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Abstract. Nonlinear congruential pseudorandom number generators can
have unexpectedly short periods. Shamir and Tsaban introduced the
class of counter-dependent generators which admit much longer periods.
In this paper we present a bound for multiplicative character sums for
nonlinear sequences generated by counter-dependent generators.

1 Introduction

Let ¢ = p", where p is a prime number. In this paper we study a multiplica-
tive character sum related with the distribution properties of the powers and
primitive elements of counter-dependent nonlinear congruential pseudorandom
number generators. This class of generators was introduced by [16] and it is
defined by a recurrence of the form

Unt1 = f(Uun,n), u, € Fy, n=20,1,..., (1)

with some initial value ug, where f(X,Y) € IF,[X,Y] is a polynomial over the
field IF, of ¢ elements of local degree in X at least 2. It is well-known that
the problem of studying the distribution of primitive roots and powers can be
reduced to bound a multiplicative character sum, see, for example [9].

It is obvious that the sequence (1) eventually becomes periodic with some period
t < gp. Throughout this paper we assume that this sequence is purely periodic,
that is, u, = u,y¢ beginning with n = 0, otherwise we consider a shift of the
original sequence.

The case f(X,Y) = h(X) € TF,[X], which does not depend on the second
variable, is the well-studied nonlinear congruential pseudorandom number gen-
erators, see [5,8,11], the surveys [18,19] and references therein. A bound in the
corresponding multiplicative character sum was given in [10]. On the other hand,
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these generators have their own limits, for example the period ¢ is at most ¢. So,
it is interesting to study more general pseudorandom number generators.

The counter-assisted nonlinear congruential pseudorandom number generators
were defined in [16]. They are defined by the following linear recurrence:

Upt1 = h(up) +n (modp) 0<wu, <p-—1, n=20,1,...,

where h(X) € IF,[X]. For this specific class, the linear complexity and exponen-
tial sums were studied in [2]. These generators are related to nonlinear congru-
ential pseudorandom number generators of order 2 defined by

Unto = f(Unt1,uy) (modp), 0<wu, <p-1, n=20,1,...

Nonlinear congruential pseudorandom number generators of order m > 2 have
been analyzed in [3,4] in particular cases and solve for the general case in [13].
The results in these papers treat the distribution of values, not distribution of
powers. The linear complexity was studied in [17], so this shows that the problem
is not trivial at all.

A general class of pseudorandom number generators of higher orders has been
studied in [12,14]. This class has attracted a lot of attention, however to get
a bound on the corresponding multiplicative character sum can only be done
under certain conditions, see [15].

2 Definitions and Auxiliary Results

All the needed results are adapted, but the general properties of resultants and
their proofs can be found in [1]. We use the classical abbreviation of degy to
refer to the degree of a polynomial in the variable X.

The resultant is a classical concept that arises from commutative algebra. We
suppose that we are working in IK[X, Y], the ring of bivariate polynomials with
coefficients in a field IK. Given two polynomials f(X,Y),g(X,Y) € K[X,Y],
where

d1 d2
FXY) =D L)X, g(XY)=> g(Y)X'
i=0 1=0

the Sylvester matriz respect the variable X is

foY) fuY) ... fa,(Y) O ... 0 0
0 fo(Y) f1(Y) fa,(Y) 0 . 0
00 0 e oY) e (V) (V)

goY)n(¥Y) ... gu(Y) 0 ... 0 0
0 gY)a(Y) ... ga(Y) 0 ... 0

000 0 o goY) e gaa(Y) gan(Y)



Multiplicative Character Sums with Counter-Dependent generators 3

This matrix is a (d; + d2) X (dy + d2) matrix, the first row is the coefficients of
f(X,Y) depending on Y, adding zeros to fill the (d; + d2) positions. Notice that
the next dy — 1 rows are shifts of the first row. The other rows are built using
the polynomial g(X,Y).

The determinant of this matrix is known as the resultant of the polynomials f
and g respect of the variable X. We will denote it by Resx(f(X,Y), g(X,Y)).
The following Lemma shows the relation between resultant and common factors.
It is a Corollary of [1, Proposition 1, Section 3.6].

Lemma 1 Given f(X,Y),g(X,Y) € IF,[X,Y] then
degX(ng(f(Xa Y)a g(Xa Y))) Z 1

if and only if
R(’,SX(f(X, Y)’ g(Xa Y)) =0.

In [6, Corollary 5.1], the author presented a relation between the composition
of polynomials and resultants. His result is very general, so here is an adapted
version for the proofs.

