cn,i ∈ Fp, we derive digital explicit inversive pseudorandom numbers of period q in
the interval [0,1) by defining

yn =
r

∑
j=1

cn, j p− j, n = 0,1, . . . . (1)

For s ≥ 1 the distribution of points (yn,yn⊕1, . . . ,yn⊕(s−1)), where n⊕ k = d if ξn +
ξk = ξd , 0 ≤ n,k,d < q, was studied in [13]. Here we study the distribution of the points
(yn+d1 , . . . ,yn+ds) for any integers 0≤ d1 < · · ·< ds < q and the integer addition +. We prove
a discrepancy bound which is based on estimates for exponential sums generalizing the earlier
result of the first author [3] for s = 2 using some additional ideas.

As applications we use some results of [4] and [1] to derive bounds on the correlation mea-
sure of order k and linear complexity profile of the binary sequences Rq = (r0,r1, . . . ,rq−1)
defined by

rn =
{

0, if 0≤ yn < 1
2 ,

1, if 1
2 ≤ yn < 1,

0≤ n < q. (2)

Note that for such applications a discrepancy bound with arbitrary lags 0≤ d1 < · · ·< ds < q
is needed. Most known discrepancy bounds on nonlinear pseudorandom numbers found in the
literature consider only the special lags di = i− 1 for i = 1, . . . ,s. In many cases the analysis
of the discrepancy becomes much more intricate for arbitrary lags, see for example [10].

We recall that the correlation measure of order k, introduced by Mauduit and Sárközy in
[5], is an important measure of pseudorandomness for finite binary sequences. For a finite
binary sequence

SN = {s0,s1, . . . ,sN−1} ∈ {0,1}N ,
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the correlation measure of order k of SN is defined as

Ck(SN) = max
M,D

∣∣∣∣∣ M

∑
n=1

(−1)sn+d1 +sn+d2 +···+sn+dk

∣∣∣∣∣ ,
where the maximum is taken over all D = (d1, . . . ,dk) with non-negative integers 0 ≤ d1 <
· · ·< dk and M such that M +dk ≤ N−1. For a “good” pseudorandom sequence SN , Ck(SN)
(for “small” k) is small and is ideally greater than N1/2 only by at most a power of logN, see
[2].

The linear complexity profile is an important cryptographic characteristic of pseudoran-
dom sequences. A low linear complexity profile has turned out to be undesirable for crypto-
graphical applications.

For a T -periodic binary sequence ST = (s0,s1, . . . ,sT−1) over F2, the linear complexity
profile L(ST ,N) is the function which is defined as the shortest length L of a linear recurrence
relation over F2 for N > 1

sn+L = cL−1sn+L−1 + · · ·+ c0sn, 0≤ n≤ N−L−1,

which is satisfied by this sequence.
The discrepancy bound is proved in Section 2, and the bounds on the correlation measure

of order k and the linear complexity profile are given in Sections 3 and 4.

2 Discrepancy Bound

In this section we estimate the discrepancy of the points

Yn = (yn+d1 , . . . ,yn+ds) ∈ [0,1)s, n = 0,1, . . . ,N−1,

for any non-negative integers d1, . . . ,ds with 0≤ d1 < · · ·< ds < q and 1≤ N ≤ q. We recall
that the discrepancy of the points Y0, . . . ,YN−1, denoted by DN(d1, . . . ,ds), is defined by

DN(d1, . . . ,ds) = sup
J⊆[0,1)s

∣∣∣∣A(J,N)
N

−|J|
∣∣∣∣ ,

where A(J,N) is the number of points Y0, . . . ,YN−1 which hit the box J = [α1,β1)× ·· · ×
[αs,βs)⊆ [0,1)s, the volume |J| of an interval J is given by ∏

s
i=1(βi−αi) and the supremum

is taken over all such boxes, see e.g. [9].

