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Abstract

In this paper, we study the problem of finding the shortest path in circulant graphs with an arbitrary number of jumps. We provide
algorithms specifically tailored for weighted undirected and directed circulant graphs with two jumps which compute the shortest
path. Our method only requires O(log N ) arithmetic operations and the total bit complexity is O(log2 N log log N log log log N ),
where N is the number of the graph’s vertices. This elementary and efficient shortest path algorithm has been derived from the
Closest Vector Problem (CVP) of lattices in dimension two and with an `1 norm.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A directed circulant graph or m-loop network CN ( j1, j2, . . . , jm) with N vertices, labeled with ZN , the integers
modulo N , and jumps j1, j2, . . . , jm is a graph in which each vertex n, 0 ≤ n ≤ N − 1, is adjacent to all
the vertices n + ji mod N , with 1 ≤ i ≤ m. In contrast, an undirected circulant graph or 2m-loop network
CN (± j1, ± j2, . . . ,± jm) with N vertices, and jumps j1, − j1, j2, − j2, . . . , jm, − jm is a graph in which each vertex
n, 0 ≤ n ≤ N − 1, is adjacent to all the vertices n ± ji mod N , with 1 ≤ i ≤ m (see Fig. 1). In fact, they are Cayley
graphs of the finite cyclic group ZN . Throughout the paper we employ the term circulant graph or multi-loop network
for both undirected and directed circulant graphs.

Multi-loop networks were first proposed in [33] for organizing multimodule memory services and have a vast
number of applications in telecommunication networking, VLSI design, and distributed computation. Their properties,
such as diameters and reliabilities, have been the focus of lots of research in computer network design, see for instance
[3–5,8,10,12,13,22,28,35].

Every circulant graph can be associated to a lattice L which consists of the integer solutions (x1, . . . , xm) ∈ Zm to
the congruence:

j1x1 + · · · + jm xm ≡ 0 mod N . (1)
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Fig. 1. C18(±1, ±3).

Given two vertices r and s, a path from r to s for an undirected circulant graph CN (± j1, ± j2, . . . ,± jm) can be
described by an integer vector x = (x1, . . . , xm) ∈ Zm such that

m∑
i=1

xi ji ≡ s − r mod N . (2)

And a shortest path x is a path with minimum `1 norm. By contrast, a path from r to s for the directed circulant
graph CN ( j1, j2, . . . , jm) can be described by an integer positive vector x = (x1, . . . , xm) ∈ Nm satisfying Eq. (2),
and a shortest path x is a path with minimum `1 norm.

Message routing is a basic function in communication networks. The problem in message routing is to find a route
along which messages should be sent. The routing algorithm dictates token passing strategies and information on
distributed networks. Of course, for every path x from vertex r to s we can design several message routing from
source r to destination s. It is called an optimal message routing if every message is sent along a shortest path from
its source vertex to its destination vertex.

For general graphs, finding a shortest path between two vertices is a well-known and important problem. Efficient
polynomial time algorithms have been developed for various routing problems. However, for the family of circulant
graphs, there is an important distinction to be made, and that concerns the natural input size to a problem. For an
arbitrary graph, it is common to consider the input size to be O(N 2), which is the number of bits in its adjacency
matrix. However, any circulant graph can be described by only m integers. In this representation, the input size is
O(m log N ). Thus, polynomial time algorithms for general graphs may exhibit exponential complexity in the special
case of circulant graphs, for this compact input representation.

The single-loop network (also called a ring network) is mathematically trivial. The case m = 2 is the most
important and most studied multi-loop network, that is, undirected circulant graphs of degree four or distributed
double loop networks and directed circulant graphs of degree two or double loop networks. They have been extensively
studied (see the surveys [4,21]). When N is given as an unary input and the time complexity is measured in these terms,
there are several shortest path algorithms for directed circulant graph of degree two, see for instance [8,20,21,30,34].
Typically, they dynamically compute the next vertex the message is to be sent to, and show that the route a message
traverses is indeed a shortest path from its source to its destination. So, as a consequence they obtain algorithms that
require O(N ) arithmetic steps or O(log N ) time for preprocessing and constant processing time at each node on the
route. But the lower bound of the diameter for circulant graphs and directed circulant graphs is Ω(

√
N ) (see [4]). So in

both cases, they are exponential in the input size log N . The paper [7] shows an algorithm to compute a shortest path
in the circulant graph CN (±1, ±h) (the so called chordal ring graphs) in O(h/g + log h) time, where g = gcd(h, N ).
Obviously, it can also exhibit exponential time complexity for this input measure.

In [6], the authors establish relations between several routing applications for undirected circulant graphs and the
problem of finding the shortest vector (with `1 norm) in the above lattice. They show that the shortest path problem is
NP-hard for this concise representation.

Throughout the paper, the term polynomial time algorithm means polynomial in m log N .
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We remark in Section 2 that using the well-known extended Euclidean algorithm, we can compute on polynomial
time a path c, not necessarily a shortest one, in an undirected circulant graph, then the problem of finding a shortest
path is equivalent to the problem of finding a vector that is closest to −c in the lattice defined by Eq. (1) with respect
to `1 norm. The paper [24] presents an algorithm for solving the Closest Vector Problem in a lattice with respect to
`1, `2 and `∞ norms. Moreover, fixed the lattice dimension, this algorithm is polynomial in the bit-size of the lattice
basis.

