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Exponential sums with Dickson polynomials
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Abstract

We give new bounds of exponential sums with sequences of iterations of Dickson polynomials
over prime finite fields. This result is motivated by possible applications to polynomial generators
of pseudorandom numbers.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

For an integer q > 1 we denote by Zq the residue ring modulo q and always assume
that it is represented by the set {0, 1, . . . , q − 1}. As usual, we denote by Uq the set
of invertible elements of Zq .

Accordingly, for a prime p, we denote by Fp�Zp the field of p elements and as
before, we assume that it is represented by the set {0, 1, . . . , p − 1}. In particular,
sometimes, where obvious, we treat elements of Zq and Fp as integer numbers in the
above range.

Given a polynomial F(X) ∈ Fp[X], we define the polynomial congruential generator,
(vn) of elements of Fp by the recurrence relation

xn+1 ≡ F(xn) (mod p), n = 0, 1, . . . ,

where x0 is the initial value.
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Recently [9], a new method has been invented to estimate exponential sums with such
sequences for arbitrary polynomials F and thus study their distribution, see also recent
surveys [8,10,11]. Unfortunately, for general polynomials, this method leads to rather
weak bounds. For a special class of polynomials, namely for monomials F(X) = Xe

an alternative approach, producing much stronger bounds have been proposed in [2,3].
In [1] this approach has been used to obtain bounds of multiplicative character sums
with iterations of the polynomial F(X) = Xe. In [4] it has been applied to derive
bounds of additive character sums over trajectories of repeated scalar multiplication of
a point on an elliptic curve over a finite fields. Here we show that this method also
works for another, yet related, special class of polynomials, namely for certain Dickson
polynomials.

We recall that the family of Dickson polynomials De(X, �) ∈ Fp[X] is defined by
the following recurrence relation:

De(X, �) = XDe−1(X, �) − �De−2(X, �), e = 2, 3, . . . , (1)

with initial values

D0(X, �) = 2, D1(X, �) = X,

where � ∈ Fp is a parameter, see [5] for many useful properties and applications of
Dickson polynomials. In particular, deg De(X, �) = e.

It is easy to check that De(X, 0) = Xe, which corresponds to the case investigated
in [2,3]. Here, we concentrate on another special case � = 1. We denote for brevity
De(X) = De(X, 1), and consider the sequence

un+1 ≡ De(un) (mod p), n = 0, 1, . . . , (2)

where u0 is the initial value.
It is clear that the sequence u0, u1, . . . is periodic of period T �p. In fact, we always

assume that it is purely periodic (which can be achieved by the shift of the sequence
and discarding several initial values).

For a ∈ Fp we define the exponential sum

Se(a) =
T −1∑
n=0

ep(aun),

where ep(z) = exp(2�z/p) for z ∈ Fp.
We apply the method of [2] to obtain an upper bound on sums |Se(a)|. We remark,

however, that several specific properties of Xe do not hold for De(X) thus our general
result is slightly weaker than that of [2]. However, in an important special case, using
a new bound of exponential sums from [6], we obtain a result of the same strength as
in [2].
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2. Preliminaries

As usual we denote by �(q) the Euler function.
We recall Lemma 2 from [2].

Lemma 1. Then for any set K ⊆ Ut of cardinality #K = K , any fixed � > 0 and any
integer h� t� there exists an integer r ∈ Ut such that the congruence

rk ≡ y (mod t), k ∈ K, 0�y�h − 1,

has

Lr(h) � Kh

t

solutions.

We also need the bounds of some character sums. First of all we present the Weil
bound in the following form (see [7, Chapter 5]).

Lemma 2. For any prime p and any polynomial f (X) ∈ Z[X] of degree d �1 the
bound ∣∣∣∣∣∣

∑
z∈Fp

ep(f (z))

∣∣∣∣∣∣ �dp1/2

holds.

For a quadratic extension Fp2 of Fp, we denote by Nm(z) and Tr(z) the norm and
trace of z ∈ Fp2 , that is,

Nm(z) = zp+1 and Tr(z) = z + zp.

The following bound is a very special partial case of the results of [6].

Lemma 3. For any prime p, any multiplicative character � of Fp2 and any polynomial
f (X) ∈ Z[X] of degree d �1 the bound

∣∣∣∣∣∣∣∣
∑
z∈F

p2
Nm(z)=1

�(z)ep (f (Tr(z)))

∣∣∣∣∣∣∣∣ �2dp1/2

holds.
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We now recall the following property of the group of characters of an abelian group.

Lemma 4. Let H be an abelian group and let Ĥ = Hom(H, C∗) be its dual group.
Then for any character � of H,

1

|H|
∑
h∈H

�(h) =
{

1 if � = �0,

0 if � �= �0,

where �0 ∈ Ĥ is the trivial character.

Lemma 5. For any prime p, any element � ∈ Fp2 of multiplicative order t and with
Nm(�) = 1, and any polynomial f (X) ∈ Z[X] of degree d �1 the bound

∣∣∣∣∣
t∑

m=1

ep

(
f

(
Tr(�m)

))∣∣∣∣∣ �2 dp1/2

holds.

