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Abstract

We prove a bound on sums of products of multiplicative charac-
ters of shifted Fermat quotients modulo p. From this bound we derive
results on the pseudorandomness of sequences of modular discrete log-
arithms of Fermat quotients modulo p: bounds on the well-distribution
measure, the correlation measure of order ¢, and the linear complexity.
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1 Introduction

For a prime p and an integer u with ged(u,p) = 1 the Fermat quotient g,(u)
modulo p is defined as the unique integer with

gp(u) = ————  (mod p), 0<qy(u) <p-1,



and we define ¢,(u) = 0 if w = 0 mod p. There are several results which
involve the distribution and structure of Fermat quotients g,(u) modulo p
and they have numerous applications in computational and algebraic number
theory, see e.g. [1, 3, 5, 6, 7, 8, 13, 15] and references therein. In partic-
ular, Shparlinski [15] proved a bound on character sums for any nontrivial
multiplicative character v, which can be easily extended to,

N-—1
> blgplau + b)) < N'TVpED/@D 1og p) v 1 < N <p? (1)
u=0

for any integers a, b with ged(a, p?) # p?, where U < V is equivalent to the
assertion that the inequality |U| < ¢V holds for some constant ¢ > 0 which
depends only on the parameter v or is absolute otherwise. Here we study
the following multiplicative character sums,

N—-1
> i(gp(u+di)) - ulgp(u+dp)), 1< N <p?

u=0

with nontrivial multiplicative characters 1, ...,1, modulo p and lags 0 <
di <dy <...<dy<p?>—1. We prove a bound on these character sums of
order of magnitude

(N
max {1)1/3’ op3? logp}

in Section 2. Besides standard arguments the proof is based on a result of
Heath-Brown [8, Lemma 4] on the number of solutions of the congruences

p—1 U
Z—,Ecmodp, 0<u<p—1.
-1 !
We apply this character sum bound to derive results on the pseudoran-
domness of sequences (e,,) of discrete logarithms modulo a divisor m > 2 of

p — 1 of Fermat quotients modulo p defined by

exp(2mie,/m) = x(gp(u)), 0 <e, <m if gy(u) # 0 mod p (2)

and e, = 0 otherwise, where x is a fixed multiplicative character modulo p
of order m. We prove bounds on the well-distribution measure, correlation
measure of order ¢, and the Nth linear complexity of (e,) in Section 3.
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2 The character sum bound
In this section we prove the following character sum bound.

Theorem 1 Let )y, ...,y be nontrivial multiplicative characters modulo p.
Then we have

P (N
Z 1(gp(u+dr)) - e(gp(u+ dp)) < max {])1/3’ op? 10gp}

u=0

for any integers 0 < dy < ... <dy <p?>—1and1 <N < p?.

Proof. For £ =1 the result follows from (1) and we may assume ¢ > 2.
We recall that for ged(v,p) = 1 we have

gp(v+kp) = gp(v) — kv~ mod p. (3)

Substituting u = v + kp with 0 < v <p—1 and put K = | N/p| we get

N-1 p—1
> ti(gp(u+di)) - elgp(u+ dp)) < bp + > So,
u=0 i 20 mad . =1,
where
K—1
Sv = Z U1((gp(v +di) — k(v +d1) ") - e(gp(v + dp) — k(v +dg) )] -

k=0

If gy(v+di)(v+di) # gp(v+d;j)(v+d;) mod p for j =2,...,¢, the standard
method for reducing incomplete character sums to complete ones and the
Weil-bound, see for example [9] or [14, Lemma 3.4], lead to the bound

Sy K €p1/2 log p.

Otherwise we estimate S, trivially by K.



To complete the proof it remains to show that for fixed 2 < j < £ the
number of 0 < v < p—1 with

¢p(v+di)(v+di) = gp(v+dj)(v+d;) mod p (4)

is of order of magnitude p*®. If d; = d; mod p (but d; # di mod p?), (3)
with k = (dj — dq)/p implies v + d; = 0 mod p. Hence, since additionally
gp(v +di)(v+di) — gp(v + d2) (v + dp) is p-periodic we may assume d; = 0
and d; = d with 1 < d < p — 1. Note that
gp(dw) = gp(d) + gp(w) mod p, ged(dw,p) = 1.
Hence, substituting v = d(w — 1) in (4) (with d; = 0 and d; = d) we get for
2 S w S b —= 17
¢ = gpdw)dw — g¢p(d(w —1))d(w — 1)
= gp(w)dw — gp(w — 1)d(w — 1) + gp(d)d mod p,

for some constant c¢. So, we can transform our problem into studying

(w—1P—wP+1 _

5 =

The left hand side is equal to

¢p(d) — ¢ mod p.

G (O TE DL ki
Zl:l (Z)( ) w = Zﬂ HlOdp
p =1 !

and the number of solutions can be estimated by < p?/3, see [8, Lemma
4]. O

3 Measures of pseudorandomness

In this section we study three measures of pseudorandomness for the se-
quence (e,) defined by (2). For a survey on pseudorandom sequences we
refer to [16].

