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CAYLEY DIGRAPHS OF FINITE ABELIAN GROUPS AND
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Abstract. In the study of double-loop computer networks, the diagrams known as L-shapes arise
as a graphical representation of an optimal routing for every graph’s node. The description of these
diagrams provides an efficient method for computing the diameter and the average minimum distance
of the corresponding graphs. We extend these diagrams to multiloop computer networks. For each
Cayley digraph with a finite abelian group as vertex set, we define a monomial ideal and consider
its representations via its minimal system of generators or its irredundant irreducible decomposition.
From this last piece of information, we can compute the graph’s diameter and average minimum
distance. That monomial ideal is the initial ideal of a certain lattice with respect to a graded
monomial ordering. This result permits the use of Gröbner bases for computing the ideal and finding
an optimal routing. Finally, we present a family of Cayley digraphs parametrized by their diameter d,
all of them associated to irreducible monomial ideals.
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1. Introduction. Let Γ be a group and S ⊆ Γ a subset. The Cayley digraph
associated to (Γ, S) is a directed graph whose vertex set is Γ and whose edge set is
{(g, h) ∈ Γ2 | g−1h ∈ S}. Every Cayley digraph is vertex-symmetric and its degree
equals the number of elements in S. These graphs are connected if and only if the
set S generates the group. We are dealing with digraphs associated to finite abelian
groups, but we are mainly interested in those associated to cyclic groups. Let N be
a positive integer and ZN the integers modulo N . For any subset S = {j1, . . . , jr} of
this abelian group we denote by CN (S) = CN (j1, . . . , jr) the corresponding Cayley
digraph (see Figure 1.1), which is called the circulant digraph or multiloop computer
network of jumps j1, . . . , jr. It is connected if and only if gcd(j1, . . . , jr, N) = 1.
If S is a subset of ZN such that for every element in S its inverse also lies in S,
then CN (S) is an undirected graph called a circulant graph or distributed multiloop
computer network.

Multiloop networks were first proposed in [32] for organizing multimodule memory
services and have a vast number of applications in telecommunication networking,
VLSI design, and distributed computation. Their properties, such as diameter and
reliability, have been the focus of much research in computer network design; see, for
instance, [5, 7, 12, 13, 19, 21, 25, 33].

The single-loop network or ring network is mathematically trivial. Digraphs with
r = 2 or double-loop networks and their corresponding undirected graphs (distributed
double-loop networks, with degree four) have been extensively studied; see the sur-
veys [3, 20] and the references therein. When CN (j1, j2) is connected, one can define a
minimum distance diagram (MDD) as an array with vertex 0 in cell (0, 0) and vertex c
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Fig. 1.1. C18(3, 8).
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Fig. 1.2. MDD of C33(5, 14).

in cell (x, y) (x is the column index and y the row index), for a particular choice satis-
fying j1x+ j2y ≡ c mod N , and x+ y minimum. One example is shown in Figure 1.2.

The classical work of Wong and Coppersmith [32] presents an algorithm for con-
structing an MDD of CN (j1, j2) in O(N2) steps and shows it has an “L” shape.
Several characterizations and applications of this idea for describing circulants with
desirable properties appear in [1, 8, 9, 13]. However, they do not focus on higher
degree digraphs.

Two notable parameters in a graph are the diameter d and the average minimum
distance d̄. The former represents the worst delay in the communication between two
nodes, and the latter represents the average delay. Given an L-shape, it is easy to
compute d and d̄.

On the other hand, let dr(N) := min{d(CN (j1, . . . , jr) | j1, . . . , jr ∈ ZN}. An im-
portant problem is to determine this value and find a specific CN (j1, . . . , jr) attaining
this minimum. The network CN (j1, . . . , jr) is said to be optimal if its diameter equals
dr(N). In some cases, it is difficult to obtain optimal networks; however, one can find
general simple functions serving as upper and lower bounds for dr(N); see [3]. The
paper [32] shows d2(N) ≤

√
3N − 2 and presents a family of circulant digraphs with

diameter 2
√
N − 2.

