
On the connectedness of finite distance graphs

Domingo Gómez, Jaime Gutierrez, and Álvar Ibeas1

Universidad de Cantabria

Abstract. We describe a polynomial-time algorithm for deciding
whether a given distance graph with a finite number of vertices is
connected.

Keywords: Distance graphs, circulant graphs, connectedness.

1 Introduction

An integer distance graph has a countably infinite set of vertices, labelled by the integer numbers, being
two of them linked by an edge when their distance lies in a fixed parameter set. These graphs were
defined in [5] and several authors have studied their chromatic number [3, 10]. In this article we deal
with the finite analogue of those graphs, which we simply refer to as distance graphs, and study in which
cases they are connected. These graphs generalize the so-called circulant graphs, which are the Cayley
graphs of cyclic groups. Whereas the latter have been widely studied [1, 2, 14], specially because of their
interest in networks and computer science, the research carried out on distance graphs deals mainly with
Hamiltonian properties [8, 13].

Throughout this article, we assume 0 6∈ N and consider undirected graphs. We use the letter n for
the number of vertices of a graph and the notation x for the residue class modulo n of an integer x. As
a graph with only one vertex is trivially connected, we are not interested in the case n = 1. In order
to avoid possible ambiguities, let us say that two vertices in a graph are connected when there is a path
joining them and reserve the word linked for adjacent nodes.

Denifinition 1 Let n ≥ 2 be an integer and S = {s1, . . . , sr} ⊂ N. The circulant graph Cn(S) =
Cn(s1, . . . , sr) is the graph with vertex set Z/nZ and edge set {(x̄, x̄+s̄) | x̄ ∈ Z/nZ, s ∈ S}. The distance
graph Dn(S) = Dn(s1, . . . , sr) is the graph with vertex set {0, . . . , n − 1} and edge set {(x, x + s) | 0 ≤
x < x+ s < n, s ∈ S}.

Therefore, a distance graph is a subgraph of the associated circulant, obtained by keeping only those
edges (x̄, x̄ + s̄) ∈ (Z/nZ)2 where the sum x + s ∈ Z does not exceed the maximum vertex n − 1 (see
Figure 1). As is stated in [4], the class of circulant graphs coincides with the class of regular distance
graphs. We refer to the elements of the set S as distances or jumps.

Note that an (undirected) graph is a distance graph if and only if its adjacency matrix is a symmetric
Toeplitz matrix, hence the term Toeplitz graph used by some authors. It is a direct consequence of
Bézout’s identity that a circulant graph Cn(s1, . . . , sr) (and the associated directed graph) is connected
if and only if gcd(n, s1, . . . , sr) = 1. In our case, it is easy to see that gcd(s1, . . . , sr) = 1 is a necessary
condition for Dn(s1, . . . , sr) to be connected, whereas the example depicted in Figure 1 shows that it is
not sufficient.

The following observation is immediate from [4, Proposition 4] and will lead to a simple method for
deciding whether a distance graph is connected or not.

Lemma 2 Let S be a finite subset of N. If gcd(S) = 1, there exists a (unique) integer N(S) ≥ 2 such
that, for n ≥ 2:

Dn(S) is connected ⇐⇒ n ≥ N(S).

1Corresponding author (alvar.ibeas@unican.es)

1



0

1

2

3

4 5

6

7

8

0 1 2 3 4 5 6 7 8

Figure 1: C9(4, 7) and D9(4, 7)

As a consequence of this result, computing N(S) is enough for testing the connectedness of a distance
graph. In the case 1 ∈ S, every graph Dn(S) is connected and N(S) = 2, therefore. The simple formula
N(s1, s2) = s1 + s2 − 1, valid for graphs of two distances distinct to 1, has been proved in [8] and in
Section 2 we present an alternative proof. The computation of N(S) has been proposed [4, Conjecture 2]
as an NP-hard problem. Nevertheless, we develop (Section 3) a simple iterative algorithm that computes
in polynomial time that index for an arbitrary finite set S. Finally, in Section 4 we present some additional
results improving that algorithm.