Proof. Let G ⊂ F∗
p2 be the group of elements z ∈ Fp2 with Nm(z) = 1 and let H

be a subgroup of G generated by �. We denote by X be the set of all multiplicative
characters of G, trivial on H. Using Lemma 4, we write

t∑
m=1

ep

(
f

(
Tr(�m)

)) = 1

#X
∑
z∈G

ep (f (Tr(z)))
∑
�∈X

�(z)

= 1

#X
∑
�∈X

∑
z∈G

�(z)ep (f (Tr(z))) .

Applying the inequality of Lemma 3, we obtain the desired estimate. �
Finally, we need the several results on Dickson polynomials.
For u ∈ Fp we define the polynomial

Fu(X) = X2 − uX + 1. (3)

Lemma 6. Assume that either Fu(X) is irreducible over Fp and e ≡ f (mod p + 1)

or Fu(X) has two simple roots in Fp and e ≡ f (mod p − 1). Then

De(u) ≡ Df (u) (mod p).
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Proof. Let Fu(X) be irreducible over Fp and let �1 and �2 = �p
1 be its roots in

Fp2 . Because �p+1
1 = �1�2 = F(0) = 1 and �p+1

2 = �(p+1)p
1 = 1 we derive that

Fu(X) | Xp+1 − 1 in this case.
It is also easy to see that if Fu(X) has two simple roots in Fp then Fu(X) | Xp−1 −1,

see for instance [7].
Recalling that the sequence De(u), e = 0, 1 . . . , satisfies a linear recurrent relation (1)

with the characteristic polynomial Fu, we obtain the desired result, see [7]. �

Lemma 7. Assume that either Fu(X) is irreducible over Fp and let � ∈ Fp2 be one of
the roots of Fu(X). Then

De(u) ≡ Tr(�e) (mod p).

Proof. As in the proof of Lemma 6 we note that the sequence De(u), e = 0, 1 . . . ,
satisfies a linear recurrent relation (1) with the characteristic polynomial Fu, which
immediately implies that De(u) ≡ Tr(��e) (mod p) for some uniquely defined � ∈
Fp2 , see [7]. Remarking that Tr(1) = 2 = D0(u) and Tr(�) = u = D1(u) we conclude
that � = 1. �

It is well known that Dickson polynomial commute with respect the composition,
see for instance [5]:

Lemma 8. For any positive integers e and f, we have

De(Df (X)) = Def (X) = Df (De(X)).

3. Main results

Now we have enough tools to get a general estimate for the sums Se(a) with a
purely periodic sequence un, n = 0, 1, . . . , satisfying (2).

We remark that if u0 �= 2, then Fu0(X) = X2 − u0X + 1 does not have multiple
roots and thus Lemma 6 applies. Let us denote by t the smallest positive integer
for which De(u0) ≡ Df (u0) (mod p) whenever e ≡ f (mod t). By Lemma 6 we
have either t | p − 1 or t | p + 1.

We also remark that is u0 ≡ 2 (mod p) then un ≡ 2 (mod p) for every n =
1, 2, . . . , thus we can take t = 1 in this case.

It is easy to see that T is the multiplicative order of e modulo t.

Theorem 9. For every fixed integer ��1,

max
(a,p)=1

|Se(a)| = O
(
T 1−(2�+1)/2�(�+1)t1/2(�+1)p(�+2)/4�(�+1)

)
.
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Proof. We put

h =
⌈
t�/(�+1)T −�/(�+1)p1/2(�+1)

⌉
.

Because t �T , for this choice of h we obtain h�p1/2(�+1), thus Lemma 1 applies.
It is easy to see that T is the multiplicative order of e modulo t. Because the sequence

un, n = 0, 1, . . . , is purely periodic, for any k ∈ Zt , we have:

Se(a) =
T∑

n=1

ep(aDen+k (u0)). (4)

Let K be the subgroup of Ut generated by e. Thus #K = T . We select r as in
Lemma 1 and let L be the subset of K which satisfies the corresponding congruence.
We denote L = #L. In particular, L � hT/t .

By (4) we have

LSe(a) =
T∑

n=1

∑
k∈L

ep

(
aDen+k (u0)

)
.