Theorem 1. Let y0,y1, . . . be the sequence defined by (1). For any non-negative integers
d1, . . . ,ds with d1 < · · ·< ds < q and 1≤ N ≤ q, the discrepancy DN(d1, . . . ,ds) of the points

Yn = (yn+d1 , . . . ,yn+ds) ∈ [0,1)s, n = 0,1, . . . ,N−1,

satisfies
DN(d1, . . . ,ds) = O(N−12r+rsrsq1/2(logq)s(1+ log p)r),

where the implied constant is absolute.
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Proof. Let λi j ∈ Fp (1≤ i≤ s,1≤ j≤ r) be not all zero and put ep(x) = exp(2π
√
−1x/p) and

SN = SN(λ11, . . . ,λsr) =
N−1

∑
n=0

ep

(
s

∑
i=1

r

∑
j=1

λi jcn+di, j

)
,

where the ci, j are defined in (1). According to [9, Proposition 2.4, Theorem 3.12 and Lemma
3.13] we have

DN(d1, . . . ,ds)� 2s(logq)s 1
N

max
λ11,...,λsr

|SN(λ11, . . . ,λsr)| , (3)

where the maximum is taken over all nonzero vectors (λ11, . . . ,λsr)∈Fsr
p \{(0, . . . ,0)}. Hence

it suffices to estimate SN above.
Let {γ ′1, . . . ,γ ′r} be the dual basis of the ordered basis {γ1, . . . ,γr} of Fq over Fp. Then we

have

SN =
N−1
∑

n=0
ep

(
s
∑

i=1

r
∑

j=1
λi jTr(γ ′jρn+di)

)

=
N−1
∑

n=0
ep

(
Tr

(
s
∑

i=1

r
∑

j=1
λi jγ

′
jρn+di

))
=

N−1
∑

n=0
ψ

(
s
∑

i=1
µiρn+di

)
,

where Tr denotes the absolute trace of Fq, ψ is the additive canonical character of Fq and

µi =
r

∑
j=1

λi jγ
′
j, i = 1, . . . ,s.

Since λi j ∈ Fp (1≤ i≤ s,1≤ j ≤ r) are not all zero and {γ ′1, . . . ,γ ′r} is a basis of Fq over Fp,
it follows that µ1, . . . ,µs are not all zero.

First we present three auxiliary steps for the proof.
(i). We call a set of the form {δ + n1γ1 + · · ·+ nrγr : 0 ≤ ni < Ni, i = 1, . . . ,r} for some

integers 0 ≤ N1, . . . ,Nr ≤ p and δ ∈ Fq a box. Note that the empty set is also a box and that
the intersection of a family of boxes is the union of at most 2r boxes. (For r = 1 this is trivial
and in general each r-dimensional box is the direct product of r one-dimensional boxes.)

As in the proof of [7, Theorem 2], it can be verified that for 0 ≤ τ,m < q there are only
2r−1 different ω ∈ Fq, namely,

ω = w2γ2 + · · ·+wrγr, w2, . . . ,wr ∈ {0,1}, (4)

such that
ξm+τ = ξm +ξτ +ω,

where we used the definition ξm+q = ξm, m = 0, . . . ,q−1. We are going to prove that the sets

Sτ,ω = {ξm : 0≤ m < q, ξm+τ = ξm +ξτ +ω}

are boxes. For 0≤ τ,m < q, let

τ = τ1 + τ2 p+ · · ·+ τr pr−1, 0≤ τ1,τ2, . . . ,τr < p

and
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m = m1 +m2 p+ · · ·+mr pr−1, 0≤ m1,m2, . . . ,mr < p.

Put

w1 = 0, wi+1 =
{

1, if mi + τi +wi ≥ p,
0, otherwise,

for i = 1,2, . . . ,r. We get

m+ τ = z1 + z2 p+ · · ·+ zr pr−1, 0≤ z1,z2, . . . ,zr < p

where
zi = mi + τi +wi−wi+1 p, 1≤ i≤ r.

Then we get
ξm+τ = ξm +ξτ +ω,

where
ω = w2γ2 + · · ·+wrγr.

