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Abstract

We prove a bound on sums of products of multiplicative charac-
ters of shifted Fermat quotients modulo p. From this bound we derive
results on the pseudorandomness of sequences of modular discrete log-
arithms of Fermat quotients modulo p: bounds on the well-distribution
measure, the correlation measure of order `, and the linear complexity.
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1 Introduction

For a prime p and an integer u with gcd(u, p) = 1 the Fermat quotient qp(u)
modulo p is defined as the unique integer with

qp(u) ≡ up−1 − 1

p
(mod p), 0 ≤ qp(u) ≤ p− 1,
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and we define qp(u) = 0 if u ≡ 0 mod p. There are several results which
involve the distribution and structure of Fermat quotients qp(u) modulo p
and they have numerous applications in computational and algebraic number
theory, see e.g. [1, 3, 5, 6, 7, 8, 13, 15] and references therein. In partic-
ular, Shparlinski [15] proved a bound on character sums for any nontrivial
multiplicative character ψ, which can be easily extended to,

N−1∑
u=0

ψ(qp(au+ b))� N1−1/νp(5ν+1)/(4ν2)(log p)1/ν , 1 ≤ N ≤ p2, (1)

for any integers a, b with gcd(a, p2) 6= p2, where U � V is equivalent to the
assertion that the inequality |U | ≤ cV holds for some constant c > 0 which
depends only on the parameter ν or is absolute otherwise. Here we study
the following multiplicative character sums,

N−1∑
u=0

ψ1(qp(u+ d1)) · · ·ψ`(qp(u+ d`)), 1 ≤ N ≤ p2,

with nontrivial multiplicative characters ψ1, . . . , ψ` modulo p and lags 0 ≤
d1 < d2 < . . . < d` ≤ p2 − 1. We prove a bound on these character sums of
order of magnitude

max

{
`N

p1/3
, `p3/2 log p

}
in Section 2. Besides standard arguments the proof is based on a result of
Heath-Brown [8, Lemma 4] on the number of solutions of the congruences

p−1∑
i=1

ui

i
≡ c mod p, 0 ≤ u ≤ p− 1.

We apply this character sum bound to derive results on the pseudoran-
domness of sequences (eu) of discrete logarithms modulo a divisor m ≥ 2 of
p− 1 of Fermat quotients modulo p defined by

exp(2πieu/m) = χ(qp(u)), 0 ≤ eu < m if qp(u) 6≡ 0 mod p (2)

and eu = 0 otherwise, where χ is a fixed multiplicative character modulo p
of order m. We prove bounds on the well-distribution measure, correlation
measure of order `, and the Nth linear complexity of (eu) in Section 3.
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2 The character sum bound

In this section we prove the following character sum bound.

Theorem 1 Let ψ1, . . . , ψ` be nontrivial multiplicative characters modulo p.
Then we have

N−1∑
u=0

ψ1(qp(u+ d1)) · · ·ψ`(qp(u+ d`))� max

{
`N

p1/3
, `p3/2 log p

}
for any integers 0 ≤ d1 < . . . < d` ≤ p2 − 1 and 1 ≤ N ≤ p2.

Proof. For ` = 1 the result follows from (1) and we may assume ` ≥ 2.
We recall that for gcd(v, p) = 1 we have

qp(v + kp) ≡ qp(v)− kv−1 mod p. (3)

Substituting u = v + kp with 0 ≤ v ≤ p− 1 and put K = bN/pc we get

N−1∑
u=0

ψ1(qp(u+ d1)) · · ·ψ`(qp(u+ d`))� `p +

p−1∑
v=0

v+di 6≡0 mod p, i=1,...,`

Sv,

where

Sv =

∣∣∣∣∣
K−1∑
k=0

ψ1((qp(v + d1)− k(v + d1)
−1) · · ·ψ`(qp(v + d`)− k(v + d`)

−1))

∣∣∣∣∣ .
If qp(v+d1)(v+d1) 6≡ qp(v+dj)(v+dj) mod p for j = 2, . . . , `, the standard
method for reducing incomplete character sums to complete ones and the
Weil-bound, see for example [9] or [14, Lemma 3.4], lead to the bound

Sv � `p1/2 log p.