On the other hand, we also remark in Section 2 that the problem of finding a shortest path for a directed circulant
graph is equivalent to the problem of solving a suitable integer program with m + 2 constraints associated to the
circulant graph. The paper [25] presents a polynomial time algorithm in fixed dimension for solving an integer
program which is defined by a fixed number of constraints. So, fixed the number of jumps m, papers [24] and [25]
provide polynomial time algorithms of finding a shortest path in undirected and directed circulant graphs.

So, using Integer Programming and/or Closest Vector Problems, we derive polynomial time algorithms for
computing a shortest path in circulant graphs defined by a fixed number of jumps. In accordance with previous
paragraphs, this simple observation could be considered as a minor contribution of the present paper. The problem
with those related general methods is that sometimes they are quite involved and difficult to implement.

In this article, we give polynomial time deterministic algorithms to compute a shortest path between two
vertices in any weighted circulant graph with N vertices and two jumps. Our algorithms are simple to implement,
the proofs are also quite elementary, and they require O(log N ) arithmetic steps and the total bit operations is
O(log2 N log log N log log log N ). Both of them are based on Closest Vector Problems for `1 norm.

The paper is divided into six sections. In Section 2 we introduce some known lattice and Integer Programming
concepts and show the relation between the shortest path problem for circulant graphs and these well known
mathematical problems. Section 3 is devoted to describe an algorithm for solving the two dimensional CVP for
`1 norm. As a consequence of the two previous sections, we obtain an algorithm for finding a shortest path in any
undirected circulant graph of degree four. Section 4 is dedicated to finding a shortest path in double loop networks.
Then, Section 5 analyzes the problem in weighted circulant graphs. Finally, in Section 6 we present our conclusions
and some open problems.

2. A general method of finding a shortest path in circulant graph

In this section, we point out that a polynomial time algorithm to compute a shortest path for a circulant graph
defined by a fixed number of jumps m can be derived from existing general methods.

The vertex-symmetry of circulants allows their analysis starting from any vertex, which simplifies their study. We
may assume the routing is from vertex 0 to vertex j ∈ ZN . Using the well-known Extended Euclidean Algorithm,
we compute a path from 0 to vertex j if it exists. A necessary and sufficient condition for such path to exist is
gcd( j1, j2, . . . , jm, N ) divides j . In fact, the circulant graph is connected if and only if gcd( j1, j2, . . . , jm, N ) = 1.

We separately analyze the directed and undirected cases.

2.1. Integer programming techniques

Integer Programming is an expressive framework for modeling and solving discrete optimization problems that
arise in a variety of contexts in the engineering sciences. The reader is referred to the book [31] and its numerous
references. Integer Programming representation works with implicit algebraic constraints (linear equations and
inequalities on integer valued variables) to capture the feasible set of alternatives and linear objective functions (to
minimize or maximize over the feasible set) that specify the criterion for defining optimality.

More precisely, given an integral matrix A ∈ Zk×n and integral vectors b ∈ Zk , d ∈ Zn , determine x such that:

d · x = min{d · x : Ax ≥ b, x ∈ Zn
}.

It is well known that Integer Programming is N P-hard. The situation changes drastically if the number of variables
or the dimension is fixed. For this case papers [25,24] showed that the above problem can be solved in polynomial
time, see also [9]. The following result appears in [11]:

The above integer program in fixed dimension n, where the objective vector and each of the constraints of Ax ≥ b
have binary encoding length of at most s, can be solved with an expected amount of O(k + s log k) arithmetic
operations on rational numbers of size O(s).
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We can apply this general technique of finding a shortest path for a directed circulant graph as follows:

Lemma 1. Any shortest path between 0 and j in CN ( j1, j2, . . . , jm) is also a solution to the following Integer
Program:

min{d · x : Ax ≥ b, x ∈ Zm+1
},

where x = (x1, x2, . . . , xm, y) ∈ Zm+1, d = (1, 1, . . . , 1, 0) ∈ Zm+1, b = ( j, − j, 0, . . . , 0) ∈ Zm+2 and

A =


j1 j2 . . . jm N

− j1 − j2 . . . − jm −N
1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ... ...

0 0 . . . 1 0

 ∈ Z(m+2)×(m+1),

and conversely.

So as a consequence of this observation, we have that once the number of jumps m is fixed the paper [11] provides
an algorithm to compute a shortest path in undirected circulant graphs requiring O(m + log m log N ) arithmetic
operations on rational numbers of size O(log N ). Another method to compute a shortest path using Groebner Basis is
presented in papers [16,19].

In the following sections, we give an independent and efficient method for the case of double loop networks.

2.2. Lattice reduction techniques

The fundamental objects we are dealing with in this subsection are lattices, defined as discrete subgroups of the
space Rm . Equivalently, a lattice is the set of integer linear combinations of some linearly independent vectors. Lattices
are geometric objects that have been used to solve many problems in mathematics and computer science, see for
instance [2,18,15,26,27,29].

