Waring’s Problem in Finite Fields with Dickson Polynomials
Domingo Gomez and Arne Winterhof

ABSTRACT. We study the problem of finding or estimating the smallest num-
ber of summands needed to express each element of a fixed finite field as sum
of values of a Dickson polynomial. We study the existence problem and prove
several bounds using results from additive number theory and bounds on ad-
ditive character sums.

1. Introduction

Let ¢ = p” be a power of a prime p and denote by F, the finite field of ¢
elements. We recall that the family of Dickson polynomials D (X, o) € F,[X] is
defined by the following recurrence relation

De(Xaa):XDE—l(Xva)_aDe—Q(X?a)7 62273a"'7

with initial values

Dy(X, ) =2, Di(X,a) =X,
and a € F;. We refer to the monograph [8] for many useful properties and appli-
cations of Dickson polynomials.
Our aim is to study the following Waring problem with Dickson polynomials in
finite fields.
We define g, (e, ¢) as the smallest positive integer s such that every y € F, can be
expressed as

y=Dec(ur,a) + ...+ De(us, @)

with uq,..., us € Fy.

This problem has been studied for & = 0 by many authors, see [1, 2, 5, 6, 11,
12, 13] and references therein.

Here we focus on the case @ = 1 but state the results for arbitrary a # 0 if
possible.

fu=p+ap e Fy with o € Fy2, the property

(1.1) Do(p+ap™t a)=p +au e,
see [8], implies D.(u, ) = Df(u, ) if e = f mod ¢*> — 1. Hence,
ga(e,q) = ga(ged(e, ¢* — 1), q)

1991 Mathematics Subject Classification. 11P05.
The first author is partially supported by the Project MTM2007-67088. He worked on the
article during a pleasant research visit in Linz.

1



2 DOMINGO GOMEZ AND ARNE WINTERHOF

and we may restrict ourselves to the case
elg® — 1.

In the case r = 1 the number g,(e,p) always exists. However, for r > 1
it is possible that the value set of D.(X,«) does not generate F,. For example,
Equation (1.1) implies g, (p? — 1,p) = p and g, (¢ — 1, ¢) does not exist for r > 1.

We give necessary and sufficient conditions on the existence of g1 (e, ¢) in Section
2. Sections 3 and 4 are devoted to bounds on g, (e, q). We use results from additive
number theory as well as bounds on additive character sums.

2. Existence of g;(e,q)
In this section we characterize the pairs (e, ¢) such that gy (e, q) exists.
THEOREM 2.1. Let r = 2%v > 1 with an odd v. Then g1(e,q) exists if and only
if one of the following two conditions holds
qg—1

1.
pt—1

fe for alld|r, d#r, (P7/?—=1) feifu>1,

_att
ged(2,p+1)
1 1
(2q—|—7+1) fe and % fe for all d|r, d < r, with r/d odd.
P p

In particular, g1(e,q) exists if ged(e,q — 1) < ¢*/? =1 or ged(e, g+ 1) < %q2/3.

fe if v>1.

PRrOOF. Put
D:{De(u1,1)+...+De(u5,1):ul,..., USEFq, SEN}.

We have to characterize the conditions when D = F,.
We consider the following vector spaces A and B over IFp,

A = {De(,ul—|—u1_1,1)—|—...—|—DE(uS—|—uS_1,1):Ml,...,uSEFZ,SEN},
B = {De(,ul+uf1,1)+...+De(Ms+u;1,1):M‘lﬁlz...:,ug"'l:l,
Basespis € Flay s € N}

For u € F the substitution u = p + Tt

1

with p € Fp, implies either p € Fy or
It =1 since u? = pd + p=9 = p+ p~t = u. It is easy to see that
D=A+B={a+b:a€ A be B}
Since
De(pr + py s 1) Delpn + iy, 1) =

(2.1) De(ppiz + (pap2) ™1, 1) + Depapy* + py iz, 1)
by (1.1), we see that A and B are fields.
We note that D = F, implies A =F, or B =F,.
The cardinality of D can be bounded by

|A +B| <|A[[B]|
since both fields contain F,. Using the fact that the cardinality of |A| = p?,
IB| = p?, where d, d’ are divisors of 7, ¢ = p", we get that d = r or d’ = r.
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The problem has been reduced to prove in which cases
A ={Dc(p+p"1): peF;} and
By ={ De(p+p"1): peFpa,p™t =1}
are both contained in a proper subfield.
If Ay C Fpa for some d|r with d # r, we have

P+ ¢ = Do(p+p~ 1) = De(p+ p L 17" = o 4 e’
for any p € Fy, in particular, for a primitive element y = g of Fy. This implies
g¢®' =D = 1 or ¢g¢®"+1) = 1 and thus

(2.2) e(p?=1)=0 modg—1 or e(p?+1)=0 modq— 1.

