SUBGROUPS GENERATED BY RATIONAL FUNCTIONS IN FINITE FIELDS

DOMINGO GÓMEZ-PÉREZ AND IGOR E. SHPARLINSKI

ABSTRACT. For a large prime p, a rational function $\psi \in \mathbb{F}_p(X)$ over the finite field \mathbb{F}_p of p elements, and integers u and $H \geq 1$, we obtain a lower bound on the number consecutive values $\psi(x)$, $x = u+1, \ldots, u+H$ that belong to a given multiplicative subgroup of \mathbb{F}_p^* .

1. Introduction

For a prime p, let \mathbb{F}_p denote the finite field with p elements, which we always assume to be represented by the set $\{0, \ldots, p-1\}$.

Given a rational function

$$\psi(X) = \frac{f(X)}{g(X)} \in \mathbb{F}_p(X)$$

where $f, g \in \mathbb{F}_p[X]$ are relatively prime polynomials, and an 'interesting' set $S \subseteq \mathbb{F}_p$, it is natural to ask how the value set

$$\psi(\mathcal{S}) = \{ \psi(x) : x \in \mathcal{S}, g(x) \neq 0 \}$$

is distributed. For instance, given another 'interesting' set \mathcal{T} , our goal is to obtain nontrivial bounds on the size of the intersection

$$N_{\psi}(\mathcal{S}, \mathcal{T}) = \# (\psi(\mathcal{S}) \cap \mathcal{T}).$$

In particular, we are interested in the cases when $N_{\psi}(\mathcal{S}, \mathcal{T})$ achieves the trivial upper bound

$$N_{\psi}(\mathcal{S}, \mathcal{T}) \leq \min\{\#\mathcal{S}, \#\mathcal{T}\}.$$

Typical examples of such sets S and T are given by intervals T of consecutive integers and multiplicative subgroups G of \mathbb{F}_p^* . For large intervals and subgroups, a standard application of bounds of exponential and multiplicative character sums leads to asymptotic formulas for the relevant values of $N_{\psi}(S, T)$, see [7, 11, 19]. Thus only the case of small intervals and groups is of interest.

Date: June 3, 2014.

2010 Mathematics Subject Classification. 11D79, 11T06.

Key words and phrases. polynomial congruences, finite fields.

For a polynomial $f \in \mathbb{F}_p[X]$ and two intervals $\mathcal{I} = \{u+1, \ldots, u+H\}$ and $\mathcal{J} = \{v+1, \ldots, v+H\}$ of H consecutive integers, various bounds on the cardinality of the intersection $f(\mathcal{I}) \cap \mathcal{J}$ are given in [7, 11]. To present some of these results, for positive integers d, k and H, we denote by $J_{d,k}(H)$ the number of solutions to the system of equations

$$x_1^{\nu} + \ldots + x_k^{\nu} = x_{k+1}^{\nu} + \ldots + x_{2k}^{\nu}, \qquad \nu = 1, \ldots, d,$$

in positive integers $x_1, \ldots, x_{2k} \leq H$. Then by [11, Theorem 1], for any $f \in \mathbb{F}_p[X]$ of degree $d \geq 2$ and two intervals \mathcal{I} and \mathcal{J} of H < p consecutive integers, we have

$$N_f(\mathcal{I}, \mathcal{J}) \le H(H/p)^{1/2\kappa(d) + o(1)} + H^{1 - (d-1)/2\kappa(d) + o(1)}$$

as $H \to \infty$, where $\kappa(d)$ is the smallest integer κ such that for $k \ge \kappa$ there exists a constant C(d,k) depending only on k and d and such that

$$J_{d,k}(H) \le C(d,k)H^{2k-d(d+1)/2+o(1)}$$

holds as $H \to \infty$, see also [7] for some improvements and results for related problems. In [7, 11] the bounds of Wooley [22, 23] are used that give the presently best known estimates on $\kappa(d)$ (at least for a large d), see also [24] for further progress in estimating $\kappa(d)$.

It is easy to see that the argument of the proof of [11, Theorem 1] allows to consider intervals of \mathcal{I} and \mathcal{J} of different lengths as well and for intervals

$$\mathcal{I} = \{u + 1, \dots, u + H\}$$
 and $\mathcal{J} = \{v + 1, \dots, v + K\}$

with $1 \le H, K < p$ it leads to the bound

$$N_f(\mathcal{I}, \mathcal{J}) \le H^{1+o(1)} \left((K/p)^{1/2\kappa(d)} + (K/H^d)^{1/2\kappa(d)} \right)$$

see also a more general result of Kerr [15, Theorem 3.1] that applies to multivariate polynomials and to congruences modulo a composite number.