Let {b1, . . . , bs} be a set of linearly independent vectors in Rm . The set

L = {c1b1 + · · · + csbs, c1, . . . , cs ∈ Z}

is called an s-dimensional lattice with basis {b1, . . . , bs}.
One basic lattice problem is the Shortest Vector Problem (SVP): given a lattice L and norm ‖ · ‖, it involves finding

a nonzero lattice element with the smallest norm among all non-zero vectors in the lattice. Unfortunately, this problem
is NP-hard (under randomized or non-uniform reductions, see [29]). This study has suggested several definitions of a
reduced basis for a lattice. The following concept is the generalization of the Gauss reduced basis concept for lattices
of rank 2 to an arbitrary norm [23].

Definition 2. A two-dimensional basis {u, v} is called reduced or Gauss-reduced respect to a norm ‖ · ‖ if

‖u‖, ‖v‖ ≤ ‖u + v‖, ‖u − v‖.

The algorithm in [23] computes a Gauss-reduced basis from a basis {u, v} of the lattice L ⊆ Z2 for any computable
norm in O(log M) arithmetic operations where M = max(‖u‖, ‖v‖) on integer numbers of size O(log N ). Notice
that, possibly, swapping u and v, we can always assume that ‖u‖ ≤ ‖v‖. Then, we have that u is a shortest vector of
the lattice L:

‖u‖ = min{‖w‖, w ∈ L− {0}}.

Moreover, v is shorter than any lattice vector lying in the space generated by the former, that is, ‖u‖ and ‖v‖ are
the two successive Minkowski minima.

Another related problem for which also no polynomial time solution exists is the Closest Vector Problem, CVP:
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Algorithm 1. REDUCE procedure.

Definition 3. Given a basis B generating the lattice L ⊆ Rm , a vector v ∈ Rm , and a norm in Rm ; the Closest Vector
Problem consists on finding a vector in the set v + L with minimum norm.

This problem is equivalent to finding a vector u in L that minimizes the norm of u − (−v), i.e., looking for the
closest vector to −v in L.

Now, let c = (c1, . . . , cm) be a path from 0 to vertex j , that is, a solution of the congruence equation

j1x1 + j2x2 + · · · + jm xm ≡ j mod N .

We consider the lattice L given in Eq. (1), then we have the following observation:

Lemma 4. Any shortest path between 0 and j in CN (± j1, ± j2, . . . ,± jm) is a solution of the CVP in the lattice L
for the vector −c with norm `1, and conversely.

It is well known that the CVP is NP-hard. However, for any fixed dimension, a CVP can be solved exactly in
polynomial time for the Euclidean norm `2. The algorithm presented in [24] can also be adapted to find the `1-closest
and the `∞-closest vectors. His general algorithm requires cubic polynomial time (polynomial in the bit-size of the
lattice basis) for solving the two dimensional CVP with respect to `1 norm.

One of the problems of those related general techniques, that is, Integer Programming and the Closest Vector
Problem, is that they are quite involved mathematically and difficult to implement. In the next sections, we provide a
simple and elementary algorithm for circulant graphs defined by two jumps.

3. An algorithm for solving two dimensional CVP

The main problem addressed in this section is how to compute a vector that is closest to another given vector in a
two dimensional lattice with respect to `1 norm.

For the rest of the paper, we only consider the `1 norm. We denote by ‖ · ‖ this norm acting over a vector. As we
are dealing with vectors u ∈ R2, we denote their components by u = (u1, u2).

For every real number x ∈ R, as usual, we denote by sgn (x) its sign.

3.1. Reduction by a vector

Given u, v in R2, with v 6= 0, we can find α ∈ Z such that the value ‖u − αv‖ is minimal, that is, we want to
make u as short as possible by subtracting an integer multiple of v (see [23,29]). The main goal of this subsection is
to obtain such a smallest vector with extra properties for our purpose. The algorithm REDUCE (see Algorithm 1) is an
important tool of this paper.

Lemma 5. Algorithm 1 is correct.

Proof. We just look at the map:

f : R −→ R
α 7→ ‖u + αv‖

We aim to minimize f (α) = |u1 + αv1| + |u2 + αv2| among integers. Let’s separate two cases:
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– v j = 0

It must be vi 6= 0, because we are supposing v 6= 0. Then, f (α) = |u j | + |ui + αvi | takes its minimum at
−ui

vi
.

– v1v2 6= 0
We then have two singular points:

−u1

v1
,

−u2

v2
,

f
(

−uk

vk

)
=

|u1v2 − u2v1|

|vk |
.

So, f also reaches its minimum at
−ui

vi
; although the map takes the same value in the gap limited by both singular

points whenever |v1| = |v2|.

Once this is seen, it is clear that the integer that minimizes f must be in:{⌊
−ui

vi

⌋
,

⌈
−ui

vi

⌉}
. �

The next result collects several properties of this concept for later use. We give a proof in Appendix A.

Lemma 6. Let u, v ∈ R2 be two vectors such that v 6= 0. Let i ∈ {1, 2}, j ∈ {1, 2}\{i} as in Algorithm 1, that is,
|vi | > |v j | ∨ (i = 1 ∧ |v1| = |v2|). We have the following properties:

(i) r = Reducev(u) ⇒ |ri | < |vi |.
(ii) h ∈ u + Zv ⇒ Reducev(h) = Reducev(u).