Lemma 2 Let f(X,Y), g(X,Y), h(X,Y) € K[X,Y] be polynomials such as
degx (f(X,Y)),degx (9(X,Y)), degx (h(X,Y)) =1 then,

Resx (f(h(X,Y),Y),g(M(X,Y),Y)) = Resx (f(X,Y),g(X,Y))ex ")),

The next Lemma is a weaker version of the Bezout Theorem.

Lemma 3 Let f(X,Y),9(X,Y) € K[X,Y], with ged(f(X,Y),9(X,Y)) =1
then the number of common roots is at most the product of the degrees of the
polynomials.

For a polynomial f(X,Y) € IF,[X,Y] of total degree d we define the sequence
of polynomials f(X,Y) € IF,[X,Y] by the recurrence relation

fen1(X,Y) = fr (f/(X,Y),Y +1), k=0,1,..., (2)

where fo(X,Y) = X. It is clear that deg(fx(X,Y)) < d* and for the sequence
define in (1) that

Untk = [k (una n) : (3)

The following property will be necessary in the proof of the main theorem:
Lemma 4 Given the sequence fi(X,Y) € IF,[X,Y] defined in (2) and if

deg (ged (f (X, Y), fi(X,Y))) > 1

then
deg x (ged(fr—i(X,Y), fi—i(X,Y))) > 1, Vi< min(k,1).
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Proof. Now, we regard the polynomials fx(X,Y), fi(X,Y) as polynomials in
the variable X whose coefficients are in the ring IF,[Y] and let

H(Y) = Resx (fi-1(X,Y), fi-1(X,Y)).
Using simple properties of the Sylvester Matrix, we have:
Resx(fr—1(X, Y +1), i1(X,) Y + 1) =H(Y +1)
and, using Lemma 2, we get that:
Resx(fim1(f(XY),Y +1), fita(f(X,Y),Y + 1) = H(Y + 1)2eex XY,
Applying the Lemma 1,
H(Y + 1)%xEY) = Res (f(X,Y), il X,Y)) = 0.
This clearly implies that H(Y) = 0, therefore, again by Lemma 1 we get
ged(fe-1(X,Y), fim1(X,Y)) = Hi(X,Y), degx (H1(X,Y)) = 1.

Applying the same argument i times, we get the result. O

Now, we are going to introduce some notation. Let x be a nontrivial multiplica-
tive character of IF, with the standard convention x(0) = 0. We want to prove
an upper bound on this character sum

Sx(N) = Z X(un).

n=0

Next, we recall the classical Weil bound on multiplicative character sums (see [7,
Chapter 5]) for univariate polynomials.

Lemma 5 Let x be a character of IF, of order s and let F(X) € IF[X] be a
polynomial of positive degree that is not, up to a multiplicative constant, an sth
power of a polynomial. Let d be a bound on the number of distinct roots in its
splitting field over IFy. Under these conditions, the following inequality

> X (F(x)| < dg'/?

z€lF,

holds.
With this Lemma we can prove another result that we will use through later.

Lemma 6 Let x be a character of I, of order s and let F(X,Y) € IF,[X,Y] be a
polynomial of positive degree such that F(X,Y) is not, up to a multiplicative con-
stant, an sth power of a polynomial. Let F(X,Y) = Fy(X,Y)% ... Fj,(X,Y)d
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the decomposition of the polynomial in a product of irreducible polynomials. Let
D be a bound on the total degree of F1(X,Y)--- Fp(X,Y). Under these condi-
tions, the following inequality holds

> x(Flx,y))| <2Dg*>.

z,y€lF,

Proof. This Lemma is trivial when 2D > ¢'/2 so suppose that 2D < ¢'/2.
Without loss of generality, d; is not an integer multiple of s, because F'(X,Y) is
not an sth power of a polynomial up to a multiplicative constant. Next,

S x (B y)™ . Fu@y)™) < Y0 1Y x (B y)™ . Fu(,y)™)|.

z,y€lFy yelF, |zelF,

Our aim is to apply Lemma 5 to each of the sums for y fixed. We have to count
how many times we can not apply Lemma 5. The special cases are:

— When the polynomial F(X,y) is a constant polynomial.
— When the polynomial F(X,y) is an sth power.

There are, at most, D different values y where the polynomial F(X,y) could be
a constant polynomial.

Now, we consider in which cases the polynomial F(X,y) is an sth power of a
polynomial and how these cases will be counted.