2 Two distances case

In their study of the directed variant of circulant graphs with two jumps, Wong and Coppersmith [14]
made use of minimum distance diagrams attaining an “L” shape. They identified paths starting from
node 0 with pairs of integers and associated to every path its destination node. These diagrams and their
extensions to higher dimensions (graphs with more than two jumps) have aroused interest both from the
pure combinatorial point of view and because of its applications in optimal network design [6, 7, 9, 12].
Let us reproduce an analogue construction in the case of a two-jump (and undirected) circulant graph
Cn(s1, s2).

0 4 8 3 7 2 6 1 5 0

7 2 6 1 5 0 4 8 3 7

5 0 4 8 3 7 2 6 1 5

3 7 2 6 1 5 0 4 8 3

1 5 0 4 8 3 7 2 6 1

8 3 7 2 6 1 5 0 4 8

6 1 5 0 4 8 3 7 2 6

4 8 3 7 2 6 1 5 0 4

0 4 8 3 7 2 6 1 5 0

7 2 6 1 5 0 4 8 3 7

5 0 4 8 3 7 2 6 1 5

3 7 2 6 1 5 0 4 8 3

1 5 0 4 8 3 7 2 6 1

8 3 7 2 6 1 5 0 4 8

6 1 5 0 4 8 3 7 2 6

4 8 3 7 2 6 1 5 0 4

Figure 2: Diagrams associated to C9(4, 7) and D9(4, 7)

We map each pair (i, j) ∈ Z2 to the vertex is1 + js2 ∈ Z/nZ, i.e. the node reached from node 0 by
any path composed of i edges of the type (x, x + s1) and j edges of the other type (see Figure 2.I). We
can adapt this diagram to the corresponding distance graph. In the circulant case, the cells adjacent
to a given one show the nodes adjacent to its label. For instance, in the picture node 0 is linked to
2,4,5, and 7. In the corresponding distance graph, however, not every pair of adjacent cells is linked. A

2



horizontal move is allowed when the left label is smaller than the right one; and a vertical move, when the
label increases upwards. We have marked in Figure 2.II those lines which cannot be crossed by moving
through edges of the distance graph. Therefore, the grid becomes tiled by copies of the graph’s connected
components. Indeed, we only get those nodes in Z〈gcd(S)〉; but we focus on the case gcd(S) = 1, since
otherwise the graph is always disconnected. With these diagrams in mind, we are ready to prove next
result (see [8, Corollary 6] and [4, Theorem 5] for alternative proofs).

Proposition 3 Let S = {s1, s2} ⊂ N be such that gcd(s1, s2) = 1. Then,

N(S) =
{
s1 + s2 − 1, if min(S) ≥ 2;
2, otherwise.

Proof. The tiles of the previous discussion are composed of several horizontal stripes. For instance,
the bigger component of Figure 2.II involves the stripes {1, 5}, {0, 4, 8}, and {3, 7} and the other one
consists of the stripe {2, 6}. In the general case Dn(s1, s2) we may assume s1 < s2. In order to make the
presentation simpler, let us assume also s1 ≤ n. Note that if 2 ≤ n < s1, the graph is disconnected and
n < s1 + s2− 1. We have then s1 horizontal stripes, starting by 0, . . . , s1− 1, because these are the nodes
not linked to the left. The stripe starting by the node i is joined to the stripe above in the diagram if and
only if i+ s2 < n, so there are max(0,min(s1, n− s2)) of them and min(s1,max(0, s1 + s2− n)) “ceiling”
stripes. Note that a tile may have a single ceiling stripe or none of them.

