SUBGROUPS GENERATED BY RATIONAL
FUNCTIONS IN FINITE FIELDS
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ABSTRACT. For a large prime p, a rational function ¢ € F,(X)
over the finite field F,, of p elements, and integers v and H > 1,
we obtain a lower bound on the number consecutive values ¥ (z),
r=u+1,...,u+ H that belong to a given multiplicative subgroup
of F},.

1. INTRODUCTION

For a prime p, let I, denote the finite field with p elements, which
we always assume to be represented by the set {0,...,p — 1}.
Given a rational function

_fX)

where f,g € F,[X] are relatively prime polynomials, and an ‘interest-
ing’ set S C IF), it is natural to ask how the value set

P(S) ={v(x) : €S8, g(x) #0}
is distributed. For instance, given another ‘interesting’ set 7, our goal
is to obtain nontrivial bounds on the size of the intersection

Ny(S,T) =#(S)NT).

In particular, we are interested in the cases when Ny (S,7T) achieves
the trivial upper bound

Ny(S,T) < min{#8, #T}.

Typical examples of such sets S and T are given by intervals Z of
consecutive integers and multiplicative subgroups G of F;. For large
intervals and subgroups, a standard application of bounds of exponen-
tial and multiplicative character sums leads to asymptotic formulas for
the relevant values of Ny (S,T), see [7, 11, 19]. Thus only the case of
small intervals and groups is of interest.
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For a polynomial f € F,[X] and two intervals Z = {u+1,...,u+H}
and J ={v+1,...,v+ H} of H consecutive integers, various bounds
on the cardinality of the intersection f(Z) N J are given in [7, 11].
To present some of these results, for positive integers d, k and H, we
denote by Jyx(H) the number of solutions to the system of equations

v v v v
i+ tag =+ g, v=1,...,d,

in positive integers xy,..., 29 < H. Then by [11, Theorem 1], for
any f € F,[X] of degree d > 2 and two intervals Z and J of H < p
consecutive integers, we have

Nf (I7 j) S H(H/p)1/2li(d)+0(1) + Hl*(dfl)/zn(d%i,o(l)’

as H — oo, where k(d) is the smallest integer x such that for k > &
there exists a constant C(d, k) depending only on k and d and such
that

Jd,k<H) < C(d, k)HQk:—d(d—I—l)/Q—i-o(l)

holds as H — oo, see also [7] for some improvements and results for
related problems. In [7, 11] the bounds of Wooley [22, 23] are used that
give the presently best known estimates on k(d) (at least for a large
d), see also [24] for further progress in estimating x(d).

It is easy to see that the argument of the proof of [11, Theorem 1]
allows to consider intervals of Z and J of different lengths as well and
for intervals

IT={u+1,...,u+ H} and J={v+1,...,v+ K}
with 1 < H, K < p it leads to the bound
Nf(I, j) S H1+o(1) ((K/p>1/2n(d) + (K/Hd)l/m@(d)),

see also a more general result of Kerr [15, Theorem 3.1] that applies
to multivariate polynomials and to congruences modulo a composite
number.

Furthermore, let K, (H) be the smallest K for which there are in-
tervals Z={u+1,...,u+ H} and 7 = {v+1,...,v+ K} for which
Ny(Z,J) =#I. That is, K,(H) is the length of the shortest interval,
which may contain H consecutive values of ¢ € F,(X) of degree d.

Defining £*(d) in the same way as k(d), however with respect to the
more precise bound

Jd,k(H) S C(d, k})H2k_d(d+1)/2

(that is, without o(1) in the exponent) we can easily derive that for
any polynomial f € F,[X] of degree d,

(1) Ky(H) > c(d)H",
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for some constant ¢(d) > 0 that depends only on d. To see that the
bound (1) is optimal it is enough to take f(X) = X¢ and u = 0. Note
that the proof of (1) depends only on the existence of x*(d) rather
than on its specific bounds. However, we recall that Wooley [22, The-
orem 1.2] shows that for some constant &(d, k) > 0 depending only on
d and k we have

Jax(H) ~ &(d, k)H%—d(dH)/z

for any fixed d > 3 and k > d>+d+1. In particular, x*(d) < d*+d+1.