In this article we present monomial ideals as a natural tool for studying the
MDDs of arbitrary Cayley digraphs, provided that the vertex group is finite and
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abelian. Given a graded monomial ordering and a Cayley digraph (Γ, S), we build a
monomial ideal in the polynomial ring K[X1, . . . , Xr], where K is an arbitrary field
and r = #S. We obtain some properties of this monomial ideal: in particular, a
certain generalization of the two-dimensional L-shape is shown. On the other side, it
is the initial ideal of a certain lattice. This result permits the use of Gröbner bases
for computing the ideal and finding an optimal routing for each pair of nodes. Given
the representation of the monomial ideal via its irreducible decomposition, we provide
formulae to compute d and d̄. We also show a family of circulant digraphs of degree
two which coincides with the family obtained in paper [32]. Finally, we present a
new and attractive family of circulant digraphs of arbitrary degree parametrized by
the diameter d, with average minimum distance d/2, and whose associated monomial
ideals are irreducible.

The paper is divided into nine sections. In section 2 we collect several known
facts about monomial ideals, presenting examples and fixing notation for later use.
Section 3 presents the key idea of associating monomial ideals to digraphs in order to
obtain an MDD, and it also provides an algorithm to construct an MDD for Cayley
digraphs with a finite abelian group as vertex set. Section 4 is devoted to present-
ing the relation between MDDs and the ideal of a lattice. In section 5 we present
an algorithm to compute a shortest path between two vertices by means of Gröbner
bases. Section 6 presents an algorithm specifically tailored for degree three circulants.
It computes the minimal system of generators in O(s logN) arithmetic operations,
where s is the number of generators and N is the number of nodes. Section 7 is dedi-
cated to providing formulae to find the diameter and the average minimum distance.
Then section 8 presents a family of multiloop computer networks with an arbitrary
number of jumps, parametrized by the diameter d, and all of them associated to ir-
reducible monomial ideals. We conclude with a short summary and a discussion of
open questions.

2. Monomial ideals. Monomial ideals form an important link between com-
mutative algebra and combinatorics. Here we review several basic related results and
definitions concerning monomial ideals; see, for instance, [2, 30].

Let K be an arbitrary field and K[X1, . . . , Xr] the polynomial ring in the variables
X1, . . . , Xr. Throughout the paper, we very often identify monomials of K[X1, . . . , Xr]
with vectors of Nr and use the following notation:

xa = Xa1
1 · · ·Xar

r ←→ a = (a1, . . . , ar),

xa|xb ⇐⇒ a = (a1, . . . , ar) ≤ b = (b1, . . . , br)
def⇐⇒ ai ≤ bi ∀i = 1, . . . , r,

a = (a1, . . . , ar) � b = (b1, . . . , br)
def⇐⇒ (bi > 0 ⇒ ai < bi) ,

ei := (0, . . . ,
i
�
1 , . . . , 0), m

a := (Xai
i | ai > 0), 1 := (1, . . . , 1).

The definition of � suits the characterization in (2.2), and when it is employed
(in expressions like a � b), we usually have 1 ≤ b.

A monomial ideal is an ideal generated by monomials, i.e., I ⊂ K[X1, . . . , Xr] is
a monomial ideal if there is a subset A ⊆ Nr such that

I = (xa | a ∈ A) = (A).
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Fig. 2.1. Staircase diagram and Buchberger’s graph.

There are two standard ways of describing a nontrivial monomial ideal:
• Via the (unique) minimal system of monomial generators I = (xa1 , . . . ,xas),

we have

(2.1) xu ∈ I ⇐⇒ ∃ i ∈ {1, . . . , s} | ai ≤ u.

• Via the (unique) irredundant decomposition by irreducible monomial ideals
I = mb1 ∩ · · · ∩ mbn , we have

(2.2) xu �∈ I ⇐⇒ ∃ i ∈ {1, . . . , n} | u � bi.