Note that for fixed τ and ω the sets Sτ,ω define a partition of Fq and we have

Sτ,ω = {δ +u1γ1 + · · ·+urγr : 0≤ u j < k j, j = 1, . . . ,r},

where

δ =
r−1

∑
j=1

w j+1=1

(p− τ j−w j)γ j

and

k j =


p− τ j−w j, if w j+1 = 0,1≤ j < r,
τ j +w j, if w j+1 = 1,1≤ j < r,
p, if j = r.

So the sets Sτ,ω are all boxes.

(ii). For 0≤ d1 < d2 < · · ·< ds < q and ω1, . . . ,ωs ∈ Fq of the form (4) the sets

Sd1,ω1 ∩·· ·∩Sds,ωs = {ξn : 0≤ n < q,ξn+di = ξn +ξdi +ωi, i = 1, . . . ,s}

are unions of at most 2r boxes. As in the proof of [7, Theorem 4] for 1 ≤ N ≤ q, below
we verify that the intersection of a box B with {ξ0, . . . ,ξN−1} is a union of r boxes. Write
B′ = B∩{ξ0, . . . ,ξN−1}.

Let l =
⌊

logN
log p

⌋
+1, we write

N = v1 + v2 p+ · · ·+ vl pl−1, 0≤ v1,v2, . . . ,vl < p.

We give a partition for B′ by defining

V2,ω = {ξm ∈ B|m1 ≤ v1,m2 = v2, . . . ,ml = vl},
V j,ω = {ξm ∈ B|0≤ m1, . . . ,m j−2 < p,

m j−1 ≤ v j−1−1,m j = v j, . . . ,ml = vl},
where j = 3,4, . . . , l, and
V1,ω = {ξm ∈ B|0≤ m1, . . . ,ml−1 < p, ml ≤ vl −1}.

It is easy to see that each V j,ω is a box since on the coefficients of the ξm only possibly more
constraints are added.
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In summary, there are 2(r−1)s possible choices for ω1, . . . ,ωs ∈ Fq. For fixed
ω1, . . . ,ωs ∈ Fq, Sd1,ω1 ∩·· ·∩Sds,ωs is a union of at most 2r boxes B, while B∩{ξ0, . . . ,ξN−1}
is a union of r boxes V j,ω .

(iii). Let B = {δ +n1γ1 + · · ·+nrγr : 0≤ ni < Ni, i = 1, . . . ,r} with 0≤N1, . . . ,Nr ≤ p and
δ ∈ Fq be a box. By [18, Lemma 6], we have

∑
ς∈F∗q

∣∣∣∣∣∑
ξ∈B

ψ(ςξ )

∣∣∣∣∣< q(1+ log p)r.

Now we continue the proof. Let

I(ω1, . . . ,ωs) = Sd1,ω1 ∩·· ·∩Sds,ωs ∩{ξ0, . . . ,ξN−1}.

We note that if ξdi +ωi = ξd j +ω j for i < j, then there is no n with 0≤ n < q such that

ξn+di = ξn +ξdi +ωi and ξn+d j = ξn +ξd j +ω j.

Otherwise, suppose n0 is such a value then ξn0+di = ξn0+d j , which leads to di ≡ d j (mod q),
a contradiction. So for ωi,ω j with ξdi +ωi = ξd j +ω j ,

Sdi,ωi ∩Sd j ,ω j = /0,

which leads to
I(ω1, . . . ,ωs) = /0.

In such case |I(ω1, . . . ,ωs)|= 0. Hence we obtain

SN =
N−1
∑

n=0
ψ

(
s
∑

i=1
µiρn+di

)
=

N−1
∑

n=0
ψ

(
s
∑

i=1
µiαξn+di +β

)
= ∑

ω1,...,ωs
∑

ξ∈I(ω1,...,ωs)
ψ

(
s
∑

i=1
µiα(ξ +ξdi +ωi)+β

)
= ∑

ω1,...,ωs
∑

x∈Fq

ψ

(
s
∑

i=1
µiα(x+ξdi +ωi)+β

)
∑

ξ∈I(ω1,...,ωs)

1
q ∑

ς∈Fq

ψ(ς(x−ξ ))