Here we concentrate on estimating Ny(Z,G) for an interval Z of H
consecutive integers and a multiplicative subgroup G C IF; of order
T. This question has been mentioned in [11, Section 4] as an open
problem.

We remark that for linear polynomials f the result of [4, Corollary 34]
have a natural interpretation as a lower bound on the order of a sub-
group G C Ty for which N¢(Z,G) = #Z. In particular, we infer from [4,
Corollary 34] that for any linear polynomials f(X) = aX + b € F,[X]

and fixed integer v = 1,2, ..., for an interval Z of H < p*/®*~1 consec-
utive integers and a subgroup G, the equality N;(Z,G) = #Z implies
#g > HVJFO(U.

We also remark that the results of [5, Section 5] have a similar in-
terpretation for the identity N;(Z,G) = #Z with linear polynomials,
however apply to almost all primes p (rather than to all primes).

Furthermore, a result of Bourgain [3, Theorem 2| gives a nontrivial
bound on the intersection of an interval centered at 0, that is, of the
form Z = {0,+1,...,£H} and a co-set aG (with a € F;) of a multi-
plicative group G C F;, provided that H < p'~¢ and #G > go(e), for
some constant go(e) depending only on an arbitrary € > 0.

We note that several bounds on # (f(G) N G) for a multiplicative
subgroup G C Iy are given in [19], but they apply only to polynomials
f defined over Z and are not uniform with respect to the height (that
is, the size of the coefficients) of f. Thus the question of estimating
N¢(G,G) remains open. On the other hand, a number of results about
points on curves and algebraic varieties with coordinates from small
subgroups, in particular, in relation to the Poonen Conjecture, have
been given in [6, 8, 9, 10, 17, 18, 20, 21].

We recall that the notations U = O(V), U < V and V > U are all
equivalent to the statement that the inequality |U| < ¢V holds with
some constant ¢ > 0. Throughout the paper, any implied constants in
these symbols may occasionally depend, where obvious, on d = deg f
and e = deg g, but are absolute otherwise.
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2. PREPARATIONS

2.1. Absolute irreducibility of some polynomials. As usual, we
use [F,, to denote the algebraic closure of F, and X,Y to denote inde-
terminate variables. We also use F,(X), F,(Y), F,(X,Y) to denote the

corresponding fields of rational functions over IF,,.
We recall that the degree of a rational function in the variables X,V

i((j((:}y/'; € Fp(‘xv Y)? ng(S(X, Yr)’t()(7 Y)) — 1’

is deg F' = max{deg s, degt}.
It is also known that if R(X) € F,(X) is a rational function then
(2) deg(Ro F) = deg Rdeg F,

where o denotes the composition.
We use the following result of Bodin [1, Theorem 5.3] adapted to our
purposes.

Lemma 1. Let s(X,Y),t(X,Y) € F,[X,Y] be polynomials such that
there does mot exist a rational function R(X) € F,(X) with deg R > 1
and a bivariate rational function G(X,Y) € F,[X,Y] such that,

s(X,Y)
F(X)Y)=———= = R(G(X,Y)).
(X.V) = Ty = RGEY)
The number of elements \ such that the polynomial s(X,Y ) —At(X,Y)
is reducible over F,[X,Y] is at most (deg F)?%.

F(X,Y) =

We say that a rational function f € F,(X) is a perfect power of an-
other rational function if and only if f(X) = (¢g(X))" for some rational
function g(X) € F,(X) and integer n > 2. Because F, is an algebraic
closed field, it is trivial to see that if f(X) is a perfect power, then

af(X) is also a perfect power for any a € F,. We need the following
easy technical lemma.

Lemma 2. Let Pi(X),Q1(X) € F,[X] and Py(Y),Qo(Y) € F,[Y] be
two pairs of relatively prime polynomials. Then the following bivariate
polynomial

Fos(X,Y) =rPi(X)Q2(Y) — sQi(X)(Y),
1s not divisible by any univariate polynomial for all r,s € F;,

Proof. Suppose that this polynomial is divisible by an univariate poly-
nomial d(X). Take any root a € F, of the polynomial d and substitute
X =ain F,4(X,Y), getting

rP(a)Q2(Y) — sQ1(a)P2(Y) = 0.
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Here, we have two different possibilities:

o If rP(a) =0, then @;(a) = 0, and we get a contradiction,
e In other case, ged(Q2(Y), P2(Y)) # 1, contradicting our hy-
pothesis.

