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Abstract

We give new bounds of character sums with sequences of iterations
of Dickson polynomials over finite fields. This result is motivated by
possible applications of nonlinear congruential pseudorandom number
generators.

1 Introduction

For an integer t > 1 we denote by ZZt the residue ring modulo t and always
assume that it is represented by the set {0, 1, . . . , t−1}. As usual, we denote
by Ut the set of invertible elements of ZZt.

Accordingly, for a power of a prime number q = pr with r ≥ 1, we denote
by IFq the field of pr elements. For r = 1, we have IFp ∼= ZZp. In this particular
case, we assume that it is represented by the set {0, 1, . . . , p − 1}. Through
this article, we treat elements of ZZt and IFp as integer numbers in the above
range when the meaning is clear from the context.
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Given a polynomial F (X) ∈ IFq[X] of degree at least 2, we define the
Nonlinear congruential generator , (un) of elements of IFq by the recurrence
relation

un+1 = F (un), n = 0, 1, . . . ,

where u0 is the Initial value.
In [8], a new method was proposed to estimate exponential sums. The

idea is applicable to character sums (see [11]) and exponential sums with such
sequences for arbitrary polynomials F (X), see also these surveys surveys [7,
9, 10, 12].

Unfortunately, for general polynomials, this method leads to rather weak
bounds for character sums (see [11]). Here we show that this method also
works for an important class of polynomials, namely for certain Dickson
polynomials .

We recall that the family of Dickson polynomials De(X,α) ∈ IFq[X] is
defined by the following recurrence relation

De(X,α) = XDe−1(X,α)− αDe−2(X,α), e = 2, 3, . . . , (1)

with initial values

D0(X,α) = 2, D1(X,α) = X,

where α ∈ IFq is a parameter, see [5] for many useful properties and applica-
tions of Dickson polynomials. In particular, degDe(X,α) = e.

Here we concentrate only on the cases α = 1 and α = −1. From now
and on, we denote De(X) either De(X, 1) or De(X,−1), and consider the
sequence

un+1 = De(un), n = 0, 1, . . . , (2)

where u0 is the Initial value.
It is clear that the sequence u0, u1, . . . is periodic of period T ≤ q. In

fact, we always assume that it is purely periodic (which can be achieved by
a shift of the sequence and discarding several initial values).

We define the character sum

Sχ =
T−1∑
n=0

χ(un),

where χ is a nontrivial multiplicative character of the field IFq.
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2 Preliminaries

We recall Lemma 2 from [2].

Lemma 1. Then for any set K ⊆ Ut of cardinality #K = K, any fixed δ > 0
and any integer h ≥ tδ there exists an integer r ∈ Ut such that the congruence

rk ≡ y (mod t), k ∈ K, 0 ≤ y ≤ h− 1,

has

Lr(h)� Kh

t

solutions.

We also need the Weil bound for character sums which we present in the
following form (see Chapter 5 of [6]).

Lemma 2. Let χ be a multiplicative character of IFq of order s and let
F (X) ∈ IFq[X] be a polynomial of positive degree that is not, up to a mul-
tiplicative constant, an sth power of a polynomial. Let d be the number of
distinct in its splitting field over IFq. Under these conditions, the following
inequality ∣∣∣∣∣∣

∑
x∈IFq

χ (F (x))

∣∣∣∣∣∣ ≤ (d− 1)q1/2

holds.

Finally, we need the following result on Dickson polynomials. This is a
generalization of a similar Lemma in [4].

Lemma 3. For u ∈ IFq we define the polynomial
Fu(X) = X2−uX+β, β = −1, 1. Assume that either Fu(X) is irreducible

over IFq and e ≡ f (mod 2q + 2) or Fu(X) has two simple roots in IFq and
e ≡ f (mod q − 1). Then

De(u) ≡ Df (u), ∀u ∈ IFq.

Proof. Let Fu(X) be irreducible over IFq and let µ1 and µ2 = µq1 be its roots
in Fq2 . Because µq+1

1 = µ1µ2 = 1 or µq+1
1 = µ1µ2 = −1 we derive that

Fu(X)|X2q+2 − 1 in this case.
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It is also easy to see that if Fu(X) has to simple roots in IFq then
Fu(X)|Xq−1 − 1, because the order of any of the two roots divides the order
of IF∗q as a multiplicative group, which is q − 1.

Recalling that the sequence De(u), e = 0, . . . , satisfies a linear recurrent
relation (1) with the characteristic polynomial Fu, we obtain the desired
result. ut

It is well known that Dickson polynomial commute with respect the com-
position, see for instance [5].

Lemma 4. For any positive integers e and f , we have

De(Df (X)) = Def (X) = Df (De(X)).

The factorization of Dickson polynomials is also well known. Here, we
give a reduced version of Corollary 3.13 of [5].

Lemma 5. Let n be an odd positive integers and assume that IFpr contains
a primitive n−th root of unity. Then

Dn(X,α) = X

(n−1)/2∏
k=1

(X2 + αβ2
k)

where βk = ρk − ρ−k.

Using the last Lemma we can proof this global result:

Lemma 6. Let Dreki
(X), ki ∈ L a family of Dickson polynomials where r

and e are odd integers. Then, if di 6≡ 0 (mod s),∀i where

ν∏
i=1

Dreki (X,α)di (3)

then the polynomial is not, up to a multiplicative constant, an s−th power.

Proof. Put n = reN = max{reki |ki ∈ L} and take K the splitting field of
Dn(X,α).

Let ρ ∈ K be a primitive n−th root of the unity. Conditions in Lemma
5 are satisfied.
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By this Lemma, we have:

DreN (X,α) = X

(reN−1)/2∏
k=1

(X2 + αβ2
k).