The so-called staircase diagram is a useful graphical representation of monomial
ideals.

Example 2.1. The monomial ideal I1 := (x4, x2y2, y3) = (x2, y3) ∩ (x4, y2) is
represented on the left in Figure 2.1.

There is an algorithm for finding the irredundant irreducible decomposition of a
monomial ideal based on Alexander duality; see [27]. An irreducible component ma

can be associated to lcm(Xa1
1 , . . . , Xar

r ) = xa. On the other hand, if K[X1, . . . , Xr]/I
is an artinian ring, then the monomial xa associated to the irreducible component ma

must coincide with the least common multiple of a subset of the minimal generators
of I. In the above Example 2.1 we have

x2y3 = lcm(x2y2, y3), x4y2 = lcm(x4, x2y2).

The diagram on the right in Figure 2.1 is called Buchberger’s graph of the mono-
mial ideal I1; see [28]. At any stage in Buchberger’s algorithm for computing Gröbner
bases, one considers the S-pairs among the current polynomials and removes those
which are redundant; the minimal S-pairs define a graph on the generators of any
monomial ideal.

Theorem 2.2. Let I be a nontrivial monomial ideal given by a minimal system
of generators I = (xa1 , . . . ,xas) and by the irredundant irreducible decomposition
I = mb1 ∩ · · · ∩ mbn . The following are equivalent:

1. K[X1, . . . , Xr]/I is an artinian ring.
2. ∀i = 1, . . . , r, one of the generators’ exponents is aj = αiei for some αi ∈ N.
3. ∀i = 1, . . . , n, ∀j = 1, . . . , r, bi,j > 0.

Proof. We need to prove that the number of monomials outside I is finite if and
only if either of the two last items is satisfied. We do that using the characterizations
in (2.1) and (2.2).
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Fig. 2.2. Planar graph associated to I2.

If the second item is true, then the number of monomials which do not lie in the
ideal is bounded by the product

∏
αi. Conversely, if that item is false, there exists

an index i ∈ {1, . . . , r} such that Xα
i �∈ I ∀α ∈ N.

The third item is obviously equivalent to #{u ∈ Nr | u � bi for some i ∈
{1, . . . , r} } < ∞.

We conclude this section by illustrating those facts in the following example.
Example 2.3. In [28], a planar graph is associated to every monomial ideal in three

variables satisfying the conditions in Theorem 2.2. The monomial xb associated to
an irreducible component mb is identified with a connected component in the graph’s
complement and can be obtained as the least common multiple of the generators in
its boundary. In Figure 2.2 we show this construction for the ideal:

I2 := (x8, x4y2, y5, y3z, z5, x3z4, x7z, x3y2z2)

= (x8, y2, z) ∩ (x7, y2, z4) ∩ (x4, y3, z2) ∩ (x4, y5, z) ∩ (x3, y3, z5).

The description of those relations permits the simplification of some computations
on Cayley digraphs, as pointed out in section 7.

3. Minimum distance diagrams. There are different ways to relate monomial
ideals with graphs (see, for instance, [30]). In this section we propose a new approach
to studying Cayley digraphs in which we associate a graph with a monomial ideal.
The routing problem for Cayley digraphs reduces to studying paths originating at
a fixed vertex, as these graphs are vertex-symmetric. Given a graph associated to
(Γ, {s1, . . . , sr}), where Γ is finite and abelian, we are looking for the shortest path
from node 0Γ to node c ∀c ∈ Γ, i.e., a minimum distance diagram (MDD). We can
construct the routing mapping R:

(3.1)
R : Nr −→ Γ

a �→ a1s1 + · · · + arsr.

Thus, we need to find a right inverse map of R:

D : Γ −→ Nr,

such that

R(D(c)) = c ∀c ∈ Γ and ‖D(c)‖1 = min{‖x‖1 | x ∈ R−1(c)}.

In general, map D is not unique; see Figure 3.1. This happens when the set R−1(c)
contains two or more elements with minimum �1-norm for some c ∈ Γ.
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Fig. 3.1. Different MDDs for C33(5, 14).