This finishes the proof. O
Now, we prove the following result about irreducibility.

Lemma 3. Given relatively prime polynomials f,g € F,[X] and if a
rational function f(X)/g(X) € F,(X) of degree D > 2 is not a perfect
power then f(X)g(Y) — Mf(Y)g(X) is reducible over F,[X,Y] for at
most 4D? values of A € F;.

Proof. First we describe the idea of the proof. Our aim is to show
that the condition of Lemma 1 holds for the polynomial f(X)g(Y') —
Af(Y)g(X). Indeed, we show that if

5 F(X)g(y)
g(X)f(Y)
with a rational function R € F,(X) of degree deg R > 2 and a bivariate

rational function G(X,Y) € F,(X,Y), then there exists another Re
F,(X) and G(X,Y) € F,(X,Y)

A = ()

for an appropriate integer m > 2. Comparing coefficients, it is easy to
arrive at the conclusion that f(X)/g(X) is a perfect power.

Without loss of generality, we suppose R(0) = 0. Indeed, we can
take any root of R(X) and replace R(X) with R(X + a) and G(X,Y)
with G(X,Y) — a.

So, indeed we have

= R(G(X,Y)),

X Hf:z(X — ;)
R | e
Writing G(X,Y) = G1(X,Y)/Gy(X,Y) in its lowest terms and by
hypothesis, we have that the fraction on the right of this inequality,
F(X)g(Y)  Go(X,¥)
gXfY)  Ga(X,Y)Nom
CGIX ) [T (Gh(X,Y) = ri(Ga(X,Y))
[[[L1(Gi(X)Y) = 5;Go(X,Y)) 7
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where
N = max{k,m}

is in its lowest terms. This means that G1(X,Y) = P(X)P2(Y) and

Go(X,Y) = s (PX)P(Y) — Q1 (X)Qa(Y)), where Py, Py, 1, Q» are
divisors of f or g. Because ged(G1(X,Y), G2(X,Y)) = 1, we have that

ged(Py(X), Q1(X)) = ged(PR(Y), Q2(Y)) =

Lemma 2 implies that m = k as otherwise G5(X,Y) is divisible by
an univariate polynomial. This implies,
F(X)g(Y) _ GiXY)[[Z(Gi(XY) —riGa(X,Y))
9(X)f(Y) [[[L(Gi(X,Y) = 5;Go(X,Y))

Now, suppose that there exists another value
s€{re, ... TmyS2y oy Sm by s#0,s;.
Then, the following polynomial
Gi(X,Y) —5Go(X,Y) = (1 — ss7 )P (X)P(Y) + 57'Q1(X)Qo(Y)

is divisible by an univariate polynomial which contradicts Lemma 2.
So, this means that R(X) can be written in the following form,

R0 = ()

and this concludes the proof. O

Notice that the condition that f(X)/g(X) is not a perfect power of a
polynomial is necessary, indeed if f(X) = (h(X))" and g(X) = 1 with
f(X),h(X) € F,[X] then f(X)—A"f(Y) is divisible by h(X) — Ah(Y)
for any \ € Fp.

2.2. Integral points on affine curves. We need the following es-
timate of Bombieri and Pila [2] on the number of integral points on
polynomial curves.

Lemma 4. Let C be a plane absolutely irreducible curve of degree n > 2
and let H > exp(n®). Then the number of integral points on C inside
of the square [0, H] x [0, H] is at most H'/" exp(12y/nlog H loglog H).
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2.3. Small values of linear functions. We need a result about small
values of residues modulo p of several linear functions. Such a result
has been derived in [12, Lemma 3.2] from the Dirichlet pigeon-hole
principle. Here use a slightly more precise and explicit form of this
result which is derived in [13] from the Minkowski theorem.

First we recall some standard notions of the theory of geometric
lattices.

Let by, ..., b, be r linearly independent vectors in R*. The set

L={z :z=cb+...4+¢b, c,...,c, €L}
is called an r-dimensional lattice in R® with a basis {by,...,b,}.