Let us prove that a tile with no ceiling stripe, i.e. an infinite tile, contains all the graph’s nodes, and
there is no other connected component therefore. Assume that x < n− 1 is the label of a tile’s cell (i, j).
We will show that the label x + 1 also appears in the tile. The condition gcd(s1, s2) = 1 implies the
existence of integers λ, µ such that x+ 1 = x+λs1 +µs2. Then, the cell (i+λ, j+µ) is labelled by x+ 1.
Note that, within a row, the cells (u, v) that belong to the same tile are characterized by the quotient of
us1 + vs2 modulo n. As the quotient of (i+λ)s1 + (j+µ)s2 = is1 + js2 + 1 modulo n is the same as that
of is1 + js2, and the considered tile has cells in the row j + µ (in every row indeed), cell (i + λ, j + µ)
must be in the same tile as (i, j). This argument can be easily extended to prove that an infinite tiling
covers the whole set of vertices.

Finally, if there are at least two ceiling stripes, i.e. min(s1 + s2 − n, s1) ≥ 2, there must be at least
two connected components. On the other hand, if there is one or no ceilings (min(s1 + s2 − n, s1) ≤ 1),
the graph is connected. �

3 General algorithm

For sets of parameters S with more than two distances, we propose a simple algorithm that computes
the threshold N(S) of the required number of vertices for the distance graph to be connected. We use
the following two technical results:

Lemma 4 Let S be a finite subset of N such that gcd(S) = 1. Let a ≥ 2, λ ≥ 1 be integers such that
min(S) = a and min(S\{a}) ≥ λa. Then, N(S) ≥ (λ+ 1)a.

Proof. Consider the distance graph D(λ+1)a−1(S) and the subset of vertices with remainder a−1 modulo
a, i.e. C := {a − 1, 2a − 1, . . . , λa − 1}. There is no edge involving these vertices but those of the type
(x, x+ a); for, if u ∈ C and b ∈ S\{a}:

u+ b ≥ a− 1 + λa = (λ+ 1)a− 1, u− b ≤ λa− 1− λa = −1.

Therefore, C (more exactly, the subgraph induced in this set of vertices) is a connected component, and
D(λ+1)a−1(S) is disconnected. �

Next result, key of the iterative algorithm we propose, leads to a relation between the index N(S) of a
set S and the index of a modified set of distances; where every element of S, except its minimum, has
been reduced by a suitable multiple of that minimum. We use the notation S − µ = {s− µ | s ∈ S}, for
µ ∈ N.

3



Lemma 5 Let S be a finite subset of N such that #S ≥ 2 and a := min(S) ≥ 2. Let n, λ be posi-
tive integers such that n ≥ (λ + 1)a and min(S\{a}) ≥ λa. Then, Dn(S) is connected if and only if
Dn−λa({a} ∪ (S\{a})− λa) is.

· · · · · ·

0 a − 1

λa

n − 1

· · · · · ·

a − 10

Figure 3: Dn(S) and Dn−λa({a} ∪ (S\{a})− λa)

Proof. In both graphs considered in this lemma, a is an element of the distance set. Therefore, two nodes
with the same remainder modulo a are obviously connected and each column of Figure 3 is contained
in a connected component of the corresponding graph. Let π be a path in a distance graph Dm(T ); i.e.
a list of integers (nodes) π = (x1, . . . , xl+1) such that 0 ≤ xi < m, for 1 ≤ i ≤ l + 1 and xi+1 − xi ∈
T ∪ (−T ), for 1 ≤ i ≤ l. In this proof we use the alternative notation π = [x1;x2 − x1, . . . , xl+1 − xl]
and end(π) = xl+1. The hypothesis n ≥ (λ+ 1)a guarantees that {0, . . . , a− 1} is a subset of the set of
vertices of Dn−λa({a} ∪ (S\{a})− λa).
⇐: Let i, j be two vertices in {0, . . . , n− 1}, and let ı̃ and ̃ be their respective remainders modulo a. Let
us prove that λa+ ı̃ and λa+ ̃ are connected in Dn(S). We consider the vertices ı̃ and ̃ in Dn−λa({a} ∪
(S\{a})− λa), connected through path π = [̃ı; s1, . . . , sl]. We build a path π′ = [λa+ ı̃; f(s1), . . . , f(sl)]
in Dn(S), substituting a list f(si) for each edge si in π as follows:

±a f7→ ± a; b− λa f7→[
λ︷ ︸︸ ︷

−a, . . . ,−a, b]; λa− b f7→[−b,
λ︷ ︸︸ ︷

a, . . . , a], for b ∈ S\{a}.