Applying the Hölder inequality, we derive

L2�|Se(a)|2� �T 2�−1
T∑

n=1

∣∣∣∣∣
∑
k∈L

ep

(
aDen+k (u0)

)∣∣∣∣∣
2�

. (5)

Let s, 1�s� t − 1, be defined by the congruence rs ≡ 1 (mod t). By Lemma 8 we
obtain

Den+k (u0) ≡ Den+krs(u0) ≡ Drek (Dsen(u0)) (mod p). (6)

Obviously, the values of sen, n = 1, . . . , T , are pairwise distinct modulo t. Thus, from
the definition of t, we see that the values of Dsen(u0) are pairwise distinct modulo p.
Therefore, from (5) we derive

L2�|Se(a)|2� �T 2�−1
∑
u∈Fp

∣∣∣∣∣
∑
k∈L

ep

(
aDrek (u)

)∣∣∣∣∣
2�

.
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Denoting F = {rek | k ∈ L} we deduct

L2�|Se(a)|2� � T 2�−1
∑
u∈Fp

∣∣∣∣∣∣
∑
f ∈F

ep

(
aDf (u)

)∣∣∣∣∣∣
2�

� T 2�−1
∑

f1,...,f2�∈F

∑
u∈Fp

ep

⎛
⎝a

�∑
j=1

(
Dfj

(u) − Df�+j
(u)

)⎞⎠ .

For the case that (f�+1, . . . , f2�) is a permutation of (f1, . . . , f�), we use the trivial
bound for the inner sum over u, which gives the total contribution O(L�p).

Otherwise, taking into account that deg Df = f , we conclude that the polynomial

	f1,...,f2�(X) =
�∑

j=1

(
Dfj

(X) − Df�+j
(X)

)

is a nonconstant polynomial of degree

deg 	f1,...,f2� � max
j=1,...,2�

fj � max
f ∈F

f �h.

Using Lemma 2, we obtain that the total contribution from such terms is O(L2�hp1/2).
Hence

L2�|Se(a)|2� = O
(
T 2�−1

(
L�p + L2�hp1/2

))
.

So this leads us to the bound

|Se(a)|2� = O
(
T 2�−1

(
L−�p + hp1/2

))
.

Recalling that L�hT/t , we derive

|Se(a)|2� = O
(
T 2�−1

(
t�T −�h−�p + hp1/2

))
.

Substituting the selected value of h, which balances both terms in the above estimate,
we finish the proof. �

We now show that if t | p + 1, that is, if the polynomial Fu(X), given by (3), is
irreducible then Theorem 9 can be improved up to the level of the results of [2].
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Theorem 10. If t | p + 1 and t �p1/2+ε then for every fixed integer ��1,

max
(a,p)=1

|Se(a)| = O
(
T 1−(2�+1)/2�(�+1)t1/2�p1/4(�+1)

)
.

Proof. We use the notation and proceed as in the proof of Theorem 9 but put

h =
⌈
tT −�/(�+1)p−1/2(�+1)

⌉
.

Because t �T , for this choice of h we obtain h� t1/(�+1)p−1/2(�+1) �pε/(�+1) thus
again Lemma 1 applies.

Also, as in the proof of Theorem 9, we note that the values of sen, n = 1, . . . , T

in (6) are pairwise distinct modulo t. Thus from (5) we derive

L2�|Se(a)|2� � T 2�−1
t∑

m=1

∣∣∣∣∣
∑
k∈L

ep

(
aDrek (Dm(u0))

)∣∣∣∣∣
2�

� T 2�−1
∑

f1,...,f2�∈F

t∑
m=1

ep

(
a	f1,...,f2�((Dm(u0)))

)
.

For the case that (f�+1, . . . , f2�) is a permutation of (f1, . . . , f�), we use the trivial
bound for the inner sum over m, which gives the total contribution O(L�t) (instead of
O(L�p) used in Theorem 9).

Otherwise, using Lemma 3 in a combination with Lemma 7, we obtain that the total
contribution from such terms is O(L2�hp1/2). Hence

L2�|Se(a)|2� = O
(
T 2�−1

(
L�t + L2�hp1/2

))
.

So this leads us to the bound

|Se(a)|2� = O
(
T 2�−1

(
L−�t + hp1/2

))
.

Recalling that L�hT/t , we derive

|Se(a)|2� = O
(
T 2�−1

(
t�+1T −�h−� + hp1/2

))
.

Substituting the selected value of h, which balances both terms in the above estimate,
we finish the proof. �
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4. Remarks

Assuming that T = t1+o(1), the bound of Theorem 9 takes form

max
(a,p)=1

|Se(a)| = O
(
T 1−1/2�+o(1)p(�+2)/4�(�+1)

)
.

Accordingly under the same condition, the bound of Theorem 10 takes form

max
(a,p)=1

|Se(a)| = O
(
T 1−1/2(�+1)+o(1)p1/4(�+1)

)
.

Therefore for any � > 0, choosing a sufficiently large � we obtain nontrivial bounds
provided T �p1/2+�.

On the other hand, if t �T = p1+o(1), then taking � = 1 we obtain

max
(a,p)=1

|Se(a)| = O
(
p7/8+o(1)

)
. (7)

As we have remarked, the bound of Theorem 9 is slightly weaker than the corresponding
result of [2] (which is of the same form as Theorem 10). However, in many interesting
cases they are of about the same strength. For example, the above nontriviality range
in the case T = t1+o(1) and bound (7) are exactly the same as the corresponding
statements from [2].

Finally, we remark that it would be interesting to extend this result to other classes
of polynomials, for example, to arbitrary Dickson polynomials.
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