Furthermore, let $K_{\psi}(H)$ be the smallest K for which there are intervals $\mathcal{I} = \{u+1, \ldots, u+H\}$ and $\mathcal{J} = \{v+1, \ldots, v+K\}$ for which $N_{\psi}(\mathcal{I}, \mathcal{J}) = \#\mathcal{I}$. That is, $K_{\psi}(H)$ is the length of the shortest interval, which may contain H consecutive values of $\psi \in \mathbb{F}_p(X)$ of degree d.

Defining $\kappa^*(d)$ in the same way as $\kappa(d)$, however with respect to the more precise bound

$$J_{d,k}(H) \le C(d,k)H^{2k-d(d+1)/2}$$

(that is, without o(1) in the exponent) we can easily derive that for any polynomial $f \in \mathbb{F}_p[X]$ of degree d,

(1)
$$K_f(H) \ge c(d)H^d,$$

for some constant c(d) > 0 that depends only on d. To see that the bound (1) is optimal it is enough to take $f(X) = X^d$ and u = 0. Note that the proof of (1) depends only on the existence of $\kappa^*(d)$ rather than on its specific bounds. However, we recall that Wooley [22, Theorem 1.2] shows that for some constant $\mathfrak{S}(d,k) > 0$ depending only on d and k we have

$$J_{d,k}(H) \sim \mathfrak{S}(d,k)H^{2k-d(d+1)/2}$$

for any fixed $d \geq 3$ and $k \geq d^2 + d + 1$. In particular, $\kappa^*(d) \leq d^2 + d + 1$. Here we concentrate on estimating $N_{\psi}(\mathcal{I}, \mathcal{G})$ for an interval \mathcal{I} of H consecutive integers and a multiplicative subgroup $\mathcal{G} \subseteq \mathbb{F}_p^*$ of order T. This question has been mentioned in [11, Section 4] as an open problem.

We remark that for linear polynomials f the result of [4, Corollary 34] have a natural interpretation as a lower bound on the order of a subgroup $\mathcal{G} \subseteq \mathbb{F}_p^*$ for which $N_f(\mathcal{I}, \mathcal{G}) = \#\mathcal{I}$. In particular, we infer from [4, Corollary 34] that for any linear polynomials $f(X) = aX + b \in \mathbb{F}_p[X]$ and fixed integer $\nu = 1, 2, \ldots$, for an interval \mathcal{I} of $H \leq p^{1/(\nu^2 - 1)}$ consecutive integers and a subgroup \mathcal{G} , the equality $N_f(\mathcal{I}, \mathcal{G}) = \#\mathcal{I}$ implies $\#\mathcal{G} \geq H^{\nu + o(1)}$.

We also remark that the results of [5, Section 5] have a similar interpretation for the identity $N_f(\mathcal{I}, \mathcal{G}) = \#\mathcal{I}$ with linear polynomials, however apply to almost all primes p (rather than to all primes).

Furthermore, a result of Bourgain [3, Theorem 2] gives a nontrivial bound on the intersection of an interval centered at 0, that is, of the form $\mathcal{I} = \{0, \pm 1, \dots, \pm H\}$ and a co-set $a\mathcal{G}$ (with $a \in \mathbb{F}_p^*$) of a multiplicative group $\mathcal{G} \subseteq \mathbb{F}_p^*$, provided that $H < p^{1-\varepsilon}$ and $\#\mathcal{G} \ge g_0(\varepsilon)$, for some constant $g_0(\varepsilon)$ depending only on an arbitrary $\varepsilon > 0$.

We note that several bounds on $\#(f(\mathcal{G}) \cap \mathcal{G})$ for a multiplicative subgroup $\mathcal{G} \subseteq \mathbb{F}_p^*$ are given in [19], but they apply only to polynomials f defined over \mathbb{Z} and are not uniform with respect to the height (that is, the size of the coefficients) of f. Thus the question of estimating $N_f(\mathcal{G},\mathcal{G})$ remains open. On the other hand, a number of results about points on curves and algebraic varieties with coordinates from small subgroups, in particular, in relation to the *Poonen Conjecture*, have been given in [6, 8, 9, 10, 17, 18, 20, 21].

We recall that the notations U = O(V), $U \ll V$ and $V \gg U$ are all equivalent to the statement that the inequality $|U| \leq cV$ holds with some constant c > 0. Throughout the paper, any implied constants in these symbols may occasionally depend, where obvious, on $d = \deg f$ and $e = \deg g$, but are absolute otherwise.