In digraphs of degree two, we can characterize this situation in terms of lattices.
Let R̄ be the extended map of R from Nr to Zr, and L the kernel of R̄.

Proposition 3.1. Let D be an MDD for (Γ, {s1, s2}), where Γ is finite and
abelian. Then there is a different MDD for the same graph if and only if there exists
a vector (T,−T ) ∈ L with T > 0 and T ≤ max{a1, a2} for some a = (a1, a2) ∈ D(Γ).

In the example C33(5, 14) from Figure 1.2, the associated lattice is generated by
{(−16, 1), (−1,−2)}:

(T,−T ) = α(−16, 1) + β(−1,−2) ∈ L ⇐⇒ α =
−T

11
, β =

5T

11
∈ Z ⇐⇒ T ∈ (11).

In consequence, this graph admits exactly four MDDs: the L-shape one given
in the introduction and the three shown in Figure 3.1. However, only two of them
have an “L” shape. These correspond with the only two graded monomial orderings
in K[X,Y ].

In accordance with the previous discussion, a well-ordering in Nr compatible with
the norm �1 determines a unique MDD. Then, fixing a graded monomial ordering ≺,
the obtained MDD is

(3.2)
D : Γ −→ Nr

c �→ min(R−1(c)).

For each graded monomial ordering we can associate the bijective map p : N −→ Nr,
such that n < m ⇒ p(n) ≺ p(m), that is, satisfying

p(i) = min (Nr\{p(j) | j < i}) .

This map provides a method of constructing the MDD with respect to a fixed mono-
mial ordering. The procedure visits (through p) the elements in Nr corresponding
with vertices (elements in Γ) until all of them are completed.
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Algorithm 3.1: MDD construction.
Input: Γ = {ci | 0 ≤ i < N}, abelian group, {s1, . . . , sr}, generating set; s.
Output: D(ci), i = 0, . . . , N − 1.
D[c0, . . . , cN−1] := ∅̄, S := 0, a := 0;1

while S < N do2

c := R(a);3

if D(c) = ∅ then4

D(c) := a;5

S := S + 1;6

end7

a := s(a);8

end9

We include in the MDD building method’s input the mapping s, such that

s : Nr −→ Nr

a �→ p(p−1(a) + 1),

a ≺ s(a), (a ≺ b ⇒ s(a) � b).

Of course, computing the whole diagram D[0, . . . , N − 1] of a circulant cannot be
computationally efficient, its size being exponential in the input size. Furthermore,
Algorithm 3.1 performs an exhaustive search that can last at most for

(
d+r
d

)
loops

until reaching its ending, where d is the graph’s diameter. When r � d, that bound
is approximately 1

r!d
r. The examples in Figure 3.2 illustrate the algorithm’s output.

Definition 3.2. Let Γ be a finite abelian group and (Γ, S) an associated connected
digraph. Let ≺ be a graded monomial ordering. The monomial ideal

IS := (Nr\D(Γ))

is the ideal associated with the graph (Γ, S) and the monomial ordering ≺.
In the examples of Figure 3.2 we have two monomial ideals (J1 and J2) associated

with C104(1, 5, 31) and with graded lex x ≺ y ≺ z and x ≺ z ≺ y, respectively:

J1 = (x5, xy6, y7, y3z3, z4, xy2z3) = (x5, y2, z4) ∩ (x5, y6, z3) ∩ (x, y7, z3) ∩ (x, y3, z4),

J2 = (x5, y4, y3z3, z7, xy2z3) = (x5, y2, z7) ∩ (x5, y4, z3) ∩ (x, y3, z7).

Proposition 3.3. With the above notation, we have that Nr\D(Γ) is an ideal of
the semigroup Nr.

Proof. Let a be an element in the ideal generated by Nr\D(Γ). Then ∃b ∈ Nr,
∃z ∈ Nr\D(Γ) such that a = b+z. Now, z �∈ D(Γ). Then ∃u ∈ Nr, with R(u) = R(z),
u ≺ z. Since u+b ≺ z+b and R is a linear map, R(u+b) = R(a) and a �∈ D(Γ).