Note that the resulting π′ is a path in Dn(S): the end node of every subpath [λa+ ı̃; f(s1), . . . , f(si)] is

ei = λa + end([̃ı; s1, . . . , si]) < λa + (n − λa). We can concatenate the list (
λ︷ ︸︸ ︷

−a, . . . ,−a) (in the second
case), for ei−1 ≥ λa. In the third case, end([̃ı; s1, . . . , si−1]) ≥ b− λa, so ei−1 ≥ b.
⇒: We just need to prove that every pair (u, v) of vertices in {0, . . . , a − 1} is connected in the second
graph. Let π = [u + λa; s1, . . . , sl] be a path in Dn(S) that connects u + λa with v + λa. We build a
path π′, replacing each edge si of π by a list f(si) such that end([u; f(s1), . . . , f(si)]) ∈ {0, . . . , a − 1}
and end([u; f(s1), . . . , f(si)]) ≡ end([u+ λa; s1, . . . , si]) mod a.

±a 7→ ∅; b 7→ [b− λa,
k1︷ ︸︸ ︷

−a, . . . ,−a]; −b 7→ [
k2︷ ︸︸ ︷

a, . . . , a, λa− b], for b ∈ S\{a}.

Note that for the above specification to be correct it is enough to define

k1 =
⌊

end([u; f(s1), . . . , f(si−1)]) + b

a

⌋
− λ, k2 =

⌈
b− end([u; f(s1), . . . , f(si−1)])

a

⌉
− λ.

Note that if the hypothesis n ≥ (λ+ 1)a is suppressed, the theorem is no longer true, but the “⇒” part
remains valid. �

4



Using this reduction, we propose the Euclidean-like Algorithm 1 to compute the threshold number of
nodes N(S). Note that in Step 7, the length of S may decrease in one unit, for we consider 0 6∈ N ⊃ S.
This happens when the second element of S is a multiple of the first one.

Algorithm 1:
Input: S, finite subset of N with gcd(S) = 1
Output: N(S)
a← min(S)1

M ← 0, D ← 02

while a 6= 1 do3

λ← quo(min(S\{a}), a)4

M ← max(M,D + (λ+ 1)a)5

D ← D + λa6

S ← {a} ∪ (S\{a})− λa /* Removing the 0 entry, if appears */7

a← min(S)8

end9

return max(M,D + 2)10

Proposition 6 Algorithm 1 returns the value N(S) in time polynomial on (log(max(S)), len(S)).

Proof. Firstly, we prove that if the algorithm terminates, the output is correct. If a ≥ 2, Lemma 4 gives
N(S) ≥ (λ+ 1)a. Set N ′ = N

(
{a} ∪ (S\{a})− λa

)
and let us prove

N(S) = max((λ+ 1)a, λa+N ′). (1)

• If λa + N ′ ≤ (λ + 1)a, the graph Da({a} ∪ (S\{a}) − λa) is connected and, by Lemma 5, so is
D(λ+1)a(S).

• If λa+N ′ > (λ+1)a; as the graph DN ′({a}∪(S\{a})−λa) is connected and DN ′−1({a}∪(S\{a})−
λa) is not, Lemma 5 gives: DN ′+λa(S) connected, DN ′+λa−1(S) disconnected.

Let Si,Mi, andDi be the values of the variables S,M , andD before the ith iteration of loop 3-9. Using (1),
we can recursively prove that the expected output N(S1) equals max(Mi, Di +N(Si)). Finally, if a = 1,
the answer N(1, . . .) = 2 is correct.