(iii) Reducev(Reducev(u)) = Reducev(u).
(iv) Reducev(u) = Reduce−v(u).

The properties (ii)–(iv) in the above lemma show that Reducev(u) is invariant in the set u + Zv.
In order to gauge the norm reduction performed by REDUCE procedure, the next result provides the following bound:

Proposition 7. Let u, v ∈ R2 be two vectors such that v 6= 0. Let i ∈ {1, 2}, j ∈ {1, 2}\{i} as in Algorithm 1; with
|vi | = β|v j | for some 1 ≤ β ∈ R. If |vi | ≤ |ui | and |u j | 6= 0, then:

‖Reducev(u)‖ ≤

α

(
1 +

1
β

)
+ 2

2α + 2
‖u‖,

where |ui | = α|u j |, for some α ∈ R .

A proof is given in Appendix B. We note that:

α

(
1 +

1
β

)
+ 2

2 + 2α
≤ 1,

because β ≥ 1. And if β > 1, then the inequality is strict. The requirement |vi | = β|v j | excludes from this result the
reduction by a vector with one vanished component. We are also excluding the possibility |u j | = 0. In the next result,
we are dealing with these cases.

In a similar way, we can obtain the following result:

Proposition 8. Let u, v ∈ R2 be two vectors such that v 6= 0. Let i ∈ {1, 2}, j ∈ {1, 2}\{i} as Algorithm 1 with
|vi | ≤ |ui |. We have:

(i) If v j = 0 ∧ u j 6= 0, then:

‖Reducev(u)‖ ≤
2 + α

2 + 2α
‖u‖, where α = |ui |/|u j |.
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(ii) If u j = 0 ∧ v j 6= 0, then:

‖Reducev(u)‖ ≤
1 + β

2β
‖u‖, where β = |vi |/|v j |.

(iii) If |v j | = |u j | = 0, then:

‖Reducev(u)‖ ≤
1
2
‖u‖.

3.2. The method’s core

We are describing precisely our goal. We start with three vectors in R2, two of them linearly independent:

w + Z〈u, v〉, rank(u, v) = 2.

We are going to find the shortest element in that set with respect to `1 norm. The method consists of recursively
applying the REDUCE algorithm to the “translation” vector w by using some vectors in Z〈u, v〉. Our purpose is to
guarantee that each step reduces the vector norm by a constant factor, until we reach an ending condition.

To perform this goal, we select a particular basis of the lattice Z〈u, v〉:

Definition 9. A lattice basis {u, v} is called extra-reduced when:

Reducev(u) = u ∧ Reduceu(v) = v.

In order to study some properties of this kind of lattice basis, we introduce a new concept:

Definition 10. We classify vectors u = (u1, u2) ∈ R2 into two types:

– horizontal, if |u1| ≥ |u2|.
– vertical, if |u1| < |u2|.

Lemma 11. Let {u, v} be an extra-reduced basis. Then,

(i) The basis is also Gauss-reduced.
(ii) One of the basis vectors is vertical, and the other one is horizontal.

Proof. The proof of the first claim is straightforward. For the second, we first suppose both basis vectors are vertical,
that is,

u = (u1, u2), |u1| < |u2| and v = (v1, v2), |v1| < |v2|.

We look at the vectors:

u + v = (u1 + v1, u2 + v2), u − v = (u1 − v1, u2 − v2).

We select the one that minimizes the second component modulus, whose norm is:

||u1| ± |v1|| + ||u2| − |v2|| ≤

 |u1| + |v1| + |u2| − |v2| < ‖u‖

∨

|u1| + |v1| + |v2| − |u2| < ‖v‖.

It is clear, in both options, that the basis is Gauss-reduced.
We suppose now that both vectors are horizontal, that is,

u = (u1, u2), |u1| ≥ |u2|

v = (v1, v2), |v1| ≥ |v2|.

Using the first claim of Lemma 6, we have that:

u = Reducev(u) ⇒ |u1| < |v1|

v = Reduceu(v) ⇒ |v1| < |u1|. �
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Algorithm 2. Extra-reduced basis algorithm.

Note 12. As a consequence of the above proof, we can classify the Gauss-reduced basis as well, as they consist on:

– A vertical vector and an horizontal one.
– Two horizontal vectors.

In the second option, one of them (at least) must be diagonal (|u1| = |u2|), because in other case, the same argument
as in the first proof’s part would reach a contradiction.

Kaib and Schonrr showed in [23] how to get a reduced basis (referred to any norm, in particular `1) of lattice in
two dimensions. Then, it is easy to reach an extra-reduced basis, by just applying REDUCE procedure, see Algorithm 2.

Lemma 13. Algorithm 2 is correct.

Proof. – If both input vectors’ norms are different, the algorithm ends at step 4. If U and V are the input vectors,
ordered such that ‖U‖ < ‖V‖, we output:

{U, ReduceU(V)}.

This output is a basis of the input lattice, because the change matrix takes the form:(
1 λ

0 1

)
,

for an integer λ. Furthermore, it is an extra-reduced basis: firstly, by Lemma 6(iii):

ReduceU(ReduceU(V)) = ReduceU(V).