Obviously, D is an injective map and #
(
D(Γ)

)
= #Γ < ∞. So, the monomial

ideal IS always contains generators of the form Xa1
1 , . . . , Xar

r ; that is, the quotient
ring K[X1 . . . , Xr]/IS is artinian (see Theorem 2.2). We say that an MDD built from a
graded monomial ordering is degenerated if IS is an irreducible ideal, that is, when the
minimal system of generators of IS contains only as many generators as the cardinal
of S. In general, it is not the case as illustrated in the above examples. The paper [32]
constructed MDDs in L-shape from circulant digraphs of degree two (i.e., r = 2). The
following concept is the generalization of L-shapes to arbitrary dimension.
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Fig. 3.2. MDD of C104(1, 5, 31).

Definition 3.4. Let I be a monomial ideal and let A be the minimal system
of generators of I. We say that I is an L-shape if there exists at most one element
xa = Xa1

1 · · ·Xar
r ∈ A such that ai > 0 ∀i = 1, . . . , r.

We say that an MDD built following Algorithm 3.1 is an L-shape if the associated
monomial ideal is an L-shape.

In the examples of Figure 3.2 the generator involving every variable is xy2z3. We
will prove that any MDD built with Algorithm 3.1 is an L-shape. First we need the
following technical result.

Lemma 3.5. Let A be the minimal system of generators of IS. If the exponent
of xa ∈ A has some component ai positive, then b = (b1, . . . , br) := D(R(a)) satisfies
bi = 0.

Proof. Since a is an element of A, then a �∈ D(Γ). We must have a − ei ∈ D(Γ),
because otherwise a would not be a minimal generator. Now, b ≺ a and R(b) = R(a).
If we suppose bi > 0, then

R(b − ei) = R(a − ei), b − ei ≺ a − ei,

which contradicts a − ei ∈ D(Γ).

Now, we state the main result in this section.

Proposition 3.6. The output of Algorithm 3.1 is an L-shape.

Proof. Let A be the minimal system of generators of IS . If a ∈ A is such that
ai > 0 ∀i, then by Lemma 3.5 we have R(a) = R(0) = 0Γ.

Moreover, a − e1 ∈ D(Γ), and R(a − e1) = −s1. So, if a ∈ A and b ∈ A are two
generators with every component positive, then a − e1 = D(−s1) = b − e1. That
completes the proof.

Now, the problem is to find the list of generators describing the ideal associated to
a circulant digraph in a convenient way. The following section answers this question.
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4. Lattice ideals and L-shapes. In this section we study the initial ideal of
the lattice defined by the kernel of the extended routing map R̄ and the monomial
ideal associated to a circulant graph.

An integral lattice L of Zr is the set of integer linear combinations of some integral
vectors; in other words, an integral lattice is a Z-submodule of Zr. This object has
been used to solve many problems in mathematics and computer science (see, for
instance, [4, 16, 24, 26]).

For any integral lattice L ⊂ Zr there is an associated binomial ideal (see [10, 31]):

IL := (xa+ − xa− | a ∈ L) ⊆ K[X1, . . . , Xr],

where a+ and a− are the positive and negative parts of vector a, that is, the unique
vectors with no negative component and such that a = a+ − a−.

The interesting articles [10, 31] study the combinatorics, geometry, and complex-
ity of Gröbner bases for the ideals IL. In particular, they show that

(4.1) xa − xb ∈ IL ⇐⇒ a − b ∈ L.

Given a Cayley digraph (Γ, S = {s1, . . . , sr}) associated to a finite abelian group,
we can extend the routing map R defined in (3.1) from Nr to Zr:

R̄ : Zr −→ Γ
a �→ a1s1 + · · · + arsr.