For c€{0,1,...,m — 1} put

z((ey), e, Mya,b) =[{u:0<u<M-—1, ey =c}|

and for w = (ay,...,a;) € {0,1,...,m — 1} and D = (di,...,d;) with
integer80§d1<...<dg<p2

g((eu)awaMaD) = Hu :0 <u< M — 17(€u+d17"'7eu+dz) :w}’

4



Then the f-well-distribution measure of (e,) (‘f’ for 'frequency’) is defined
as

d((ew)) = max |z((eu),c, M, a,b) — M

)

c,M,a,b m
where the maximum is taken over all ¢ € {0,1,...,m — 1} and a,b, M with
a+ (M —1)b < p?, while the f-correlation measure of order ¢ is defined as
((eu)) = max |g((ew),w, M, D) —
YellCy _wI,n]\%?{D g\\€y), W, ) - mg )
where the maximum is taken over all w € {0,1,...,m—1}*, D = (di, ..., dy)

and M such that M + d; < p?. The f-well-distribution measure and the
f-correlation measure of order ¢ were introduced in [11].

Theorem 2 For the sequence (e,) defined by (2) we have

5((ea)) < p**(logp)

and

ve((en)) < £p5/3.

Proof. Note that for 0 < ¢ < m and ¢,(u) # 0 mod p,

m—1 . N
% Z(X(QP(U))eXp(_QWiC/m))j — {1’ if €y = C,
0

= 0, otherwise,

and thus
1 M—-1m-—1
w).e M, a,b) < — J b —2mi I+ p.
z((eu); e, M, a,0) < — UZ:O jz;x (gp(au + b) exp(—2mic/m))’ + p

The contribution for j = 0 is M/m and we get

M-1

M .
ol M) = 1| < |57 a0
B u=0

If a > p, we may assume M < p and use the trivial bound M for the right
hand side. Otherwise we can apply (1) and get the first result.
Similarly we see that

M
a((ca)w D) =
Mil . .
< {lp+ max Z X(gp(u +dr)’* - gp(u +dg)”)|
J1s--50¢ u=0




where the maximum is taken over all 0 < j1,...,75, < m — 1 with at least
one nonzero j;. Now the bound follows from Theorem 1. O

For N > 2 the Nth linear complexity L((ey,), N) of (e,) (modulo m) is
the length L of a shortest linear recurrence

CutL = JL—1€utL—1+ - -+gi€ur1+goey modm, u=0,...,N—-L-1, (5)

for some integers go, ..., gr_1. For surveys on linear complexity and related
measures we refer to [12, 17].

Theorem 3 For N > 2 we have

. N
L((ey),N) > 111111{3/217 p1/3} .
p ogp

Proof. Let the first N elements of (e,) satisfy a linear recurrence (5) of
length L. There are at most < Lp different 0 < v < N — L — 1 with
gp(u+ j) =0 for some 0 < j < L — 1. For all other v we have

L—1
1 =x (qp(u + D)7 ] alu+ k‘)g’“>

1=0
and thus
N-L-1
N < Lp+ > x(gp)®gqp(u+1)? ... qy(u+ L)P?)
u=0

LN
< max {1, Lp3/2 logp}
p/3
by Theorem 1 and the result follows. O

4 Final remarks

Let (g,) be any complex p-periodic sequence. The bounds in (1) and Theo-
rem 1 can be easily extended to

N-1 p—1
3 dlgplau+b)ew € 3 [eu NYY(N/p) D/ ) (log p) /Y
u=0 u=0



and
N-1

Z Y1(gp(u +d1)) - - Yelap(u+ di))ey

u=0

p—1
~1/3 1/2
< max{oglgi(p lew|(Np ,Z lew|lp™ < log p}.
u=0
Hence, the bounds of Theorems 2 and 3 are valid for the more general se-
quences (e, + ¢,) for any p-periodic sequence (¢,) over {0,1,...,m —1}.

Another definition of the correlation measure, which coincides with the
definition for binary sequences [10], was also introduced in [11].

Let &, = {e1,...,em} be the set of the complex m-th roots of unity,
and let F be the set of m! bijections ¢ of &,. For ¢ = (p1,...,¢0) € F*
and D = (dy,...,d;) with non-negative integers 0 < d; < --- < dy write

M—-1
G((en) 6. M. D) = 3 p1(exp(2micyra, /m)) - pelexp(2mic,sq, /m))-

u=0

Then the &,,-correlation measure of order ¢ of (e,) is defined as

Ff((eU» - ¢ma% |G((eu)7 ¢7 Mv D)’ ’
where the maximum is taken over all ¢ € F¢, and D = (dy,...,d,) with
non-negative integers 0 < d; < ... < dy and M such that M +d, < p?. The
connection between the f-correlation measure and the &,,-correlation mea-
sure was investigated in [11]. They are ‘nearly equivalent’ by the following
relation

L
i) e < 32 () o= DT
t=
The relations between the correlation measures of order ¢ and the Nth
linear complexity of [2, 4] can be used to obtain bounds on the Nth linear
complexity of (e,) as well. However, the direct use of the character sum
bound in Theorem 1 gives a better nontrivial bound if p*/2logp < N <
pll /6 log p.
In [11] the (p-periodic) sequence (e),) of discrete logarithms modulo m of
u (instead of g,(u) in this paper) was studied and the bound (Theorem 3)

Ye((el,)) < mep'/?logp



proved. However, the m can be omitted since Weil’s bound on complete
character sums and thus the bound on the incomplete sums

M-1

> x(f(w)

u=0

doesn’t depend on the degree of f(X) (here < mf) but only on its number
of different zeros (here < /), see for example [14, Lemma 3.4].
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