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Abstract. We study the problem of finding or estimating the smallest num-
ber of summands needed to express each element of a fixed finite field as sum

of values of a Dickson polynomial. We study the existence problem and prove

several bounds using results from additive number theory and bounds on ad-
ditive character sums.

1. Introduction

Let q = pr be a power of a prime p and denote by Fq the finite field of q
elements. We recall that the family of Dickson polynomials De(X,α) ∈ Fq[X] is
defined by the following recurrence relation

De(X,α) = XDe−1(X,α)− αDe−2(X,α), e = 2, 3, . . . ,

with initial values
D0(X,α) = 2, D1(X,α) = X,

and α ∈ Fq. We refer to the monograph [8] for many useful properties and appli-
cations of Dickson polynomials.
Our aim is to study the following Waring problem with Dickson polynomials in
finite fields.
We define gα(e, q) as the smallest positive integer s such that every y ∈ Fq can be
expressed as

y = De(u1, α) + . . .+De(us, α)
with u1, . . . , us ∈ Fq.

This problem has been studied for α = 0 by many authors, see [1, 2, 5, 6, 11,
12, 13] and references therein.

Here we focus on the case α = 1 but state the results for arbitrary α 6= 0 if
possible.

If u = µ+ αµ−1 ∈ F∗q with µ ∈ Fq2 , the property

(1.1) De(µ+ αµ−1, α) = µe + αeµ−e,

see [8], implies De(u, α) = Df (u, α) if e ≡ f mod q2 − 1. Hence,

gα(e, q) = gα(gcd(e, q2 − 1), q)
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and we may restrict ourselves to the case

e|q2 − 1.

In the case r = 1 the number gα(e, p) always exists. However, for r > 1
it is possible that the value set of De(X,α) does not generate Fq. For example,
Equation (1.1) implies gα(p2 − 1, p) = p and gα(q2 − 1, q) does not exist for r > 1.

We give necessary and sufficient conditions on the existence of g1(e, q) in Section
2. Sections 3 and 4 are devoted to bounds on gα(e, q). We use results from additive
number theory as well as bounds on additive character sums.

2. Existence of g1(e, q)

In this section we characterize the pairs (e, q) such that g1(e, q) exists.

Theorem 2.1. Let r = 2uv > 1 with an odd v. Then g1(e, q) exists if and only
if one of the following two conditions holds

1.
q − 1
pd − 1

6 |e for all d|r, d 6= r, (pr/2 − 1) 6 |e if u ≥ 1,

and
q + 1

gcd(2, p+ 1)
6 |e if v > 1.

2.
q + 1

(2, p+ 1)
6 |e and

q + 1
pd + 1

6 |e for all d|r, d < r, with r/d odd.

In particular, g1(e, q) exists if gcd(e, q − 1) < q1/2 − 1 or gcd(e, q + 1) < 3
4q

2/3.

Proof. Put

D = {De(u1, 1) + . . .+De(us, 1) : u1, . . . , us ∈ Fq, s ∈ N}.
We have to characterize the conditions when D = Fq.

We consider the following vector spaces A and B over Fp,

A = { De(µ1 + µ−1
1 , 1) + . . .+De(µs + µ−1

s , 1) : µ1, . . . , µs ∈ F∗q , s ∈ N},

B = { De(µ1 + µ−1
1 , 1) + . . .+De(µs + µ−1

s , 1) : µq+1
1 = . . . = µq+1

s = 1,
µ1, . . . , µs ∈ F∗q2 , s ∈ N}.

For u ∈ F∗q the substitution u = µ + µ−1 with µ ∈ F∗q2 implies either µ ∈ F∗q or
µq+1 = 1 since uq = µq + µ−q = µ+ µ−1 = u. It is easy to see that

D = A + B = {a+ b : a ∈ A, b ∈ B}.
Since

De(µ1 + µ−1
1 , 1)De(µ2 + µ−1

2 , 1) =

De(µ1µ2 + (µ1µ2)−1, 1) +De(µ1µ
−1
2 + µ−1

1 µ2, 1)(2.1)

by (1.1), we see that A and B are fields.
We note that D = Fq implies A = Fq or B = Fq.
The cardinality of D can be bounded by

|A + B| < |A||B|
since both fields contain Fp. Using the fact that the cardinality of |A| = pd,

|B| = pd
′
, where d, d′ are divisors of r, q = pr, we get that d = r or d′ = r.
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The problem has been reduced to prove in which cases