2. Preparations

2.1. Absolute irreducibility of some polynomials. As usual, we use $\overline{\mathbb{F}}_p$ to denote the algebraic closure of \mathbb{F}_p and X, Y to denote indeterminate variables. We also use $\overline{\mathbb{F}}_p(X)$, $\overline{\mathbb{F}}_p(Y)$, $\overline{\mathbb{F}}_p(X, Y)$ to denote the corresponding fields of rational functions over $\overline{\mathbb{F}}_p$.

We recall that the degree of a rational function in the variables X, Y

$$F(X,Y) = \frac{s(X,Y)}{t(X,Y)} \in \overline{\mathbb{F}}_p(X,Y), \quad \gcd(s(X,Y),t(X,Y)) = 1,$$

is $\deg F = \max\{\deg s, \deg t\}$.

It is also known that if $R(X) \in \overline{\mathbb{F}}_p(X)$ is a rational function then

(2)
$$\deg(R \circ F) = \deg R \deg F,$$

where o denotes the composition.

We use the following result of Bodin [1, Theorem 5.3] adapted to our purposes.

Lemma 1. Let $s(X,Y), t(X,Y) \in \mathbb{F}_p[X,Y]$ be polynomials such that there does not exist a rational function $R(X) \in \overline{\mathbb{F}}_p(X)$ with deg R > 1 and a bivariate rational function $G(X,Y) \in \overline{\mathbb{F}}_p[X,Y]$ such that,

$$F(X,Y) = \frac{s(X,Y)}{t(X,Y)} = R(G(X,Y)).$$

The number of elements λ such that the polynomial $s(X,Y) - \lambda t(X,Y)$ is reducible over $\overline{\mathbb{F}}_p[X,Y]$ is at most $(\deg F)^2$.

We say that a rational function $f \in \overline{\mathbb{F}}_p(X)$ is a perfect power of another rational function if and only if $f(X) = (g(X))^n$ for some rational function $g(X) \in \overline{\mathbb{F}}_p(X)$ and integer $n \geq 2$. Because $\overline{\mathbb{F}}_p$ is an algebraic closed field, it is trivial to see that if f(X) is a perfect power, then af(X) is also a perfect power for any $a \in \overline{\mathbb{F}}_p$. We need the following easy technical lemma.

Lemma 2. Let $P_1(X), Q_1(X) \in \overline{\mathbb{F}}_p[X]$ and $P_2(Y), Q_2(Y) \in \overline{\mathbb{F}}_p[Y]$ be two pairs of relatively prime polynomials. Then the following bivariate polynomial

$$F_{r,s}(X,Y) = rP_1(X)Q_2(Y) - sQ_1(X)P_2(Y),$$

is not divisible by any univariate polynomial for all $r, s \in \overline{\mathbb{F}}_p^*$,

Proof. Suppose that this polynomial is divisible by an univariate polynomial d(X). Take any root $\alpha \in \overline{\mathbb{F}}_p$ of the polynomial d and substitute $X = \alpha$ in $F_{r,s}(X,Y)$, getting

$$rP_1(\alpha)Q_2(Y) - sQ_1(\alpha)P_2(Y) = 0.$$

Here, we have two different possibilities:

- If $rP_1(\alpha) = 0$, then $Q_1(\alpha) = 0$, and we get a contradiction,
- In other case, $gcd(Q_2(Y), P_2(Y)) \neq 1$, contradicting our hypothesis.

This finishes the proof.

Now, we prove the following result about irreducibility.

Lemma 3. Given relatively prime polynomials $f, g \in \overline{\mathbb{F}}_p[X]$ and if a rational function $f(X)/g(X) \in \overline{\mathbb{F}}_p(X)$ of degree $D \geq 2$ is not a perfect power then $f(X)g(Y) - \lambda f(Y)g(X)$ is reducible over $\overline{\mathbb{F}}_p[X,Y]$ for at most $4D^2$ values of $\lambda \in \overline{\mathbb{F}}_p^*$.