The kernel LS of the map R̄, i.e.,

LS := {(a1, . . . , ar) ∈ Zr | a1s1 + · · · + arsr = 0Γ},

is the lattice associated to (Γ, {s1, . . . , sr}).
Given an integral lattice L and a monomial ordering ≺, for every nonzero binomial

xa − xb ∈ IL, the leading or initial monomial with respect to ≺ is given by

LM(xa − xb) :=

{
xa if xa � xb,
xb otherwise.

As usual, given a polynomial ideal J in K[X1, . . . , Xr] we denote by LM(J) the
monomial ideal generated by the leading monomials of all nonzero elements of J ,
that is,

LM(J) := (LM(f) | f ∈ J∗).

The following is one of the main results in this section.
Proposition 4.1. For every graded monomial ordering ≺, we have that

LM(ILS
) = IS .

Proof. The ideal ILS
is generated by binomials of the form xa − xb. Then it has

a Gröbner basis G also consisting of that kind of binomial. Let xa be a monomial in
LM(ILS

). There exists a binomial xa − xb in the basis G, and by (4.1), a − b ∈ LS .
Now, since a � b and both paths have the same image by R, then a �∈ D(ZN ).
Conversely, let xa ∈ IS . We take b := D(R(a)) ≺ a. It is clear that a − b ∈ LS , and
so xa − xb is a binomial in ILS

, whose leading monomial is xa.
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Gröbner bases were introduced by Buchberger in his thesis [6] and their use has
become widespread in commutative algebra and algebraic geometry. The theory of
Gröbner bases is related to several areas in mathematics and computer science; see,
for instance, [2, 17, 30]. As a consequence of the previous result we have that if G is
a minimal or reduced Gröbner basis of the ideal ILS

, then the leading monomials of
the elements of G constitute a minimal system of generators of our MDD. In order
to apply Buchberger’s algorithm for computing a finite Gröbner basis of an ideal, we
need to start with a finite set of generators. In this sense, we must point out that every
generating set of binomials for ILS

corresponds to a generating set of LS (see (4.1)),
but the converse is not true. Lemma 2.1 of [31] provides a sufficient condition for this
converse result to be true.

Proposition 4.2. Let CN (j1, . . . , jr) be a connected circulant graph with asso-

ciated lattice L. We have IL = (XN
1 XN

2 · · ·XN
r − 1, xa+ − xa− | a ∈ U), where

U := {(Nα1, . . . , Nαr), (α1j1 − 1, α2j2, . . . , αrjr), (α1j1, α2j2 − 1, . . . , αrjr), . . . ,

(α1j1, . . . , αr−1jr−1, αrjr − 1)},

and β, αi ∈ Z, (i = 1, . . . , r), satisfying 1 = α1j1 + · · · + αrjr + βN .
Proof. The proof follows from [31, Lemma 2.1] and a simple linear algebra

exercise.
Using Propositions 4.1 and 4.2 we can compute a minimal system of generators

of IS for circulant digraphs. The paper [31] also contains results on the complexity of
computing the reduced Gröbner basis of lattice ideals and on its size. In particular, it
provides an upper bound for the number of elements and shows an example lattice L
with exponential size in the bit complexity of a basis of L. Nevertheless, we must cite
program 4ti2, which is extremely efficient in computing the reduced Gröbner basis of
binomials ideals. That software is available at http://www.4ti2.de; see [18].

5. Optimal routing. In this section we show an algorithm for computing a
shortest path between two vertices for any Cayley digraph with a finite abelian group
as vertex set using a finite Gröbner basis of ILS

.
Message routing is a basic function in communication networks. The problem is

to find a route along which messages should be sent. The routing algorithm dictates
token passing strategies in communication networks.