= 1
q ∑

ω1,...,ωs
∑

ς∈Fq

∑
ξ∈I(ω1,...,ωs)

ψ(−ςξ )

∑
x∈Fq

ψ

(
s
∑

i=1
µiα(x+ξdi +ωi)+β + ςx

)
= ∑

ω1,...,ωs

|I(ω1,...,ωs)|
q ∑

x∈Fq

ψ

(
s
∑

i=1
µiα(x+ξdi +ωi)+β

)
+ 1

q ∑
ω1,...,ωs

∑
ς∈F∗q

∑
ξ∈I(ω1,...,ωs)

ψ(−ςξ )

∑
x∈Fq

ψ

(
s
∑

i=1
µiα(x+ξdi +ωi)+β + ςx

)
.

By [8, Theorem 2] (see also [19, Lemma 1] or [13, Lemma 1]) the sum over x has absolute
value O(sq1/2) if the rational functions in the argument are not of the form Ap − A. This
implies
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SN � 2(r−1)ssq1/2 +2(r−1)s · sq1/2 · 1
q ∑

ς∈F∗q

∣∣∣∣∣∣ ∑
ξ∈I(ω1,...,ωs)

ψ(ςξ )

∣∣∣∣∣∣ .
In fact in the proof above we only consider the case when I(ω1, . . . ,ωs) 6= /0, which leads

to ξdi +ωi 6= ξd j +ω j for all i 6= j. So both rational functions

s

∑
i=1

µi(α(X +ξdi +ωi)+β )−1

and
s

∑
i=1

µi(α(X +ξdi +ωi)+β )−1 + ςX

are not of the form Ap−A, where A is a rational function over Fq, by [19, Lemma 2] or [13,
Lemma 2].

Now according to Steps (ii) and (iii) above, we have

∑
ς∈F∗q

∣∣∣∣∣ ∑
ξ∈I(ω1,...,ωs)

ψ(ςξ )

∣∣∣∣∣≤ 2r
∑

ς∈F∗q

∣∣∣∣∣ l
∑

j=1
∑

ξ∈Vj,ω

ψ(ςξ )

∣∣∣∣∣
≤ 2r

l
∑

j=1
∑

ς∈F∗q

∣∣∣∣∣ ∑
ξ∈Vj,ω

ψ(ςξ )

∣∣∣∣∣
� 2rlq(1+ log p)r ≤ 2rrq(1+ log p)r.

Putting everything together, we obtain

SN = O
(

2(r−1)s2rrsq1/2(1+ log p)r
)

.

Now (3) yields the theorem. �

Note that the bound converges slowly if s is large.

3 Correlation Measure of Order k

The correlation measure of order k = 2 of Rq satisfies

C2(Rq) = O(q1/2(logq)2(1+ log p)r)

with implied constant depending on r, see [3]. In this paper, we now extend this result to the
case of k > 2.

Theorem 2. The correlation measure of order k of Rq defined by (2) satisfies

Ck(Rq) = O(2r2(r+1)krkq1/2(logq)k(1+ log p)r).

Proof. By [4, Theorem 1] and Theorem 1, we have∣∣∣∣ M
∑

n=1
(−1)rn+d1 +···+rn+dk

∣∣∣∣≤ 2kMDM+dk (d1, . . . ,dk)

= O(2r2(r+1)krkq1/2(logq)k(1+ log p)r)

and the result follows. �

Note that the result is only nontrivial if p is large enough.
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4 Linear Complexity Profile

In [1, Theorem 1], Brandstätter and the third author used the correlation measure of order k to
estimate the linear complexity profile for some related binary sequence ST :

L(ST ,N)≥ N− max
1≤k≤L(ST ,N)+1

Ck(ST ) (5)

where 2≤ N ≤ T −1.
Combining (5) and Theorem 2 we get a lower bound on the linear complexity profile of

Rq after simple calculations.

Corollary 1. The linear complexity profile of Rq defined by (2) satisfies

L(Rq,N) = Ω

(
log(Nq−1/22−rr−1(1+ log p)−r)

r + log logq

)
, 2≤ N < q.
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