To each lattice £ one can naturally associate its volume
1/2

vol £ = (det (BtB)) ,

where B is the s x r matrix whose columns are formed by the vectors
bi,...,b, and B! is the transposition of B. It is well known that vol £
does not depend on the choice of the basis {by,...,b,}, we refer to [14]
for a background on lattices.

For a vector u, let

[ulloo = max{fun ;... Jus[}

denote its infinity norm of u = (uy, ..., us) € R®.

The famous Minkowski theorem, see [14, Theorem 5.3.6], gives an
upper bound on the size of the shortest nonzero vector in any r-
dimensional lattice £ in terms of its volume.

Lemma 5. For any r-dimensional lattice L we have
min {||z]je: z € £\ {0}} < (vol £)"/".

For an integer a we use (a), to denote the smallest by absolute value
residue of a modulo p, that is

(a), = min la — kp|
The following result is essentially contained in [13, Theorem 2]. We
include here a short proof.
Lemma 6. For any real numbers Vi, ...,V with
p>Vi,..., V,>1 and  Vi...Vy>p!

and integers by, . .., bs, there exists an integer v with ged(v, p) = 1 such
that

(b,-v)pﬁ\/;, i=1,...,s.
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Proof. Without loss of the generality, we can take by = 1. We introduce
the following notation,

(W v-1Tv

and consider the lattice £ generated by the columns of the following
matrix

bsV/ Vs 0 e 0 pV/ Vs

bsf1V/stl 0 . pV/stl 0

B = : : : : :

bV/Ve  pV/Vy ... 0 0

V/Vi 0 . 0 0

Clearly the volume of L is
vol £ = ZTT2Y - Vel <ve
=2

by (4) and the conditions on the size of the product V; ... V,. Consider
a nonzero vector with the minimum infinity norm inside £. By the
definition of £, this vector is a linear combination of the columns of B
with integer coefficients, that is, it can be written in the following way

AV (c1by + cop)V (c1bs + csp)V
, ey ———— |, ey Cs € L.
( Vi v, V. N
By Lemma 5 and the bound on the volume of £, the following inequality

holds,
aV | |(e1by + cop)V (c1bs + Csp)v‘} <V

9 g e ooy

max{ v % v

From here, it is trivial to check that if we choose v = ¢;, then
e (v),=(c), <V,
[ <Ubi>p = <Clbi>p S ‘/Z', 1= 2, ey S,
which finishes the proof. O

3. MAIN RESULTS

Theorem 7. Let Y(X) = f(X)/g9(X) where f,g € F,[X] relatively
prime polynomials of degree d and e respectively with d +e > 1. We
define

¢ = min{d, e}, m = max{d, e}
and set

k=(+1)(tm—0+m*+m) and s =2ml+2m — (.
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Assume that 1 is not a perfect power of another rational function over
F,. Then for any interval I of H consecutive integers and a subgroup
G of F, of order T', we have

Nw(I, g) < (1 + }I,opfﬂ)1,—_17'+o(1)7-11/27

where

) ok o
25 P= 9 7__2(€—i-m)7

and the implied constant depends on d and e.

Proof. Clearly we can assume that
(5) H < /e

for some constant ¢ > 0 which may depend on d and e as otherwise
one easily verifies that

Hp+7'p—19 > pr—ﬁ > H1/2,
and hence the desired bound is weaker than the trivial estimate
Ny(Z,G) < min{H,T} < H'*T"2,

Making the transformation X — X + u, we can assume that Z =
{1,....,H}. Let 1 <z < ... <z, < H beall r = Ny(Z,G) values of
x € T with ¢(z) € G.

Let A be the set of exceptional values of A € Fp described in Lemma, 3.
We see that there are only at most 4m?r pairs (z;,z;), 1 <i,j <r, for
which ¢ (z;)/¢(x;) € A. Indeed, if z; is fixed, then ¢ (z;) can take at
most 4m? values of the form A\ (z;), with A € A,

Furthermore, each value \¢)(z;) can be taken by v (x;) for at most
D possible values of 1 =1, ..., 7.

We now assume that r > 8m? as otherwise there is nothing to prove.
Therefore, there is A € G \ A such that

(6) U(x) = Mp(y)  (mod p)

for at least

r2 — 4m3r r?