Now, let us estimate the number of required loops in a similar vein to Lamé’s [11] well-known proof.
We consider the succession of pairs

(
ai = min(Si), bi = min(Si\{ai})

)
. We have, if bi 6∈ Z〈ai〉: 0 <

ai+1 < bi+1 ≤ ai. Consider the Fibonacci sequence: f0 = 0, f1 = 1, fn+2 = fn + fn+1, for n ≥ 0. We
have the following two possibilities:

• If fr < ai < bi ≤ fr+1, we get ai+1 = bi − λiai < fr+1 − fr = fr−1.

• If fr < ai ≤ fr+1 ≤ fs < bi ≤ fs+1 but ai+1 > fr, it follows: ai+2 = bi+1 − λi+1ai+1 < fr+1 − fr =
fr−1.

On the other hand, when bi ∈ Z〈ai〉, the length of S decreases and we get ai+1 ≤ ai. Therefore, if

min(S) ≤ fr, (2)

the number of iterations is upper bounded by len(S)+r−4. Writing ϕ = (1+
√

5)/2, we have fr > ϕr−2.
Therefore, (2) holds for r =

⌈
logϕ(min(S))

⌉
+ 2 and the algorithm ends after at most

⌈
logϕ(min(S))

⌉
+

len(S) − 2 loops. Finally, note that the length of the variables evaluated in the algorithm remains
polynomial on max(S) and the number of iterations. �

The presentation above is intended to prove that the connectedness problem is polynomially solvable,
but not to provide an optimal procedure. For instance, in the two distances case (#S = 2) Algorithm 1
follows the classic Euclidean algorithm instead of evaluating the formula provided in Section 2. On the
other hand, we will show in next section (Proposition 10) that the variables used in the algorithm keep
below the bound max(S) + min(S)− 1.

5



4 Bounds for the threshold N(s)

In this section we delve more into the behaviour of the parameter N(S), giving lower and upper bounds
related to the formula s1 + s2 − 1 of Proposition 3. This leads to an improvement of Algorithm 1. For
graphs G1 = (V,E1) and G2 = (V,E2) with the same vertex set, we write G1 ≤ G2 when the partition
of V composed by the connected components of G1 is finer than that of G2. We also use the notation
G1 ≡ G2 when the associated partitions coincide and write G1∪G2 for the graph (V,E1∪E2). Note that
in the distance graphs case we have: Dn(S1)∪Dn(S2) = Dn(S1 ∪ S2). We use the following properties:

Lemma 7 Let G1, G2, and G3 be graphs with the same vertex set. We have:

• G1 ⊆ G2 ⇒ G1 ≤ G2

• G1 ≤ G3 and G2 ≤ G3 ⇒ G1 ∪G2 ≤ G3

Lemma 8 Let S be a finite subset of N such that #S ≥ 2, gcd(S) = 1, and d = gcd(S\{sr}) ≥ 2, where
sr = max(S). Then, N(S) ≥ sr + d− 1.

Proof. For any integer n ≥ 2, we have Dn(S\{sr}) ≤ Dn(d) ⊆ Dn(d, sr), so Dn(S) ≤ Dn(d, sr), using
Lemma 7. Now, Dsr+d−2(d, sr) is disconnected by Proposition 3. �

Next result generalizes Lemma 2 when the greatest common divisor of the set of distances S is bigger
than one.

Lemma 9 Let S be a finite subset of N and n ∈ N such that d = gcd(S) ≤ n/2. The graph Dn(S) has
exactly d connected components (i.e. Dn(S) ≡ Dn(d)) if and only if n ≥ dN(S/d).

Proof. As Dn(S) ≤ Dn(d), the set
{
i, i+ d, . . . , i+

⌊
n− i− 1

d

⌋
d

}
contains the connected component

of i in Dn(S). Let λ ∈ N such that λ ≥ 2 and i + (λ − 1)d < n. The subgraph that Dn(S) induces on
vertices {i, i + d, . . . , i + (λ − 1)d} is isomorphic to Dλ(S/d). Then, it is connected when λ ≥ N(S/d).
We have: ⌊

n− i− 1
d

⌋
+ 1 ≥ N(S/d),∀i = 0, . . . , d− 1 ⇐⇒

⌊
n− d
d

⌋
+ 1 ≥ N(S/d).