If By C F o with d'|r and d’ # 7 we get analogously

(2.3) e(p? —1)=0modg+1 or e(p® +1)=0modq+1.

The number ¢; (e, ¢) does not exist if and only if (2.2) and (2.3) both hold for some
proper divisors d and d’ of r.

Finally, we simplify the conditions (2.2) and (2.3).
The first condition in (2.2) is ;[_11 le.
If r/d is odd, we have ged(q — 1,p? + 1) = ged(2,p? + 1) = ged(2,p + 1) since
qg—1=(pH/4 -1 = —2mod p? + 1 and thus the second condition in (2.2) is

q+1 |e
ged(2,p+1) 177

If 7 is even and d = r/2, the second condition in (2.2) is (p'/? — 1)|e.

If r/d is even and d < r/2, the second condition is covered by pg%1|e.

Since ged(p? —1,q+ 1) = ged(2, p + 1) the first condition in (2.3) is #@il)\e.
. .. . . 1

If r/d’ is odd, the second condition in (2.3) is pgtl le.

If r/d’ is even, the second condition in (2.3) is ﬁ,;ﬂﬂe which is already covered

by the first condition in (2.3). O

For arbitrary « a result of the same flavor cannot be obtained since A and B
are not fields in general.

3. Bounds based on addition theorems

3.1. A consequence of the Cauchy-Davenport theorem. In this sub-
section we prove the following bound on g, (e, p) based on the Cauchy-Davenport
theorem.

THEOREM 3.1. We have
Jo(e,p) < 3min{ged(e,p — 1),gcd(e,p+ 1)}, p>3.
PrROOF. For s > 1 put
D; = {Dc(u1,0) + ...+ De(us, @) : u1,...,us € Fp}.
By the Cauchy-Davenport theorem we have
IDs| > min{|Dy—1| + [D1| = 1,p}, s2>2,
and get by induction
ID,| = min{s(IDs] — 1)+ 1,p}, s> 1.
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By the formula of [3] for the cardinality of D; we get

D, > p—1 p+1
2¢cd(e,p—1) 2ged(e,p+1)
p—1 p+1 1
maX{Qgcd(e,p— 1)’ 2ged(e,p + 1)} Ty

If ged(e,p — 1) > (p — 1)/2, we get trivially g.(e,p) < p < 3ged(e,p —1).
If ged(e,p— 1) < (p—1)/3, we get Dy, =T, if

p—1
(p—1)/2ged(e,p—1) —1/2
If ged(e,p+1) = (p+1)/3, we get ga(e,p) < p < 3ged(e, p +1).
If ged(e,p+1) < (p+1)/4, we get Dy =T, if

s>2gcd(e,p—1) >

p—1
(p+1)/2gcd(e,p+1) —1/2
and the result follows. O

s>3gcd(e,p+1) >

Note that the Cauchy-Davenport theorem is not valid in general for arbitrary
finite fields.

For the case of prime fields and o = 0, sum-product techniques (see [5] and refer-
ences therein) can be applied to derive very strong bounds on go(e, p). It would be
interesting to study this approach for o # 0 as well.

3.2. Extension to arbitrary finite fields. In the case @ = 1 we can reduce
the problem of estimating g1 (e, q) to the corresponding problem for prime fields.

THEOREM 3.2. Let ¢ =p". If g1(e,q) exists, then we have
gl(ea Q) S 2r max{gl(d7p)7 gl(f7p)}a

where
__ thdy
ng(dl, dg)
with
4y = p—1 and dy = ptl
' cd (7@71) — 1) ’ cd (7(‘171) + 1)
8¢ ged(eg-0 7P 8¢ ged(eq—1) 7P
and
f= fife
ged(f1, f2)
with ) )
= P and fo = Pt

ged (it 2 — 1) ged (it v + 1)

PROOF. As in the proof of Theorem 2.1 we see that either A =1, or B =F,.

Thus, we can select {01, ..., (-} a basis of F, over F,, that either {31,...,0,-} C Ay
or {ﬁl, . 75r} C B;.
Each element of F, is a linear combination of {f1, ..., 5, } and Equation (2.1) states
that the products of elements of A; or By can be expressed as a sum of elements
of Ay or By, respectively. So we are going to investigate how many summands of
elements of A; and B, are necessary to generate IF,,.
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First we suppose that {31,...,8,} C Ay. For u € F; we have
De(p+p 1) =p+p €,