A1 = { De(µ+ µ−1, 1) : µ ∈ F∗q } and

B1 = { De(µ+ µ−1, 1) : µ ∈ F∗q2 , µ
q+1 = 1}

are both contained in a proper subfield.
If A1 ⊂ Fpd for some d|r with d 6= r, we have

µe + µ−e = De(µ+ µ−1, 1) = De(µ+ µ−1, 1)p
d

= µep
d

+ µ−ep
d

for any µ ∈ F∗q , in particular, for a primitive element µ = g of Fq. This implies
ge(p

d−1) = 1 or ge(p
d+1) = 1 and thus

(2.2) e(pd − 1) ≡ 0 mod q − 1 or e(pd + 1) ≡ 0 mod q − 1.

If B1 ⊂ Fpd′ with d′|r and d′ 6= r we get analogously

(2.3) e(pd
′
− 1) ≡ 0 mod q + 1 or e(pd

′
+ 1) ≡ 0 mod q + 1.

The number g1(e, q) does not exist if and only if (2.2) and (2.3) both hold for some
proper divisors d and d′ of r.

Finally, we simplify the conditions (2.2) and (2.3).
The first condition in (2.2) is q−1

pd−1
|e.

If r/d is odd, we have gcd(q − 1, pd + 1) = gcd(2, pd + 1) = gcd(2, p + 1) since
q − 1 ≡ (pd)r/d − 1 ≡ −2 mod pd + 1 and thus the second condition in (2.2) is

q+1
gcd(2,p+1) |e.
If r is even and d = r/2, the second condition in (2.2) is (pr/2 − 1)|e.
If r/d is even and d < r/2, the second condition is covered by q−1

p2d−1
|e.

Since gcd(pd
′ − 1, q + 1) = gcd(2, p+ 1) the first condition in (2.3) is q+1

gcd(2,p+1) |e.
If r/d′ is odd, the second condition in (2.3) is q+1

pd′+1
|e.

If r/d′ is even, the second condition in (2.3) is q+1
gcd(2,p+1) |e which is already covered

by the first condition in (2.3). �

For arbitrary α a result of the same flavor cannot be obtained since A and B
are not fields in general.

3. Bounds based on addition theorems

3.1. A consequence of the Cauchy-Davenport theorem. In this sub-
section we prove the following bound on gα(e, p) based on the Cauchy-Davenport
theorem.

Theorem 3.1. We have

gα(e, p) ≤ 3 min{gcd(e, p− 1), gcd(e, p+ 1)}, p ≥ 3.

Proof. For s ≥ 1 put

Ds = {De(u1, α) + . . .+De(us, α) : u1, . . . , us ∈ Fp}.
By the Cauchy-Davenport theorem we have

|Ds| ≥ min{|Ds−1|+ |D1| − 1, p}, s ≥ 2,

and get by induction

|Ds| ≥ min{s(|D1| − 1) + 1, p}, s ≥ 1.
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By the formula of [3] for the cardinality of D1 we get

|D1| ≥
p− 1

2 gcd(e, p− 1)
+

p+ 1
2 gcd(e, p+ 1)

≥ max
{

p− 1
2 gcd(e, p− 1)

,
p+ 1

2 gcd(e, p+ 1)

}
+

1
2
.

If gcd(e, p− 1) ≥ (p− 1)/2, we get trivially gα(e, p) ≤ p ≤ 3 gcd(e, p− 1).
If gcd(e, p− 1) ≤ (p− 1)/3, we get Ds = Fp if

s ≥ 2 gcd(e, p− 1) ≥ p− 1
(p− 1)/2 gcd(e, p− 1)− 1/2

.

If gcd(e, p+ 1) ≥ (p+ 1)/3, we get gα(e, p) ≤ p ≤ 3 gcd(e, p+ 1).
If gcd(e, p+ 1) ≤ (p+ 1)/4, we get Ds = Fp if

s ≥ 3 gcd(e, p+ 1) ≥ p− 1
(p+ 1)/2 gcd(e, p+ 1)− 1/2

and the result follows. �

Note that the Cauchy-Davenport theorem is not valid in general for arbitrary
finite fields.

For the case of prime fields and α = 0, sum-product techniques (see [5] and refer-
ences therein) can be applied to derive very strong bounds on g0(e, p). It would be
interesting to study this approach for α 6= 0 as well.