�

Next result, stated also in [8, Corollary 4], provides a bound for the threshold N(S). We will show in
Corollary 12 how to build instances of arbitrary length attaining the proposed bound.

Proposition 10 Let S = {s1, . . . , sr} ⊂ N such that s1 < · · · < sr and let t ∈ {2, . . . , r} such that
gcd(s1, . . . , st) = 1. Then, N(S) ≤ st + s1 − 1.

Proof. We use induction on the parameter t. If t = 2, Proposition 3 gives the result. If the result is
valid up to t, consider the sequence s1 < · · · < st+1 with gcd(s1, . . . , st) = d and gcd(s1, . . . , st+1) = 1.
We have dN(s1/d, . . . , st/d) ≤ st + s1 − d < st+1 + s1 − 1 and by Lemma 9, Dst+1+s1−1(s1, . . . , st) ≡
Dst+1+s1−1(d). Now, Dst+1+s1−1(d, st+1) ≤ Dst+1+s1−1(s1, . . . , st+1) by Lemma 7 and this graph is
connected by Proposition 3. �

Proposition 11 Let S be a finite subset of N such that #S ≥ 2, gcd(S) = 1, and d = gcd(S\{sr}) ≥ 2,
where sr = max(S). If sr ≥ dN ((S\{sr})/d)− d+ 1, we have N(S) = sr + d− 1.

Proof. Let n = sr + d − 1. By Lemma 8, we just need to prove that Dn(S) is connected. From the
hypotheses, we have n ≥ dN ((S\{sr})/d), so Dn(s1, . . . , sr−1) is under the hypotheses of Lemma 9
and Dn(s1, . . . , sr−1) ≡ Dn(d). It follows that Dn(d, sr) ≤ Dn(S) and the former is connected by
Proposition 3. �

Using Proposition 10, we derive an alternative stop criterion (Step 3) for Algorithm 1:

6



Corollary 12 Let S = {s1, . . . , sr} ⊂ N such that r ≥ 2, gcd(s1, . . . , sr) = 1 < d := gcd(s1, . . . , sr−1) ≤
s1 < · · · < sr. If sr ≥ sr−1 + s1 − 2d+ 1, we have N(S) = sr + d− 1.

Removing the hypothesis d = 1, we still have N(S) ≤ sr + d− 1 but may get smaller connected distance
graphs, involving only jumps in S\{sr}. In this case, the distance sr is not relevant for the computation
of N(S):

Proposition 13 Let S = {s1, . . . , sr} ⊂ N such that r ≥ 2, gcd(s1, . . . , sr−1) = 1 ≤ s1 < · · · < sr. If
sr ≥ sr−1 + s1 − 1, we have N(S) = N(S\{sr}).

Proof. The case r = 2 is trivially proved. If r ≥ 3, Proposition 10 gives N(S) ≤ sr−1 + s1 − 1 ≤ sr.
Therefore, the smallest connected graph with distance set S does not include any edge of the type
(x, x+ sr). �

Tying all these pieces together, we present Algorithm 2, another version of the procedure for computing
the threshold N(S). Note that at Step 6, we have #S ≥ 2 because gcd(S) = 1 and min(S) > 1.

Algorithm 2:
Input: S, finite subset of N with gcd(S) = 1 and #S ≥ 2
Output: N(S)
M ← 0, D ← 01

a← min(S)2

while a 6= 1 do3

z ← max(S)4

K ← z + a− 15

y ← max(S\{z})6

d← gcd(S\{z})7

if M ≥ D +K then8

return M9

else if z ≥ y + a− 2d+ 1 then10

if d > 1 then11

return max(M,D + z + d− 1)12

else13

S ← S\{z}14

end15

else16

λ← quo(min(S\{a}), a)17

M ← max(M,D + (λ+ 1)a)18

D ← D + λa19

S ← {a} ∪ (S\{a})− λa /* Removing the 0 entry, if appears */20

end21

a← min(S)22

end23

return max(M,D + 2)24

References

[1] J.-C. Bermond, F. Comellas, and D. F. Hsu. Distributed loop computer networks: A survey. J.
Parallel Distrib. Comput., 24(1):2–10, 1995.