On the other hand, ReduceReduceU(V)(U) is a vector in the lattice, and since {U, V} is an ordered Gauss-reduced
basis, it must be:

‖U‖ ≤ ‖ReduceReduceU(V)(U)‖.

The converse comes from the meaning of the REDUCE process, so

‖U‖ = ‖ReduceReduceU(V)(U)‖.

Now, since ‖V‖ is the second Minkowski’s minimum in the lattice, and its norm is greater than ‖U‖, it must be
ReduceReduceU(V)(U) ∈ Z < U >, and so,

U = ReduceReduceU(V)(U).
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Algorithm 3. Iterative reduce.

– We now analyze the case ‖u‖ = ‖v‖.
According to Note 12, after Step 8, we have |U1| = |U2|. Now, if we perform Step 9, we reach a basis where U

is horizontal, and V is vertical:

|V1| + |V2| = ‖V‖ = ‖U‖ = 2|U1| > 2|V1|.

The last inequality follows from Lemma 6(i).
Then, |V2| > |V1|.
Even if we have skipped Steps 6–9, after 14, U is horizontal, and V is vertical.
We have to see now that after Step 3.4 we have an extra-reduced basis. The situation is as follows:

0 ≤ U2 ≤ |U1|.

0 ≤ V1 < |V2|.

We have that |U2| < |V2| and that |V1| < |U1|, because ‖U‖ = ‖V‖. Then,⌊
U2

V2

⌋
,

⌊
V1

U1

⌋
∈ {−1, 0},

and then the basis {U, V} is extra-reduced. �

We will then use this extra-reduced basis to perform iterative reductions of the vector w, as in explained in
Algorithm 3.

From Lemma 6, Propositions 7 and 8 we can obtain the following:

Lemma 14. Algorithm 3 is correct and the number of performed loops is O(log ‖w‖).

Proof. By Lemma 6.1, in consecutive loops different substeps must be performed. So, for every two loops, one
reduction by v is made. But by Propositions 7 and 8, there exists a constant λ < 1 such that every step of this kind
produces:

‖Wnew
‖ ≤ λ‖Wold

‖.

That constant λ is the minimum reduction factor provided by Proposition 7 or 8. Note that the parameter α cannot be
arbitrary small: suppose that Wn is a vector obtained at step n, and |W1| < |u1|. Then, the parameter α corresponding
to vector W at step n + 2k satisfies:

α ≥
|vi |

‖Wn‖ − |vi |
.

So, as a lattice is a discrete subset, the lemma follows. �

3.3. The whole process

We have reached a vector in w +Z〈u, v〉 with some properties. We need to conclude our job by getting the shortest
vector among all. We will use the following technical result:
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Algorithm 4. Final reduce.

Lemma 15. Let {u1, u2} be a reduced basis (respect to any norm) of a lattice in Rm . Let w = α1u1 +α2u2 be a lattice
vector (α1, α2 ∈ Z). Then, we have:

‖α1u1‖, ‖α2u2‖ ≤ 2‖w‖.

Proof. – If w = 0, the result is clear.
– If α1α2 = 0, we have:

‖w‖ =

 ‖α1u1‖

∨

‖α2v2‖.

– If α1α2 6= 0, let us write σ ∈ Σ2, such that

|ασ(1)| ≤ |ασ(2)|.

Then, writing ε := sgn
(

ασ(1)

ασ(2)

)
∈ {−1, 1},

‖uσ(1)‖ ≤ ‖uσ(1) + εuσ(2)‖ ⇒ ‖uσ(1)‖ ≤ ‖uσ(1) +
ασ(2)

ασ(1)

uσ(2)‖ ⇒ ‖ασ(1)uσ(1)‖ ≤ ‖v‖.

Then,

‖ασ(2)uσ(2)‖ ≤ ‖v‖ + ‖ασ(1)uσ(1)‖. �

Let us now suppose that we have reached a description w + Z < u, v > of the original set, where {u, v} is an
extra-reduced basis (u is horizontal and v is vertical), and with |w1| < |u1|, |w2| < |v2|. Let W be a closest vector to
w with respect to `1 norm.

Then, d := W − w ∈ Z〈u, v〉 and

‖d‖ ≤ 2‖w‖ = 2(|w1| + |w2|) < 2(|u1| + |v2|).

We try to bound the coefficients of d as a lattice member:

d = αu + βv.

We distinguish two cases and applying previous Lemma 15

– |u1| ≥ |v2|

‖αu‖ ≤ 2‖d‖ ⇒ |α| ≤
4(|u1| + |v2|)

|u1| + |u2|
≤ 8

– |u1| < |v2|

‖βv‖ ≤ 2‖d‖ ⇒ |β| ≤
4(|u1| + |v2|)

|v1| + |v2|
≤ 8.

So, we can now give a method to obtain a shortest vector.
To sum up, jointing Algorithms 2–4, we reach our goal.
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Algorithm 5. Integer reduce.

3.4. Complexity

When studying lattices from a complexity point of view, it is customary to assume that the basis vectors (and
therefore any lattice vector) have all rational coordinates. It is easy to see that rational lattices can be converted to
integer lattices (i.e., sublattices of Zm) by multiplying all coordinates by an appropriate integer scaling factor.