Proof. First we describe the idea of the proof. Our aim is to show that the condition of Lemma 1 holds for the polynomial $f(X)g(Y) - \lambda f(Y)g(X)$. Indeed, we show that if

(3)
$$\frac{f(X)g(Y)}{g(X)f(Y)} = R(G(X,Y)),$$

with a rational function $R \in \overline{\mathbb{F}}_p(X)$ of degree $\deg R \geq 2$ and a bivariate rational function $G(X,Y) \in \overline{\mathbb{F}}_p(X,Y)$, then there exists another $\widetilde{R} \in \overline{\mathbb{F}}_p(X)$ and $\widetilde{G}(X,Y) \in \overline{\mathbb{F}}_p(X,Y)$

$$\frac{f(X)g(Y)}{g(X)f(Y)} = \left(\widetilde{R}\left(\widetilde{G}(X,Y)\right)\right)^m,$$

for an appropriate integer $m \ge 2$. Comparing coefficients, it is easy to arrive at the conclusion that f(X)/g(X) is a perfect power.

Without loss of generality, we suppose R(0) = 0. Indeed, we can take any root of R(X) and replace R(X) with $R(X + \alpha)$ and G(X, Y) with $G(X, Y) - \alpha$.

So, indeed we have

$$R(X) = a \frac{X \prod_{i=2}^{k} (X - r_i)}{\prod_{j=1}^{m} (X - s_j)}.$$

Writing $G(X,Y) = G_1(X,Y)/G_2(X,Y)$ in its lowest terms and by hypothesis, we have that the fraction on the right of this inequality,

$$\frac{f(X)g(Y)}{g(X)f(Y)} = a \frac{G_2(X,Y)^{N-k}}{G_2(X,Y)^{N-m}} \cdot \frac{G_1(X,Y) \prod_{i=2}^k (G_1(X,Y) - r_i(G_2(X,Y))}{\prod_{i=1}^m (G_1(X,Y) - s_i G_2(X,Y))},$$

where

$$N = \max\{k, m\}$$

is in its lowest terms. This means that $G_1(X,Y) = P_1(X)P_2(Y)$ and $G_2(X,Y) = s_1^{-1}(P_1(X)P_2(Y) - Q_1(X)Q_2(Y))$, where P_1, P_2, Q_1, Q_2 are divisors of f or g. Because $gcd(G_1(X,Y), G_2(X,Y)) = 1$, we have that

$$\gcd(P_1(X), Q_1(X)) = \gcd(P_2(Y), Q_2(Y)) = 1.$$

Lemma 2 implies that m = k as otherwise $G_2(X, Y)$ is divisible by an univariate polynomial. This implies,

$$\frac{f(X)g(Y)}{g(X)f(Y)} = a \frac{G_1(X,Y) \prod_{i=2}^m (G_1(X,Y) - r_i G_2(X,Y))}{\prod_{j=1}^m (G_1(X,Y) - s_j G_2(X,Y))}.$$

Now, suppose that there exists another value

$$s \in \{r_2, \dots, r_m, s_2, \dots, s_m\}, \quad s \neq 0, s_1.$$

Then, the following polynomial

$$G_1(X,Y) - sG_2(X,Y) = (1 - ss_1^{-1})P_1(X)P_2(Y) + s_1^{-1}Q_1(X)Q_2(Y)$$

is divisible by an univariate polynomial which contradicts Lemma 2. So, this means that R(X) can be written in the following form,

$$R(X) = \left(\frac{X}{X - s_1}\right)^m,$$

and this concludes the proof.

Notice that the condition that f(X)/g(X) is not a perfect power of a polynomial is necessary, indeed if $f(X) = (h(X))^n$ and g(X) = 1 with $f(X), h(X) \in \overline{\mathbb{F}}_p[X]$ then $f(X) - \lambda^n f(Y)$ is divisible by $h(X) - \lambda h(Y)$ for any $\lambda \in \overline{\mathbb{F}}_p$.

2.2. **Integral points on affine curves.** We need the following estimate of Bombieri and Pila [2] on the number of integral points on polynomial curves.

Lemma 4. Let C be a plane absolutely irreducible curve of degree $n \geq 2$ and let $H \geq \exp(n^6)$. Then the number of integral points on C inside of the square $[0, H] \times [0, H]$ is at most $H^{1/n} \exp(12\sqrt{n \log H \log \log H})$.

2.3. Small values of linear functions. We need a result about small values of residues modulo p of several linear functions. Such a result has been derived in [12, Lemma 3.2] from the Dirichlet pigeon-hole principle. Here use a slightly more precise and explicit form of this result which is derived in [13] from the Minkowski theorem.

First we recall some standard notions of the theory of geometric lattices.

Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be r linearly independent vectors in \mathbb{R}^s . The set

$$\mathcal{L} = \{ \mathbf{z} : \mathbf{z} = c_1 \mathbf{b}_1 + \ldots + c_r \mathbf{b}_r, \quad c_1, \ldots, c_r \in \mathbb{Z} \}$$

is called an r-dimensional lattice in \mathbb{R}^s with a basis $\{\mathbf{b}_1, \dots, \mathbf{b}_r\}$. To each lattice \mathcal{L} one can naturally associate its volume

$$\operatorname{vol} \mathcal{L} = \left(\det \left(B^t B \right) \right)^{1/2},$$

where B is the $s \times r$ matrix whose columns are formed by the vectors $\mathbf{b}_1, \ldots, \mathbf{b}_r$ and B^t is the transposition of B. It is well known that vol \mathcal{L} does not depend on the choice of the basis $\{\mathbf{b}_1, \ldots, \mathbf{b}_r\}$, we refer to [14] for a background on lattices.

For a vector \mathbf{u} , let

$$\|\mathbf{u}\|_{\infty} = \max\{|u_1|, \dots, |u_s|\}$$

denote its infinity norm of $\mathbf{u} = (u_1, \dots, u_s) \in \mathbb{R}^s$.

The famous Minkowski theorem, see [14, Theorem 5.3.6], gives an upper bound on the size of the shortest nonzero vector in any r-dimensional lattice \mathcal{L} in terms of its volume.

Lemma 5. For any r-dimensional lattice \mathcal{L} we have

$$\min \{ \|\mathbf{z}\|_{\infty} \colon \ \mathbf{z} \in \mathcal{L} \setminus \{\mathbf{0}\} \} \le (\operatorname{vol} \mathcal{L})^{1/r}.$$

For an integer a we use $\langle a \rangle_p$ to denote the smallest by absolute value residue of a modulo p, that is

$$\langle a \rangle_p = \min_{k \in \mathbb{Z}} |a - kp|.$$

The following result is essentially contained in [13, Theorem 2]. We include here a short proof.

Lemma 6. For any real numbers V_1, \ldots, V_s with

$$p > V_1, \dots, V_s \ge 1$$
 and $V_1 \dots V_s > p^{s-1}$

and integers b_1, \ldots, b_s , there exists an integer v with gcd(v, p) = 1 such that

$$\langle b_i v \rangle_p \le V_i, \qquad i = 1, \dots, s.$$

Proof. Without loss of the generality, we can take $b_1 = 1$. We introduce the following notation,

$$(4) V = \prod_{i=1}^{s} V_i$$

and consider the lattice \mathcal{L} generated by the columns of the following matrix

$$B = \begin{pmatrix} b_s V/V_s & 0 & \dots & 0 & pV/V_s \\ b_{s-1} V/V_{s-1} & 0 & \dots & pV/V_{s-1} & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_2 V/V_2 & pV/V_2 & \dots & 0 & 0 \\ V/V_1 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

Clearly the volume of \mathcal{L} is

$$\operatorname{vol} \mathcal{L} = \frac{V}{V_1} \prod_{j=2}^{s} \frac{pV}{V_j} = V^{s-1} p^{s-1} \le V^s$$

by (4) and the conditions on the size of the product $V_1 \dots V_s$. Consider a nonzero vector with the minimum infinity norm inside \mathcal{L} . By the definition of \mathcal{L} , this vector is a linear combination of the columns of B with integer coefficients, that is, it can be written in the following way

$$\left(\frac{c_1V}{V_1}, \frac{(c_1b_2 + c_2p)V}{V_2}, \dots, \frac{(c_1b_s + c_sp)V}{V_s}\right), \quad c_1, \dots, c_s \in \mathbb{Z}.$$

By Lemma 5 and the bound on the volume of \mathcal{L} , the following inequality holds,

$$\max\left\{ \left| \frac{c_1 V}{V_1} \right|, \left| \frac{(c_1 b_2 + c_2 p) V}{V_2} \right|, \dots, \left| \frac{(c_1 b_s + c_s p) V}{V_s} \right| \right\} \le V.$$

From here, it is trivial to check that if we choose $v = c_1$, then

• $\langle v \rangle_p = \langle c_1 \rangle_p \le V_1,$ • $\langle v b_i \rangle_p = \langle c_1 b_i \rangle_p \le V_i, \qquad i = 2, \dots, s,$

which finishes the proof.

3. Main Results

Theorem 7. Let $\psi(X) = f(X)/g(X)$ where $f, g \in \mathbb{F}_p[X]$ relatively prime polynomials of degree d and e respectively with d + e > 1. We define

$$\ell = \min\{d, e\}, \qquad m = \max\{d, e\}$$

and set

$$k = (\ell + 1) (\ell m - \ell^2 + m^2 + m)$$
 and $s = 2m\ell + 2m - \ell^2$.