3.2. Extension to arbitrary finite fields. In the case α = 1 we can reduce
the problem of estimating g1(e, q) to the corresponding problem for prime fields.

Theorem 3.2. Let q = pr. If g1(e, q) exists, then we have

g1(e, q) ≤ 2rmax{g1(d, p), g1(f, p)},
where

d =
d1d2

gcd(d1, d2)
with

d1 =
p− 1

gcd
(

(q−1)
gcd(e,q−1) , p− 1

) and d2 =
p+ 1

gcd
(

(q−1)
gcd(e,q−1) , p+ 1

)
and

f =
f1f2

gcd(f1, f2)
with

f1 =
p− 1

gcd
(

(q+1)
gcd(e,q+1) , p− 1

) and f2 =
p+ 1

gcd
(

(q+1)
gcd(e,q+1) , p+ 1

) .
Proof. As in the proof of Theorem 2.1 we see that either A = Fq or B = Fq.

Thus, we can select {β1, . . . , βr} a basis of Fq over Fp that either {β1, . . . , βr} ⊂ A1

or {β1, . . . , βr} ⊂ B1.
Each element of Fq is a linear combination of {β1, . . . , βr} and Equation (2.1) states
that the products of elements of A1 or B1 can be expressed as a sum of elements
of A1 or B1, respectively. So we are going to investigate how many summands of
elements of A1 and B1 are necessary to generate Fp.
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First we suppose that {β1, . . . , βr} ⊂ A1. For µ ∈ F∗q we have

De(µ+ µ−1, 1) = µe + µ−e ∈ Fp

if µe ∈ F∗p or µe(p+1) = 1 with µ ∈ F∗p2 . The eth powers in F∗q are the (q−1)/(e, q−
1)th roots of unity and the elements of F∗p are the (p − 1)th roots of unity in F∗q .
Hence, the elements µe ∈ F∗p with µ ∈ F∗q are the ((q − 1)/ gcd(e, q − 1), p − 1))th
roots of unity or the d1 = (p − 1)/((q − 1)/ gcd(e, q − 1), p − 1)th powers in F∗p.
Similarly, we see that the eth powers µe ∈ F∗q with µe(p+1) = 1 are the d2 =
(p + 1)/((q − 1)/ gcd(e, q − 1), p + 1)th powers of elements µ ∈ F∗p with µp+1 = 1.
Put d = d1d2/(d1, d2). Hence, the values De(u, 1) ∈ Fp with u ∈ Fq coincide with
the values Dd(u, 1) with u ∈ Fp. Now every element of Fp is sum of at most g1(d, p)
summands. By (2.1) all elements uβi, u ∈ Fp, i = 1, . . . , r, are sums of 2g1(d, p)
elements and we get the bound

g1(e, q) ≤ 2rg1(d, p).

If we assume {β1, . . . , βr} ⊂ B1, we obtain

g1(e, q) ≤ 2rg1(f, p)

analogously. �

4. Bounds derived by additive character sums

Theorems 3.1 and 3.2 give general bounds for arbitrary finite fields which are
up to a constant best possible since g(p2 − 1, p) = p. However, these results can be
improved using bounds on additive character sums if min{gcd(e, q−1), gcd(e, q+1)}
is small. Note that in this case gα(e, q) always exists.

Theorem 4.1. We have

gα(e, q) ≤ s if gcd(e, q − 1) ≤ 1
8
q1/2−1/2(s−1), s ≥ 2.

For α = 1 we have additionally

g1(e, q) ≤ s if gcd(e, q + 1) ≤ 1
2
q1/2−1/2(s−1), s ≥ 2.

Proof. Without loss of generality we restrict ourselves to the cases when s ≥ 2
and e = gcd(e, q−1) or e = gcd(e, q+1). First we consider the case e = gcd(e, q−1).
In this case our technique works for all α whereas in the second case we need α = 1.