In this section, we assume that all vectors have integer coordinates, that belong to Z2.

Notation 16. If a, b are two integers, such that b 6= 0, we denote by quo(a, b), rem(a, b) the unique integers verifying:

a = b · quo(a, b) + rem(a, b), 0 ≤ rem(a, b) < |b|,

i.e., quo(a, b), rem(a, b) are the quotient and the remainder of the Euclidean division of a by b.

In the case of lattices with integer coefficients, Algorithm 1 can be substituted with Algorithm 5.
It is straightforward t6 check that both Algorithm 1 and Algorithm 5 have the same output for integer vectors.
Given three vectors {u, v, w}, such that u, v are linearly independent. Let M = max(‖u‖, ‖v‖, ‖w‖). We claim that

our algorithm for solving the closest vector problem costs O(log2 M log log M log log log M) bit operations:

– Clearly, Reducev(u) ∈ u + Zv is bounded by computing four Euclidean divisions on an integer number of size
O(log M).

– The algorithm in [23] computes a Gauss-reduced basis from a base {u, v} of a lattice L ⊂ Z2 in O(log M)

arithmetic operations on integer numbers of size O(log M).
– Now, finding an extra-reduced basis from a Gauss-reduced one using Algorithm 2 requires one to compute four

Euclidean division on integer of size O(log M).
– Algorithm 3 requires O(log M) arithmetic (see Lemma 14) steps and any step consists of two Euclidean divisions

on an integer of size O(log M).
– Finally, Algorithm 4 computes 16 REDUCE procedures.

To finish this analysis, we use the famous Schönhage and Strassen algorithm [32] for the multiplication of integers.
From a practical point of view, it is interesting to remark that the Algorithm 4 only requires us to perform the

REDUCE procedure 8 times instead of 16. However, the proof of this fact is a little longer.
Given a connected undirected circulant graph CN (± j1, ± j2), we can assume without loss of generality that

gcd( j1, j2) = 1, see [1]. A basis for the lattice L:

L = {(x, y) ∈ Z2
: j1x + j2 y ≡ 0 mod N }

associated to CN (± j1, ± j2) is u = (− j2, − j1), v = (N x0, N y0), where 1 = j1x0 + j2 y0. Given a vertex
j ∈ ZN , we can compute by the Extended Euclidean algorithm a path w from 0 to j . All of this on
O(log N log log N log log log N ), see for instance [14].

Corollary 17. Given an undirected circulant graph CN (± j1, ± j2) and vertex j ∈ ZN , we can decide if
there exists a shortest path from vertex 0 to vertex j and, in the affirmative case, we can compute one on
O(log2 N log log N log log log N ) bit operations.
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Algorithm 6. Postive reduction.

4. Double loop networks

Our method can be easily extended to directed circulant graphs DCN ( j1, j2).
First, we describe the tool of positive reduction of a vector. Given two vectors u = (u1, u2) and v = (v1, v2) 6= 0,

we are looking for α ∈ Z such that the value ‖u + αv‖ is minimal and has both components positive. In general,
such a vector does not exist, for instance, take u = (3, −5) and v = (12, 0). If it exists, we denote this vector by
PRedv(u) ∈ u + Zv, that is,

‖PRedv(u)‖ = min{‖u + αv‖ : α ∈ Z, u + αv ∈ R2
≥0},

where R2
≥0 is the set of real points (x1, x2) with xi ≥ 0, i = 1, 2.

It is easy to check that the Algorithm 6, illustrated in Fig. 2, is correct. On the other hand, if we are dealing with
integer vectors, we can formulate the main steps, similar to those in Algorithm 5, using the Euclidean quotient (see
Algorithm 7).

Therefore, a bound for bit complexity on computing PRedv(u) is O(log2 M log log M log log log M), where
M = max(‖u‖, ‖v‖).

Once this tool is fixed, let us describe the method to reach a shortest path in a directed circulant graph. First, we
act as in the previous section to compute an extra reduced basis of the associated lattice {u, v}, and a shortest path for
the corresponding undirected circulant graph w.

We can state that there always exists one path in the directed circulant graph with bounded length.
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Fig. 2. Algorithm 6.

Algorithm 7. Positive reduction with integer components.

Lemma 18. Let w, u, v ∈ Z2, such that {u, v} is an extra reduced basis for the lattice they generate. Then,

∃d ∈ (w + Z〈u, v〉) ∩ N2, ‖d‖ ≤ 6 max{‖u‖, ‖v‖}.

Proof. Let M = max{‖u‖, ‖v‖}. We consider the translated lattice

w − (2M, 2M) + Z〈u, v〉.

By Algorithm 3, this set contains an element z, with |z1| < |u1|, |z2| < |v2|. So, ‖z‖ ≤ 2M . Clearly z + (2M, 2M)

belongs to the set (w + Z〈u, v〉) ∩ N2, and its norm is bounded by 6M . �
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Algorithm 8. Positive shortest path.

Finally, we follow a similar argument as in Section 3 to reach the shortest path for the directed graph.