Assume that ψ is not a perfect power of another rational function over $\overline{\mathbb{F}}_p$. Then for any interval \mathcal{I} of H consecutive integers and a subgroup \mathcal{G} of \mathbb{F}_p^* of order T, we have

$$N_{\psi}(\mathcal{I}, \mathcal{G}) \ll (1 + H^{\rho} p^{-\vartheta}) H^{\tau + o(1)} T^{1/2}$$

where

$$\vartheta = \frac{1}{2s}, \qquad \rho = \frac{k}{2s}, \qquad \tau = \frac{1}{2(\ell + m)},$$

and the implied constant depends on d and e.

Proof. Clearly we can assume that

$$(5) H \le cp^{2\vartheta/(2\rho-1)}$$

for some constant c>0 which may depend on d and e as otherwise one easily verifies that

$$H^{\rho+\tau}p^{-\vartheta} \ge H^{\rho}p^{-\vartheta} \gg H^{1/2},$$

and hence the desired bound is weaker than the trivial estimate

$$N_{\psi}(\mathcal{I}, \mathcal{G}) \ll \min\{H, T\} \leq H^{1/2} T^{1/2}.$$

Making the transformation $X \mapsto X + u$, we can assume that $\mathcal{I} = \{1, \ldots, H\}$. Let $1 \leq x_1 < \ldots < x_r \leq H$ be all $r = N_{\psi}(\mathcal{I}, \mathcal{G})$ values of $x \in \mathcal{I}$ with $\psi(x) \in \mathcal{G}$.

Let Λ be the set of exceptional values of $\lambda \in \overline{\mathbb{F}}_p$ described in Lemma 3. We see that there are only at most $4m^3r$ pairs (x_i, x_j) , $1 \le i, j \le r$, for which $\psi(x_i)/\psi(x_j) \in \Lambda$. Indeed, if x_j is fixed, then $\psi(x_i)$ can take at most $4m^2$ values of the form $\lambda \psi(x_j)$, with $\lambda \in \Lambda$,

Furthermore, each value $\lambda \psi(x_j)$ can be taken by $\psi(x_i)$ for at most D possible values of $i = 1, \ldots, r$.

We now assume that $r > 8m^3$ as otherwise there is nothing to prove. Therefore, there is $\lambda \in \mathcal{G} \setminus \Lambda$ such that

(6)
$$\psi(x) \equiv \lambda \psi(y) \pmod{p}$$

for at least

$$\frac{r^2 - 4m^3r}{T} \ge \frac{r^2}{2T}$$

pairs (x, y) with $x, y \in \{1, \dots, H\}$.

Let

$$f(X)g(Y) - \lambda f(Y)g(X) = \sum_{i=0}^{m} \sum_{j=0}^{m} b_{i,j}X^{i}Y^{j}$$

Let

$$\mathcal{H} = \{(i,j) : i, j = 0, \dots, m, i + j \ge 1, \min\{i, j\} \le \ell\}.$$

Clearly the noncostant terms $b_{i,j}X^iY^j$ of $f(X)g(Y) - \lambda f(Y)g(X)$ are supported only on the subscripts $(i,j) \in \mathcal{H}$. We have

$$\#\mathcal{H} = 2(m+1)(\ell+1) - (\ell+1)^2 - 1 = s$$

We now apply Lemma 6 with $s = \#\mathcal{H}$ and the vector $(b_{i,j})_{(i,j)\in\mathcal{H}}$. We also define the quantities U and $V_{i,j}$, $(i,j)\in\mathcal{H}$ by the relations

$$V_{i,j}H^{i+j} = U, \qquad (i,j) \in \mathcal{H},$$

thus

$$\prod_{(i,j)\in\mathcal{H}} V_{i,j} = 2p^{s-1}.$$

By Lemma 6 there is an integer v with gcd(v, p) = 1 such that

$$\langle b_{i,j}v\rangle_p \le V_{i,j}$$

for every $(i, j) \in \mathcal{H}$.