(7) — >
T 2T
pairs (z,y) with z,y € {1,...,H}.
Let o
FX)g(Y) = Af(V)g(X) =D > by X'V
i=0 j=0
Let

H=A0Gj) : 4,j=0,...,m, i+ 7> 1,min{i,j} </}



10 DOMINGO GOMEZ-PEREZ AND IGOR E. SHPARLINSKI

Clearly the noncostant terms b; ; X*Y7 of f(X)g(Y) — Af(Y)g(X) are

supported only on the subscripts (i, 7) € H. We have
#H=2m+1)((+1)—(l+1)*-1=s

We now apply Lemma 6 with s = #H and the vector (bi,j)(A Jen-

,J

We also define the quantities U and V; ;, (4, j) € H by the relations
‘/i,jHH_j - Ua (Zaj) € H7
thus

By Lemma 6 there is an integer v with ged(v, p) = 1 such that
(bijv), < Vij
for every (i,7) € H.

We have
m { ¢ ¢
S+ =2) > (i+4) =D ) (i+))
(4,5)€EH i=0 j=0 i=0 j=0
m 4
:22 (€+1)i+€(£;1) —Z((£+1)i+€(€;1)>
_, (£+1)m(m+1) £(£+1)(m+1))
B 2 2
(e+1)?  e+1) "
S22 T

Certainly it is easy to evaluate V; ;, (i,7) € H explicitly, however it
is enough for us to note that we have

USH—]C — 2ps—1.

Hence
(8) U= 21/sp171/sHk/s.
We also assume that the constant ¢ in (5) is small enough so the con-
dition

Vij}=UH'<
[nax {Vi} P

is satisfied.

Let F(X,Y) € Z[X] and G(X,Y) € Z[X] be polynomials with co-
efficients in the interval [—p/2, p/2], obtained by reducing vf(X)g(Y)
and v\ f(Y)g(X) modulo p, respectively. Clearly (6) implies

(9) F(x,y) = G(z,y) (mod p).



SUBGROUPS GENERATED BY RATIONAL FUNCTIONS IN FINITE FIELDS11

Furthermore, since for z,y € {1,..., H}, we see from (8) and the trivial
estimate on the constant coeflicients (that is, |F'(0)],|G(0)| < p/2) that

|F(z,y) = G(z,y)| < U+p<p' V"HY +p,
which together with (9) implies that
(10) F(z,y) = G(x,y) + zp

for some integer z < p~ VS H** 4 1.

Clearly, for any integer z the reducibility of F(X,Y) - G(X,Y) —pz
over C implies the reducibility of F(X,Y)—G(X,Y) over F,, or equiv-
alently f(X)g(Y) — Af(Y)g(X) over F,, which is impossible because
A A

Because F'(X,Y) — G(X,Y) — pz € C[X,Y] is irreducible over C
and has degree d, we derive from Lemma 4 that for every z the equa-
tion (10) has at most H'/(¢+e)+°(1) solutions. Thus the congruence (6)
has at most O (H'/(@+e)+o) (p=1/s fgk/s 4 1)) solutions. This, together

with (7), yields the inequality

2
T
o7 < U/ drete) (p=ts gkl 4 1)

and concludes the proof. a

Clearly, in the case when e = 0, that is, ©» = f is a polynomial of
degree d > 2, the bound of Theorem 7 takes form

Nw(.’[, g) < (1 +H(d+1)/4p_1/4d) H1/2d+0(1)T1/2.

4. COMMENTS

Clearly Theorem 7 also provides a bound for the case where rational
function ¢ = ¢*, with ¢ € F,(X). This comes from the fact that

Y(x) € G = p(x) € G,

where G, is a multiplicative subgroup of Fp of order bounded by sT.
However the resulting bound depends now on the degrees of the poly-
nomials associated with ¢ rather than that of .

Another consequence from Theorem 7 is the following: given an
interval Z and a subgroup G C [y, satisfying Ny(Z,G) = #Z then

#G > min{(#I)* 20 (H)1-2e—2r+e()20

where the implied constant depends only on d and e. However, we
believe that this bound is very unlikely to be tight.
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