if u® € F or pe®t) =1 with p € F.. The eth powers in Fj are the (¢—1)/(e, ¢ —
1)th roots of unity and the elements of Fy are the (p — 1)th roots of unity in F.
Hence, the elements p¢ € Fy; with y € F; are the ((¢ —1)/ged(e,q —1),p — 1))th
roots of unity or the d; = (p —1)/((¢ — 1)/ ged(e,q — 1),p — 1)th powers in Fj.
Similarly, we see that the eth powers p® € F; with pePth) = 1 are the dy =
(p+1)/((qg — 1)/ ged(e, g — 1), p + 1)th powers of elements p € 'y with ppPtt = 1.
Put d = d1d2/(d1,dz2). Hence, the values D(u,1) € F, with u € F, coincide with
the values Dg(u, 1) with u € F,,. Now every element of F, is sum of at most g1 (d, p)
summands. By (2.1) all elements u8;, v € Fp,, ¢ = 1,...,r, are sums of 2¢,(d, p)
elements and we get the bound

g1(e,;q) < 2rgi(d,p).
If we assume {31, ..., 5, } C By, we obtain

gi(e,q) < 2rgi(f,p)

analogously. O

4. Bounds derived by additive character sums

Theorems 3.1 and 3.2 give general bounds for arbitrary finite fields which are
up to a constant best possible since g(p? — 1,p) = p. However, these results can be
improved using bounds on additive character sums if min{gcd(e,¢—1), gcd(e,g+1)}
is small. Note that in this case g, (e, ¢) always exists.

THEOREM 4.1. We have
gale,q) < s if ged(e,q—1) < éqw‘m(s‘“, 5> 2.
For a =1 we have additionally
gle.q) S5 i med(e,g 1) < gg2 D, >0
ProoF. Without loss of generality we restrict ourselves to the cases when s > 2

and e = ged(e,g—1) or e = ged(e, g+1). First we consider the case e = ged(e, g—1).
In this case our technique works for all o whereas in the second case we need o = 1.

Let x be a nontrivial additive character of F,. By

(4.1) S x(aw) = {0 “70

= qg a=0,
the number N; of solutions of the equation

y=De(p1 +apy ) + ...+ De(ps +apgtia), pn,... ps € Fy
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is

N, = fz > x<u<iDe(ui+auilya)—y>>

uE]Fq M1, ,MSEF* i=1

S
= qfl Z > (ZuDe(uiJrozuZl,a))
uem*ul,,useﬁ* i=1

S

W=D LN S (D (4 o)

q q u€Fs |ueFs

Since e|g® — 1 it is not divisible by p and by [10, Lemma 2] we see that the rational
function X€+ a®X ~¢ is not of the form AP — A. Hence, we can apply the character
sum bound of Moreno and Moreno [9, Theorem 2] which implies

s—2

max | Y x (uDe(p+ ap™,a)) < (2eq'/?)°7?
This implies that

(¢—1)°
q

eqt/2)52
(2eq ) Do x(WDe(p+ap™ a))

(4.2)
q u€F, |u€EF:

N, —

Expanding the inner sum, we get

Z Z M1+O‘:U'1 ) )_De(,u2+04:u'2_150‘)>)'

w1, p2€F; uel,
By (4.1), we get that the inner sum is zero, except if
De(pn + ot 0) = Delpn + oz L) = 0.

For each 7 there exist at most 2e choices of us such that this equation holds. So,
this sum is at most 2eq®. Substituting in (4.2), we get

(¢—1)°

NS_ < (26(]1/2)871(]1/2.

The number Nj is positive for all y € Fy if

'/
L —
€= 8¢1/26—1)
and thus g, (e, q) < s under this condition.
Now we assume e = ged(e,q + 1) and o = 1, and denote by N, the number of
solutions of

y= Do +pr 1) + oo+ De(ps +pyt 1), pd™h = =pitt =1,
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where we need bounds on

-1
max | x (uDe(u+p, 1))
#GF;%
it =1
Note that for p with p9t! = Nmgz2 /q (1) = 1 we have De(p+p~t,1) = pé +p=¢ =
pe + pct = Trqz/q(ue)'
Let v be a multiplicative character of F,» of order e. Then we have

e—1

1 , 1, &= p° for some p € F,

— J = g *2'

e ‘Zo v (8) { 0, otherwise, cely
=

Hence,
e—1
S ox(WDe(p+ph D)) =3 DT I (©x(Trga/q(€)).
HE]F:;Q, Jj= 5EF;27
piti=1 quz/q(g):l

(Note that each & which is an eth power equals p® for e different p.) By [7,
Theorem 2] the absolute value of the sum over ¢ can be bounded by 2¢'/? and we
get

2
q+1)° s— -
’Ns - ()‘ <(2e¢"?) > | > x(uDe(p+pt 1))
q u€clky HGFzz,
pdti=1
Following a similar reasoning as in the previous case, g1(e,q) < s if
1/2
q
<t
€= 2¢1/2G-1)"
This finishes the proof. (I
Note that from [4, Theorem 10]
'/
ale,q) < sif ged(e,q—1 dle,g+1) < ————.
gale,q) < s if ged(e,q — 1) + ged(e, g + 1) G-
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