We have

$$\sum_{(i,j)\in\mathcal{H}} (i+j) = 2\sum_{i=0}^{m} \sum_{j=0}^{\ell} (i+j) - \sum_{i=0}^{\ell} \sum_{j=0}^{\ell} (i+j)$$

$$= 2\sum_{i=0}^{m} \left((\ell+1)i + \frac{\ell(\ell+1)}{2} \right) - \sum_{i=0}^{\ell} \left((\ell+1)i + \frac{\ell(\ell+1)}{2} \right)$$

$$= 2\left(\frac{(\ell+1)m(m+1)}{2} + \frac{\ell(\ell+1)(m+1)}{2} \right)$$

$$- \frac{\ell(\ell+1)^{2}}{2} - \frac{\ell(\ell+1)^{2}}{2} = k.$$

Certainly it is easy to evaluate $V_{i,j}$, $(i,j) \in \mathcal{H}$ explicitly, however it is enough for us to note that we have

$$U^s H^{-k} = 2p^{s-1}.$$

Hence

(8)
$$U = 2^{1/s} p^{1-1/s} H^{k/s}.$$

We also assume that the constant c in (5) is small enough so the condition

$$\max_{(i,j) \in \mathcal{H}} \{ V_{i,j} \} = UH^{-1} < p$$

is satisfied.

Let $F(X,Y) \in \mathbb{Z}[X]$ and $G(X,Y) \in \mathbb{Z}[X]$ be polynomials with coefficients in the interval [-p/2, p/2], obtained by reducing vf(X)g(Y) and $v\lambda f(Y)g(X)$ modulo p, respectively. Clearly (6) implies

(9)
$$F(x,y) \equiv G(x,y) \pmod{p}.$$

Furthermore, since for $x, y \in \{1, ..., H\}$, we see from (8) and the trivial estimate on the constant coefficients (that is, $|F(0)|, |G(0)| \le p/2$) that

$$|F(x,y) - G(x,y)| \ll U + p \ll p^{1-1/s}H^{k/s} + p,$$

which together with (9) implies that

(10)
$$F(x,y) = G(x,y) + zp$$

for some integer $z \ll p^{-1/s}H^{k/s} + 1$.

Clearly, for any integer z the reducibility of F(X,Y)-G(X,Y)-pz over $\mathbb C$ implies the reducibility of F(X,Y)-G(X,Y) over $\overline{\mathbb F}_p$, or equivalently $f(X)g(Y)-\lambda f(Y)g(X)$ over $\overline{\mathbb F}_p$, which is impossible because $\lambda\not\in\Lambda$.

Because $F(X,Y) - G(X,Y) - pz \in \mathbb{C}[X,Y]$ is irreducible over \mathbb{C} and has degree d, we derive from Lemma 4 that for every z the equation (10) has at most $H^{1/(d+e)+o(1)}$ solutions. Thus the congruence (6) has at most $O\left(H^{1/(d+e)+o(1)}\left(p^{-1/s}H^{k/s}+1\right)\right)$ solutions. This, together with (7), yields the inequality

$$\frac{r^2}{2T} \ll H^{1/(d+e)+o(1)} \left(p^{-1/s} H^{k/s} + 1 \right),$$

and concludes the proof.

Clearly, in the case when e=0, that is, $\psi=f$ is a polynomial of degree $d\geq 2$, the bound of Theorem 7 takes form

$$N_{\psi}(\mathcal{I}, \mathcal{G}) \ll (1 + H^{(d+1)/4} p^{-1/4d}) H^{1/2d + o(1)} T^{1/2}.$$

4. Comments

Clearly Theorem 7 also provides a bound for the case where rational function $\psi = \varphi^s$, with $\varphi \in \overline{\mathbb{F}}_p(X)$. This comes from the fact that

$$\psi(x) \in \mathcal{G} \implies \varphi(x) \in \mathcal{G}_0$$

where \mathcal{G}_0 is a multiplicative subgroup of $\overline{\mathbb{F}}_p$ of order bounded by sT. However the resulting bound depends now on the degrees of the polynomials associated with φ rather than that of ψ .

Another consequence from Theorem 7 is the following: given an interval \mathcal{I} and a subgroup $\mathcal{G} \subseteq \mathbb{F}_p^*$, satisfying $N_{\psi}(\mathcal{I}, \mathcal{G}) = \#\mathcal{I}$ then

$$\#\mathcal{G} \gg \min\{(\#\mathcal{I})^{2-2\tau+o(1)}, (\#\mathcal{I})^{1-2\rho-2\tau+o(1)}p^{2\vartheta}\}$$

where the implied constant depends only on d and e. However, we believe that this bound is very unlikely to be tight.

ACKNOWLEDGEMENTS

D. G-P. would like to thank Macquarie University for the support and hospitality during his stay in Australia.

During the preparation of this paper D. G-P. was supported by the Ministerio de Economia y Competitividad project TIN2011-27479-C04-04 and I. S. by the Australian Research Council Grants DP130100237 and DP140100118.