With the same notation we have:

DreN−1(X,α) = X

(reN−1−1)/2∏
k=1

(X2 + αβ2
ek),

which directly implies that DreN−1(X,α)|DreN (X,α). Using this argument,
we get that Dreki (X,α)|DreN−1(X,α), ki 6= n.

By Corollary 3.14 of [5], all the roots of Dn(X,α) are simple. Taking one
root of DreN (X,α) which is not a root of DreN−1(X,α) we have finished. ut

3 Main result

Now we have enough tools to get a general estimate for the sums Sχ with a
purely periodic sequence un, n = 0, 1, . . ., satisfying (2).

We remark that if u0 6= 2, then Fu0(X) = X2−u0X+β, β = −1, 1 has not
multiple roots and thus Lemma 3 applies. Let us denote by t the smallest
positive integer for which De(u0) ≡ Df (u0) whenever e ≡ f (mod t). By
Lemma 3 we have either t|2q + 2 or t|q − 1.

We also remark that if u0 ≡ 2 (mod q) then un ≡ 2 (mod q) for every
n = 1, 2, . . .. Thus we can take t = 1 in this case.

It is easy to see that T is the multiplicative order of e modulo t.

Theorem 7. For every fixed integer ν ≥ 1,

|Sχ| = O
(
T 1−(2ν+1)/2ν(ν+1)t1/2(ν+1)p(ν+2)/4ν(ν+1)

)
,

where the implied constant depends on ν.

Proof. We put
h =

⌈
tν/(ν+1)T−ν/(ν+1)q1/2(ν+1)

⌉
.

Because t ≥ T , for this choice of h we obtain h ≥ q1/2(ν+1), thus Lemma 1
applies.
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It is easy to see that T is the multiplicative order of e modulo t. Because
the sequence un, n = 0, 1, . . ., is purely periodic, for any k ∈ ZZt, we have:

Sχ =
T∑
n=1

χ(Den+k(u0)). (4)

Let K be the subgroup of Ut generated by e. Thus #K = T . We select r
as in Lemma 1 and let L be the subset of K which satisfies the corresponding
congruence. We denote L = #L. In particular, L� hT/t.

By (4) we have

LSχ =
T∑
n=1

∑
k∈L

χ (Den+k(u0)) .

Applying the Hölder inequality, we derive

L2ν |Sχ|2ν ≤ T 2ν−1

T∑
n=1

∣∣∣∣∣∑
k∈L

χ (Den+k(u0))

∣∣∣∣∣
2ν

. (5)

Let r′, 1 ≤ r′ ≤ t − 1, be defined by the congruence rr′ ≡ 1 (mod t). By
Lemma 4 we obtain

Den+k(u0) ≡ Den+krr′(u0) ≡ Drek (Dr′en(u0)) (mod q).

Obviously, the values of r′en, n = 1, . . . , T , are pairwise distinct modulo t.
Thus, from the definition of t, we see that the values of Dr′en(u0) are pairwise
distinct modulo q. Therefore, from (5) we derive

L2ν |Sχ|2ν ≤ T 2ν−1
∑
u∈IFq

∣∣∣∣∣∑
k∈L

χ (Drek(u))

∣∣∣∣∣
2ν

.

Denoting F = {rek | k ∈ L} we deduct

L2ν |Sχ|2ν ≤ T 2ν−1
∑
u∈IFq

∣∣∣∣∣∑
f∈F

χ (Df (u))

∣∣∣∣∣
2ν

≤ T 2ν−1
∑

f1,...,f2ν∈F

∑
u∈IFq

χ

(
ν∏
j=1

Dfj(u)(Dfν+j(u))q−2

)
.
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For the case that no fik ∈ {f1, . . . , fν+1, . . . , f2ν} appears only once then
there are at most µ differents values in {f1, . . . , fν+1, . . . , f2ν}. Hence, there
are at most Lµ possible cases. For those selections, we shall use the trivial
bound, which gives the total contribution O(Lνq).

Otherwise, taking into account that degDf = f and eliminating all the
s−th powers, we conclude that the polynomial

Ψf1,...,f2ν (X) =
ν∏
j=1

(
Dfj(X)(Dfν+j(X))q−2

)
is, up to a multiplicative constant, not an s-th power by Lemma 6. Now, we
calculate a bound on the number of possible distinct roots of the polynomial:

deg Ψf1,...,f2ν ≤ max
j=1,...,2ν

fj ≤ max
f∈F

f ≤ h.

Using Lemma 2, we obtain that the total contribution from such terms is
O(L2νhq1/2). Hence

L2ν |Sχ|2ν = O
(
T 2ν−1

(
Lνq + L2νhq1/2

))
.

So this leads us to the bound

|Sχ|2ν = O
(
T 2ν−1

(
L−νq + hq1/2

))
.

Recalling that L ≥ hT/t, we derive

|Sχ|2ν = O
(
T 2ν−1

(
tνT−νh−νq + hq1/2

))
.

Substituting the selected value of h, which balances both terms in the above
estimate, we finish the proof. ut

4 Remarks

Assuming that T = t1+o(1), the bound of Theorem 7 takes the form

|Sχ| = O
(
T 1−1/2ν+o(1)q(ν+2)/4ν(ν+1)

)
.

Therefore for any δ > 0, choosing a sufficiently large ν we obtain a nontrivial
bound provided T ≥ q1/2+δ.

On the other hand, if t ≥ T = q1+o(1), then taking ν = 1 we obtain

|Sχ| = O
(
q7/8+o(1)

)
. (6)

We want also to remark that, the case when e is even, the polynomial De(X)
is not divisible by X. So, this case is covered by the results of [1].
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