[2] F. Boesch and R. Tindell. Circulants and their connectivities. J. Graph Theory, 8(4):487–499, 1984.

[3] W. A. Deuber and X. Zhu. The chromatic numbers of distance graphs. Discrete Math., 165/166:
195–204, 1997. URL http://dx.doi.org/10.1016/S0012-365X(96)00170-7. Graphs and combi-
natorics (Marseille, 1995).

7

http://dx.doi.org/10.1016/S0012-365X(96)00170-7


[4] L. Draque Penso, D. Rautenbach, and J. L. Szwarcfiter. Connectivity and diameter in distance
graphs. Networks, 2010. URL http://dx.doi.org/10.1002/net.20397.

[5] R. B. Eggleton, P. Erdős, and D. K. Skilton. Colouring the real line. J. Combin. Theory Ser. B, 39
(1):86–100, 1985. URL http://dx.doi.org/10.1016/0095-8956(85)90039-5.

[6] M. A. Fiol, J. L. A. Yebra, I. Alegre, and M. Valero. A discrete optimization problem in local
networks and data alignment. IEEE Trans. Comput., C-36(6):702–713, 1987.

[7] D. Gómez, J. Gutierrez, and Á. Ibeas. Cayley digraphs of finite abelian groups and monomial ideals.
SIAM J. Discrete Math., 21(3):763–784 (electronic), 2007.

[8] C. Heuberger. On Hamiltonian Toeplitz graphs. Discrete Math., 245(1-3):107–125, 2002. URL
http://dx.doi.org/10.1016/S0012-365X(01)00136-4.

[9] F. K. Hwang. A complementary survey on double-loop networks. Theoret. Comput. Sci., 263(1-2):
211–229, 2001. Combinatorics and computer science (Palaiseau, 1997).

[10] A. Kemnitz and H. Kolberg. Coloring of integer distance graphs. Discrete Math., 191(1-3):113–123,
1998. URL http://dx.doi.org/10.1016/S0012-365X(98)00099-5. Graph theory (Elgersburg,
1996).

[11] G. Lamé. Note sur la limite du nombre des divisions dans la recherche du plus grand commun diviseur
entre deux nombres entiers. Comptes Rendus de l’Académie des Sciences de Paris, 19:867–870, 1844.

[12] P. Sabariego and F. Santos. Triple-loop networks with arbitrarily many minimum distance diagrams.
Discrete Math., 309(6):1672–1684, 2009. URL http://dx.doi.org/10.1016/j.disc.2008.02.047.

[13] R. van Dal, G. Tijssen, Z. Tuza, J. A. A. van der Veen, C. Zamfirescu, and T. Zamfirescu. Hamiltonian
properties of Toeplitz graphs. Discrete Math., 159(1-3):69–81, 1996. URL http://dx.doi.org/10.
1016/0012-365X(95)00111-9.

[14] C. K. Wong and D. Coppersmith. A combinatorial problem related to multimodule memory organi-
zations. J. Assoc. Comput. Mach., 21:392–402, 1974.

8

http://dx.doi.org/10.1002/net.20397
http://dx.doi.org/10.1016/0095-8956(85)90039-5
http://dx.doi.org/10.1016/S0012-365X(01)00136-4
http://dx.doi.org/10.1016/S0012-365X(98)00099-5
http://dx.doi.org/10.1016/j.disc.2008.02.047
http://dx.doi.org/10.1016/0012-365X(95)00111-9
http://dx.doi.org/10.1016/0012-365X(95)00111-9

	Introduction
	Two distances case
	General algorithm
	Bounds for the threshold N(s)