Otherwise we estimate Sv trivially by K.
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To complete the proof it remains to show that for fixed 2 ≤ j ≤ ` the
number of 0 ≤ v ≤ p− 1 with

qp(v + d1)(v + d1) ≡ qp(v + dj)(v + dj) mod p (4)

is of order of magnitude p2/3. If dj ≡ d1 mod p (but dj 6≡ d1 mod p2), (3)
with k = (dj − d1)/p implies v + d1 ≡ 0 mod p. Hence, since additionally
qp(v + d1)(v + d1)− qp(v + d2)(v + d2) is p-periodic we may assume d1 = 0
and dj = d with 1 ≤ d ≤ p− 1. Note that

qp(dw) ≡ qp(d) + qp(w) mod p, gcd(dw, p) = 1.

Hence, substituting v = d(w− 1) in (4) (with d1 = 0 and dj = d) we get for
2 ≤ w ≤ p− 1,

c ≡ qp(dw)dw − qp(d(w − 1))d(w − 1)

≡ qp(w)dw − qp(w − 1)d(w − 1) + qp(d)d mod p,

for some constant c. So, we can transform our problem into studying

(w − 1)p − wp + 1

p
≡ qp(d)− c mod p.

The left hand side is equal to∑p−1
i=1

(
p
i

)
(−1)p−iwi

p
≡

p−1∑
i=1

wi

i
mod p

and the number of solutions can be estimated by � p2/3, see [8, Lemma
4]. 2

3 Measures of pseudorandomness

In this section we study three measures of pseudorandomness for the se-
quence (eu) defined by (2). For a survey on pseudorandom sequences we
refer to [16].

For c ∈ {0, 1, . . . ,m− 1} put

x((eu), c,M, a, b) = |{ u : 0 ≤ u ≤M − 1, eau+b = c}|

and for w = (a1, . . . , a`) ∈ {0, 1, . . . ,m − 1}` and D = (d1, . . . , d`) with
integers 0 ≤ d1 < . . . < d` < p2

g((eu), w,M,D) = |{u : 0 ≤ u ≤M − 1, (eu+d1 , . . . , eu+d`) = w}|.
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Then the f -well-distribution measure of (eu) (‘f ’ for ’frequency’) is defined
as

δ((eu)) = max
c,M,a,b

∣∣∣∣x((eu), c,M, a, b)− M

m

∣∣∣∣ ,
where the maximum is taken over all c ∈ {0, 1, . . . ,m− 1} and a, b,M with
a+ (M − 1)b < p2, while the f -correlation measure of order ` is defined as

γ`((eu)) = max
w,M,D

∣∣∣∣g((eu), w,M,D)− M

m`

∣∣∣∣ ,
where the maximum is taken over all w ∈ {0, 1, . . . ,m−1}`, D = (d1, . . . , d`)
and M such that M + d` ≤ p2. The f -well-distribution measure and the
f -correlation measure of order ` were introduced in [11].

Theorem 2 For the sequence (eu) defined by (2) we have

δ((eu))� p3/2(log p)

and
γ`((eu))� `p5/3.

Proof. Note that for 0 ≤ c < m and qp(u) 6≡ 0 mod p,

1

m

m−1∑
j=0

(χ(qp(u)) exp(−2πic/m))j =

{
1, if eu = c,

0, otherwise,

and thus

x((eu), c,M, a, b)� 1

m

M−1∑
u=0

m−1∑
j=0

χj(qp(au+ b) exp(−2πic/m))j + p.

The contribution for j = 0 is M/m and we get∣∣∣∣x((eu), c,M, a, b)− M

m

∣∣∣∣� p+ max
1≤j<m

∣∣∣∣∣
M−1∑
u=0

χj(qp(au+ b))

∣∣∣∣∣ .
If a ≥ p, we may assume M ≤ p and use the trivial bound M for the right
hand side. Otherwise we can apply (1) and get the first result.