Lemma 19. Let w, u, v ∈ Z2, such that {u, v} is an extra reduced basis for the lattice they generate. Let W be a
shortest element in a translated lattice w + Z〈u, v〉 and let d be a shortest element in (w + Z〈u, v〉) ∩ N2. We have:
d − W = αu + βv, verifying

|α| ≤ 16 if ‖u‖ ≥ ‖v‖, |β| ≤ 16 if ‖v‖ ≥ ‖u‖.

Proof. Let M = max{‖u‖, ‖v‖}, by Lemmas 15 and 18 and since {u, v} is an extra reduced basis, we have:

‖αu‖, ‖βv‖ ≤ 2‖d − w‖ ≤ 2‖d‖ + 2‖W‖ ≤ 12M + 4M ≤ 16M.

So, the lemma follows. �

Using the above lemma it is straightforward to prove that the next Algorithm 8 computes a shortest vector with
positive components.

As an immediate consequence is that we can compute a shortest path in a directed circulant graph of degree two in
O(log2 N log log N log log log N ) bit operations.

5. Weighted circulant graphs

In this section, we consider weighted circulant graphs with two jumps and weights.

Theorem 20. Given a undirected circulant graph CN (± j1, ± j2) with weights w = (w1, w2) we can find a shortest
path in O(log2 N log log N log log log N ) bit operations.

Proof. The distance of a path c = (c1, c2) in the weighted circulant graph is

‖c‖w = w1|c1| + w2|c2|.

Let c ∈ Z2; then ‖c‖w = ‖Φ(c)‖`1 , where Φ is the injective group homomorphism

Φ : Z2
→ Z2, Φ((x, y)) = (w1x, w2 y).

Let j ∈ ZN be a vertex of the graph, and let u, v be an extra-reduced basis of the circulant graph CN ( j1, j2). By
Corollary 17, we compute in cubic polynomial time a shortest path c from vertex 0 to vertex j . Let d a solution
to CVP for the lattice generated by 〈Φ(u),Φ(v)〉, shifted by Φ(c); then Φ−1(d) is a shortest path in the weighted
undirected circulant graph. �

The algorithm in the above theorem can be adapted in a natural way to weighted directed circulant graphs.
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6. Conclusions

We provide algorithms specifically tailored for finding a shortest path between to vertices of any weighted
undirected and directed circulant graph with two jumps. Our algorithms are very efficient: we can find a shortest
path instantaneously in a circulant graph with more 2300 vertices using a C++ implementation in a PC computer with
two processors of 1 GHz and 1 Gb of memory RAM.

We have introduced the concept of an extra-reduced basis. We think that this new concept may shed light on
problems in this kind of lattice, and can be extended to higher dimensions in an appropriate way.

We also leave unresolved many interesting questions. Unfortunately, we do not know how to extend those results
to more jumps.

Concerning applications, we regard the future interrelation of our algorithm to circulant graphs in order to consider
different problems in distributed double loop networks, like fault tolerance, and explicitly describe the class of non-
isomorphic optimal networks.
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Appendix A

Proof of Lemma 6. (i) The number ri is

ui −

⌊
ui

vi

⌋
vi , or ui −

⌊
ui

vi

⌋
vi − vi .

We divide the study into several cases:
– If vi > 0:⌊

ui

vi

⌋
≤

ui

vi
⇒

⌊
ui

vi

⌋
vi ≤ ui ⇒ ui −

⌊
ui

vi

⌋
vi ≥ 0,⌊

ui

vi

⌋
+ 1 >

ui

vi
⇒

⌊
ui

vi

⌋
vi + vi > ui ⇒ ui −

⌊
ui

vi

⌋
vi < vi .

– If vi < 0:⌊
ui

vi

⌋
≤

ui

vi
⇒

⌊
ui

vi

⌋
vi ≥ ui ⇒ ui −

⌊
ui

vi

⌋
vi ≤ 0,⌊

ui

vi

⌋
+ 1 >

ui

vi
⇒

⌊
ui

vi

⌋
vi + vi < ui ⇒ ui −

⌊
ui

vi

⌋
vi > vi .

For the last one:
– If vi > 0:

0 = vi − vi > ui −

⌊
ui

vi

⌋
vi − vi ≥ 0 − vi .

And when ui −

⌊
ui

vi

⌋
vi − vi = −vi , we have:

ui =

⌊
ui

vi

⌋
vi ⇒

ui

vi
=

⌊
ui

vi

⌋
⇒

ui

vi
∈ Z ⇒ ri = 0.

– If vi < 0:

0 = vi − vi < ui −

⌊
ui

vi

⌋
vi − vi ≤ 0 − vi .

And when ui −

⌊
ui

vi

⌋
vi − vi = −vi , we have:

ui =

⌊
ui

vi

⌋
vi ⇒

ui

vi
=

⌊
ui

vi

⌋
⇒

ui

vi
∈ Z ⇒ ri = 0.
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(ii) It must be ∃α ∈ Z : h = u + αv. Then,⌊
hi

vi

⌋
=

⌊
ui

vi
+ α

⌋
=

⌊
ui

vi

⌋
+ α.

So, the two possibilities for Reducev(h) are:

h −

(⌊
ui

vi

⌋
+ α

)
v = u −

⌊
ui

vi

⌋
v,

h −

(⌊
ui

vi

⌋
+ α + 1

)
v = u −

(⌊
ui

vi

⌋
+ 1

)
v.