First of all, we remark that F'(X,Y) is not an sth power of a polynomial, so if
F(X,y) is an sth power of a polynomial then we have this two possible nonex-
clusive situations:

— Fi(X,y)% is an sth power, so because d; is not an s multiple then we must
have that Fy(X,b) has, at least, one multiple root. This is only possible
if F1(X,b) and the first derivative of the polynomial have a common root.
F1(X,Y) is an irreducible polynomial, so Lemma 3 applies. We remark that
the first derivative is a nonzero polynomial. Otherwise F; (X,Y") is a power of
a polynomial, thus reducible. This can only happen in degy (F1)(degy (F1) —
1) cases.

— F1(X,b) and F5(X,b) have a common root and, by the same argument, there
are at most deg y (F}) degy (Fs) possible values where it happens.

So, for each value of y € IF, we apply Lemma 6 if the two previous cases do not
occur. In the other cases, we apply the trivial bound,

h

D 1D x(F(x,)| < Dg+ qdegx (F1) Y degx(F,) + Dg*?
yelF, |zelF, i=1

< (D*+ D)q+ Dg*? < 2Dg*">.
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The last inequality holds because 2 < 2D < ¢/2? and this remark finishes the
proof. a

We call the sequence (v,,), given by (1) with vg = 0. Note that under the assump-
tion that (u,,) is purely periodic, the sequence (v,,) need not be purely periodic.
Let tg be the least period of the sequence (vy,) if it is purely periodic and put
to = oo otherwise. We are ready to prove the principal theorem:

Theorem 7. Let the sequence (uy), given by (1) with a polynomial f(X,Y) with
coefficients in IF [ X, Y] and total degree d > 2 be purely periodic with periodt and
t>N>1If fr(X,Y),1 <k <[0.4(logq)/logd] is not, up to a multiplicative
constant, an sth power of a polynomial, then the bound

. [(loggq -1/
Sy(N)=0 <N1/2q (mln (logd’t0>)

holds, where the implied constant is absolute.

Proof. We can suppose that ¢ > 3. For any integer £ > 0 we have

N—-1

Sx(N) = >~ X(un+k)

n=0

< 2k,

so for any K > 1 and summing over £k =0,1..., K — 1, we get

K N-1
K|Sy (N)| < W + Z( Zx(un+k)> <W + K2
k n=0
where
N—-1|K-1
W= X(Untk)
n=0 | k=0
By the Cauchy-Schwarz inequality and (3) we obtain
N—1|K—-1 2 N—1|K—-1 2
W2SNDY Y Xnr)| =N DD X(fi(un,n)
n=0 | k=0 n=0 | k=0
K-1 2 K-1
<N > x(filun,n))| <N > xUnl,)x(filw,y))
z,y€lF, | k=0 k=0 |z,yelF,

where X(fi(x,y)) denotes the conjugate of x(fi(z,y)).

Because y is a multiplicative character it is trivial to see that x(a?=2) = X(a), Va €
IF

q-
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Substituting the conjugates, we get the following inequality:

K—-1
W2SN Y| Y xfale ) filey)'?)].

k,l=0 |z,y€lF,

Next we have to show that for 0 < < k < K — 1 the polynomial F(X,Y) =
(X, fi(X,Y)?72) k> [ is, up to a multiplicative constant, an sth power of
a polynomial only if kK =1 mod tg, where k =1 mod oo means k = [.

Suppose ¢g(X,Y) = ged(fr(X,Y), fi(X,Y)) has degree at least 1 in X. By
Lemma 4, ged(fo(X,Y) = X, fx—1(X,Y)) is a non constant polynomial in X.
Because X is a prime polynomial, we have that the greatest common divi-
sor between fo(X,Y) and fr—;(X,Y) is X so vp—; = 0 and, consequently,
k—1=0 mod tg.

Now suppose k # [ mod tg and thus g(X,Y) = 1. Hence, if F(X,Y) is (up to a
multiplicative constant) an sth power, then both f(X,Y) and f;(X,Y") are (up
to multiplicative constants) sth powers, which is a contradiction to our assump-
tion provided that K is small enough (this will be guaranteed by the subsequent
choice of K). Now the number of pairs (k,1) € Z* with 0 <1 < k < K —1
and k = [ mod ty is at most K2/(2ty). For these pairs (k,I) we estimate the
inner sum in the last bound on W2 trivially by g. For all other pairs we can use
Lemma 6 and get

2
W? < KN¢? + K2N <‘j + 2dK1q3/2> .
0

With |
ogq
K =104
{ log dw
we get the result and this finishes the proof. ad
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