Let χ be a nontrivial additive character of Fq. By

(4.1)
∑
u∈Fq

χ(au) =

{
0 a 6= 0,
q a = 0,

the number Ns of solutions of the equation

y = De(µ1 + αµ−1
1 , α) + . . .+De(µs + αµ−1

s , α), µ1, . . . , µs ∈ F∗q ,
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is

Ns =
1
q

∑
u∈Fq

∑
µ1,...,µs∈F∗q

χ

(
u

(
s∑
i=1

De(µi + αµ−1
i , α)− y

))

=
(q − 1)s

q
+

1
q

∑
u∈F∗q

∑
µ1,...,µs∈F∗q

χ

(
s∑
i=1

uDe(µi + αµ−1
i , α)

)

=
(q − 1)s

q
+

1
q

∑
u∈F∗q

∣∣∣∣∣∣
∑
µ∈F∗q

χ
(
uDe(µ+ αµ−1, α)

)∣∣∣∣∣∣
s

.

Since e|q2− 1 it is not divisible by p and by [10, Lemma 2] we see that the rational
function Xe+αeX−e is not of the form Ap−A. Hence, we can apply the character
sum bound of Moreno and Moreno [9, Theorem 2] which impliesmax

u∈F∗q

∣∣∣∣∣∣
∑
µ∈F∗q

χ
(
uDe(µ+ αµ−1, α)

)∣∣∣∣∣∣
s−2

≤ (2eq1/2)s−2.

This implies that

∣∣∣∣Ns − (q − 1)s

q

∣∣∣∣ <
(2eq1/2)s−2

q

∑
u∈Fq

∣∣∣∣∣∣
∑
µ∈F∗q

χ
(
uDe(µ+ αµ−1, α)

)∣∣∣∣∣∣
2

.(4.2)

Expanding the inner sum, we get∑
µ1, µ2∈F∗q

∑
u∈Fq

χ
(
u
(
De(µ1 + αµ−1

1 , α)−De(µ2 + αµ−1
2 , α)

))
.

By (4.1), we get that the inner sum is zero, except if

De(µ1 + αµ−1
1 , α)−De(µ2 + αµ−1

2 , α) = 0.

For each µ1 there exist at most 2e choices of µ2 such that this equation holds. So,
this sum is at most 2eq2. Substituting in (4.2), we get∣∣∣∣Ns − (q − 1)s

q

∣∣∣∣ < (2eq1/2)s−1q1/2.

The number Ns is positive for all y ∈ Fq if

e ≤ q1/2

8q1/2(s−1)

and thus gα(e, q) ≤ s under this condition.
Now we assume e = gcd(e, q + 1) and α = 1, and denote by Ns the number of

solutions of

y = De(µ1 + µ−1
1 , 1) + . . .+De(µs + µ−1

s , 1), µq+1
1 = . . . = µq+1

s = 1,
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where we need bounds on

max
u∈F∗q

∣∣∣∣∣∣∣∣∣
∑
µ∈F∗

q2 ,

µq+1=1

χ
(
uDe(µ+ µ−1, 1)

)
∣∣∣∣∣∣∣∣∣ .

Note that for µ with µq+1 = Nmq2/q(µ) = 1 we have De(µ+ µ−1, 1) = µe + µ−e =
µe + µeq = Trq2/q(µe).
Let ψ be a multiplicative character of Fq2 of order e. Then we have

1
e

e−1∑
j=0

ψj(ξ) =
{

1, ξ = µe for some µ ∈ F∗q2 ,
0, otherwise,

ξ ∈ F∗q2 .

Hence, ∑
µ∈F∗

q2 ,

µq+1=1

χ
(
uDe(µ+ µ−1, 1)

)
=

e−1∑
j=0

∑
ξ∈F∗

q2 ,

Nmq2/q(ξ)=1

ψj(ξ)χ(Trq2/q(ξ)).

(Note that each ξ which is an eth power equals µe for e different µ.) By [7,
Theorem 2] the absolute value of the sum over ξ can be bounded by 2q1/2 and we
get

∣∣∣∣Ns − (q + 1)s

q

∣∣∣∣ < (2eq1/2)s−2
∑
u∈Fq

∣∣∣∣∣∣∣∣∣
∑
µ∈F∗

q2 ,

µq+1=1

χ
(
uDe(µ+ µ−1, 1)

)
∣∣∣∣∣∣∣∣∣
2

.

Following a similar reasoning as in the previous case, g1(e, q) ≤ s if

e ≤ q1/2

2q1/2(s−1)
.

This finishes the proof. �

Note that from [4, Theorem 10]

gα(e, q) ≤ s if gcd(e, q − 1) + gcd(e, q + 1) ≤ q1/2

(q − 1)1/s
.
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