Similarly we see that∣∣∣∣g((eu), w,M,D)− M

m`

∣∣∣∣
� `p+ max

j1,...,j`

∣∣∣∣∣
M−1∑
u=0

χ(qp(u+ d1)
j1 · · · qp(u+ d`)

j`)

∣∣∣∣∣ ,
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where the maximum is taken over all 0 ≤ j1, . . . , j` ≤ m − 1 with at least
one nonzero ji. Now the bound follows from Theorem 1. 2

For N ≥ 2 the Nth linear complexity L((eu), N) of (eu) (modulo m) is
the length L of a shortest linear recurrence

eu+L ≡ gL−1eu+L−1+· · ·+g1eu+1+g0eu mod m, u = 0, . . . , N−L−1, (5)

for some integers g0, . . . , gL−1. For surveys on linear complexity and related
measures we refer to [12, 17].

Theorem 3 For N ≥ 2 we have

L((eu), N)� min

{
N

p3/2 log p
, p1/3

}
.

Proof. Let the first N elements of (eu) satisfy a linear recurrence (5) of
length L. There are at most � Lp different 0 ≤ u ≤ N − L − 1 with
qp(u+ j) = 0 for some 0 ≤ j ≤ L− 1. For all other u we have

1 = χ

(
qp(u+ L)−1

L−1∏
l=0

qp(u+ k)gk

)

and thus

N � Lp+
N−L−1∑
u=0

χ(qp(u)g0qp(u+ 1)g1 . . . qp(u+ L)p−2)

� max

{
LN

p1/3
, Lp3/2 log p

}
by Theorem 1 and the result follows. 2

4 Final remarks

Let (εu) be any complex p-periodic sequence. The bounds in (1) and Theo-
rem 1 can be easily extended to

N−1∑
u=0

ψ(qp(au+ b))εu �
p−1∑
u=0

|εu|N1−ν(N/p)(ν+1)/(4ν2)(log p)1/ν
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and

N−1∑
u=0

ψ1(qp(u+ d1)) · · ·ψ`(qp(u+ d`))εu

� max{ max
0≤u<p

|εu|`Np−1/3,
p−1∑
u=0

|εu|`p1/2 log p}.

Hence, the bounds of Theorems 2 and 3 are valid for the more general se-
quences (eu + cu) for any p-periodic sequence (cu) over {0, 1, . . . ,m− 1}.

Another definition of the correlation measure, which coincides with the
definition for binary sequences [10], was also introduced in [11].

Let Em = {ε1, . . . , εm} be the set of the complex m-th roots of unity,
and let F be the set of m! bijections ϕ of Em. For φ = (ϕ1, . . . , ϕ`) ∈ F `
and D = (d1, . . . , d`) with non-negative integers 0 ≤ d1 < · · · < d` write

G((eu), φ,M,D) =
M−1∑
u=0

ϕ1(exp(2πieu+d1/m)) · · ·ϕ`(exp(2πieu+d`/m)).

Then the Em-correlation measure of order ` of (eu) is defined as

Γ`((eu)) = max
φ,M,D

|G((eu), φ,M,D)| ,

where the maximum is taken over all φ ∈ F `, and D = (d1, . . . , d`) with
non-negative integers 0 ≤ d1 < . . . < d` and M such that M + d` ≤ p2. The
connection between the f -correlation measure and the Em-correlation mea-
sure was investigated in [11]. They are ‘nearly equivalent’ by the following
relation

1

m`
Γ`((eu)) ≤ γ`((eu)) ≤

∑̀
t=1

(
`
t

)
(m− 1)tΓ`((eu)).

The relations between the correlation measures of order ` and the Nth
linear complexity of [2, 4] can be used to obtain bounds on the Nth linear
complexity of (eu) as well. However, the direct use of the character sum
bound in Theorem 1 gives a better nontrivial bound if p3/2 log p ≤ N ≤
p11/6 log p.

In [11] the (p-periodic) sequence (e′u) of discrete logarithms modulo m of
u (instead of qp(u) in this paper) was studied and the bound (Theorem 3)

γ`((e
′
u))� m`p1/2 log p
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proved. However, the m can be omitted since Weil’s bound on complete
character sums and thus the bound on the incomplete sums

M−1∑
u=0

χ(f(u))

doesn’t depend on the degree of f(X) (here ≤ m`) but only on its number
of different zeros (here ≤ `), see for example [14, Lemma 3.4].
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