And, when the norms are coincident, we observe:
hi

vi
∈ Z ⇐⇒

ui

vi
∈ Z.

(iii) It is straightforward from previous item.

(iv) – When
ui

vi
∈ Z, it must be

Reducev(u) = u −
ui

vi
v,

Reduce−v(u) = u −
ui

−vi
(−v) = u −

ui

vi
v.

– In any other case, we show⌊
ui

−vi

⌋
= −

⌈
ui

vi

⌉
,

and
⌊

ui

vi

⌋
+ 1 =

⌈
ui

vi

⌉
. So,

Reducev(u) ∈

{
u −

⌊
ui

vi

⌋
v, u −

(⌊
ui

vi

⌋
+ 1

)
v
}

,

Reduce−v(u) ∈

{
u +

⌈
ui

vi

⌉
(−v), u +

(
1 −

⌈
ui

vi

⌉)
v
}

.

And the algorithm takes the same output in both cases. �

Appendix B

Proof of Proposition 7. Firstly, let’s prove that ∃h ∈ u + Zv with |hi | <
|ui |

2
, and

(
hi 6= 0 ⇒ sgn (hi ) = sgn (ui )

)
.

We just see that there are two vectors r and s in u + Zv, with: ri = ui −

⌊
ui

vi

⌋
vi , si = ui −

⌊
ui

vi

⌋
vi − vi .

As |vi | ≤ |ui |, it must be |ui | > 0. Also,
∣∣∣∣ui

vi

∣∣∣∣ ≥ 1 ⇒

⌊
ui

vi

⌋
6= 0. We also see that

⌊
ui

vi

⌋
= −1 ⇒

ui

vi
= −1 ⇒

ri = 0. We suppose then
ui

vi
6∈ Z,

⌊
ui

vi

⌋
6∈ {−1, 0}.

We divide the proof into several cases:

– If vi > 0, ui −

⌊
ui

vi

⌋
vi ≥ 0 and ui −

⌊
ui

vi

⌋
vi − vi < 0.

. If ui > 0, then
⌊

ui

vi

⌋
≥ 1 ⇒

⌊
ui

vi

⌋
< 2

⌊
ui

vi

⌋
.⌊

ui

vi

⌋
< 2

⌊
ui

vi

⌋
⇒

ui

vi
< 2

⌊
ui

vi

⌋
⇒

ui

vi
−

ui

2vi
<

⌊
ui

vi

⌋
⇒ ui −

⌊
ui

vi

⌋
vi <

ui

2
.
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Fig. 3. The setA.

. If ui < 0, then
⌊

ui

vi

⌋
≤ −2 ⇒

⌊
ui

vi

⌋
≥ 2 + 2

⌊
ui

vi

⌋
.⌊

ui

vi

⌋
≥ 2

⌊
ui

vi

⌋
+ 2 ⇒ 2

⌊
ui

vi

⌋
+ 2 <

ui

vi
⇒

ui

2
>

⌊
ui

vi

⌋
vi + vi ⇒ ui −

⌊
ui

vi

⌋
vi − vi >

ui

2
.

– If vi < 0, ui −

⌊
ui

vi

⌋
vi − vi > 0 and ui −

⌊
ui

vi

⌋
vi ≤ 0.

. If ui > 0, then
⌊

ui

vi

⌋
≤ −2⌊

ui

vi

⌋
≥ 2

⌊
ui

vi

⌋
+ 2 ⇒ 2

⌊
ui

vi

⌋
+ 2 <

ui

vi
⇒

ui

vi
−

⌊
ui

vi

⌋
− 1 >

ui

2vi
⇒ ui −

⌊
ui

vi

⌋
vi − vi <

ui

2
.

– If ui < 0, then
⌊

ui

vi

⌋
≥ 1. So,

ui

vi
< 2

⌊
ui

vi

⌋
⇒

ui

vi
−

⌊
ui

vi

⌋
<

ui

2vi
⇒ ui −

⌊
ui

vi

⌋
vi >

ui

2
.

In the rest of the proof, we use the following notation:

[a, b] :=

{
(a, b), if i = 1
(b, a), if i = 2.

We define the following set (see Fig. 3):{[
hi ,

v j

vi
(hi − ui ) + u j

]
: 0 ≤ |hi | <

|ui |

2
, ui hi ≥ 0

}
⊆

{[
hi , ±

|v j |

|vi |
(hi − ui ) + u j

]
: 0 ≤ hi ≤

|ui |

2
, ui hi ≥ 0

}
=: A.

As seen before, ‖Reducev(u)‖ ≤ max
w∈A

‖w‖. Now, this maximum is reached at:

[
ui

2
, u j +

sgn
(
u j

)
|ui |

2β

]
.
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Then, ‖Reducev(u)‖ ≤
|ui |

2
+ |u j | +

|ui |

2β
. And so,

‖Reducev(u)‖

‖u‖
≤

|ui |

(
1 + β

2β

)
+ |u j |

|u1| + |u2|
=

α|u j |

(
1 + β

2β

)
+ |u j |

(1 + α)|u j |
=

2 + α

(
1 +

1
β

)
2 + 2α

. �
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