References

- [1] A. Bodin, 'Reducibility of rational functions in several variables', *Israel J. Math.*, **164** (2008), 333–347.
- [2] E. Bombieri and J. Pila, 'The number of integral points on arcs and ovals', *Duke Math. J.*, **59** (1989), 337–357.
- [3] J. Bourgain, 'On the distribution of the residues of small multiplicative subgroups of \mathbb{F}_p ', Israel J. Math., **172** (2009), 61–74.
- [4] J. Bourgain, M. Z. Garaev, S. V. Konyagin and I. E. Shparlinski, 'On the hidden shifted power problem', SIAM J. Comp., 41 (2012), 1524–1557.
- [5] J. Bourgain, M. Z. Garaev, S. V. Konyagin and I. E. Shparlinski, 'Multiplicative congruences with variables from short intervals', *J. d'Analyse Math.*, (to appear).
- [6] J. F. Burkhart, N. J. Calkin, S. Gao, J. C. Hyde-Volpe, K. James, H. Maharaj, S. Manber, J. Ruiz and E. Smith, 'Finite field elements of high order arising from modular curve', *Designs, Codes and Cryptography*, 51 (2009), 301–314.
- [7] M.-C. Chang, J. Cilleruelo, M. Z. Garaev, J. Hernández, I. E. Shparlinski and A. Zumalacárregui, 'Points on curves in small boxes and applications', *Preprint*, 2011 (available from http://arxiv.org/abs/1111.1543).
- [8] M.-C. Chang, 'Order of Gauss periods in large characteristic', *Taiwanese J. Math.*, **17** (2013), 621–628.
- [9] M.-C. Chang, 'Elements of large order in prime finite fields', Bull. Aust. Math. Soc., 88 (2013), 169–176.
- [10] M.-C. Chang, B. Kerr, I. E. Shparlinski and U. Zannier, 'Elements of large order on varieties over prime finite fields', *Preprint*, 2013.
- [11] J. Cilleruelo, M. Z. Garaev, A. Ostafe and I. E. Shparlinski, 'On the concentration of points of polynomial maps and applications', *Math. Zeit.*, **272** (2012), 825–837.
- [12] J. Cilleruelo, I. E. Shparlinski and A. Zumalacárregui, 'Isomorphism classes of elliptic curves over a finite field in some thin families', *Math. Res. Letters*, **19** (2012), 335–343.
- [13] D. Gómez-Pérez and J. Gutierrez, 'On the linear complexity and lattice test of nonlinear pseudorandom number generators', Preprint , 2013
- [14] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and combinatorial optimization, Springer, Berlin, Germany, 1993.
- [15] B. Kerr, 'Solutions to polynomial congruences in well shaped sets', *Bull. Aust. Math. Soc.*, (to appear).
- [16] D. Lorenzini, 'Reducibility of polynomials in two variables', J. Algebra, 156 (1993), 65–75.

- [17] R. Popovych, 'Elements of high order in finite fields of the form $\mathbb{F}_q[x]/\Phi_r(x)$ ', Finite Fields Appl., **18** (2012), 700–710.
- [18] R. Popovych, 'Elements of high order in finite fields of the form $\mathbb{F}_q[x]/(x^m-a)$ ', Finite Fields Appl., **19** (2013), 86–92.
- [19] I. E. Shparlinski, 'Groups generated by iterations of polynomials over finite fields', *Proc. Edinburgh Math. Soc.*, (to appear).
- [20] J. F. Voloch, 'On the order of points on curves over finite fields', *Integers*, 7 (2007), Article A49, 4 pp.
- [21] J. F. Voloch, 'Elements of high order on finite fields from elliptic curves', Bull. Aust. Math. Soc., 81 (2010), 425–429.
- [22] T. D. Wooley, 'Vinogradov's mean value theorem via efficient congruencing', Ann. Math., 175 (2012), 1575–1627.
- [23] T. D. Wooley, 'Vinogradov's mean value theorem via efficient congruencing, II', *Duke Math. J.*, **162** (2013), 673–730.
- [24] T. D. Wooley, 'Multigrade efficient congruencing and Vinogradov's mean value theorem', *Preprint*, 2011 (available from http://arxiv.org/abs/1310.8447).

Department of Mathematics, University of Cantabria, Santander 39005, Spain

E-mail address: domingo.gomez@unican.es

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF NEW SOUTH WALES, SYDNEY, NSW 2052, AUSTRALIA

E-mail address: igor.shparlinski@unsw.edu.au