Given a pair of nodes (t, s) in a graph, there are several paths which join the
origin t and the destination s. We are interested in optimal paths, i.e., those with
minimum length. For general graphs, finding a shortest path between two vertices
is a well-known and important problem. Efficient polynomial time algorithms have
been developed for various routing problems. However, for the family of circulant
graphs, there is an important distinction to be made, and that concerns the natural
input size to a problem. For an arbitrary graph it is common to consider the input
size to be O(N2), which is the number of bits in its adjacency matrix. However,
any circulant graph can be described by only r integers. In this representation the
input size is O(r logN). Thus, polynomial time algorithms for general graphs may
exhibit exponential complexity in the special case of circulant graphs for this compact
input representation. In [7] it is shown that the shortest path problem is NP-hard
for this concise representation. The paper [15] presents very efficient algorithms for
computing a shortest path for circulants with two jumps.

As we have already pointed out, in our case the routing problem is reduced to
pairs of nodes (0Γ, j) where the starting point is fixed. Using the well-known extended
Euclidean algorithm we compute a path c from vertex 0Γ to vertex j if it exists.
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We can apply the general integer programming techniques (see [29]) to find a
shortest path for circulant digraphs as follows.

Lemma 5.1. Any shortest path from 0 to j in CN (j1, j2, . . . , jr) is a solu-
tion to the following integer program: min{d · x|Ax ≥ b,x ∈ Zr+1}, where x =
(x1, x2, . . . , xr, y) ∈ Zr+1, d = (1, 1, . . . , 1, 0) ∈ Zr+1, b = (j,−j, 0, . . . , 0) ∈ Zr+2,
and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

j1 j2 . . . jr N
−j1 −j2 . . . −jr −N
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z(r+2)×(r+1),

and conversely.
So, with the number of jumps r fixed, we can derive an algorithm to compute a

shortest path in circulant digraphs requiring O(r + log r logN) arithmetic operations
on rational numbers of size O(logN); see [11, 15, 22, 23].

The main result of this section is the following.
Proposition 5.2. Let G be a Gröbner basis of the ideal ILS

with respect to any
graded monomial ordering ≺, and let c be a path (not necessarily a shortest one) in
R−1(j). Then the normal form of xc − 1 with respect to G is xd − 1, where d is the
shortest path from vertex 0Γ to vertex j with respect to the monomial ordering ≺.

Proof. We have c − d ∈ IL, which implies (xc − 1) − (xd − 1) ∈ ILS
. Clearly,

xd − 1 is a normal form, because xd �∈ IS .
This result provides a convenient algorithm to compute a shortest path and then

to design optimal routings.

6. An algorithm of MDD for triple-loop computer networks. In this
section we provide an algorithm specifically tailored for computing the minimal system
of generators for a triple-loop computer network, which requires O(s logN) arithmetic
operations, where s is the number of generators of the minimal system.

The case of degree two circulants is very simple. We always have two generators
of the form xa, yb, and there are two possibilities: there is one other generator xcyd

(c < a, d < b) or those two are the only generators (irreducible ideal case). We can
obtain this representation in an efficient way, for instance, using the algorithm in [8].

We present Algorithm 6.1 to compute the minimal generators of the ideal IS asso-
ciated to a circulant digraph of degree three. Once we have fixed a graded monomial
ordering, we need as an intermediate step a procedure to decide, given a path b,
whether or not it lies in the MDD. For b ∈ N3, we define the Boolean function P (b)
to be the truth value of D(R(b)) = b.

Algorithm 6.1 works by computing, one by one, every generator in the ideal’s
minimal system. For each generator we use one or two binary searches. So, its
complexity is O(s logN) steps, where s is the number of generators. In the worst
case, an upper bound for s is 2N +1; see [31]. In practice, most of the time consumed
in each step is used calling up the boolean function P , which will be proved to be
computable in polynomial time.

Proposition 6.1. Algorithm 6.1 is correct.
Proof. By Theorem 2.2, among the generators of IS are monomials of the form xa,

yb, and zc. These are computed in lines 2–14 (part I). Lines 15–44 (part II) find every
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Algorithm 6.1: MDD description. The three jumps case. (I)

Input: j1, j2, j3, N ∈ N, gcd(j1, j2, j3, N) = 1, P .
Output: a1, . . . ,as ∈ N3 | (xa1 , . . . ,xas) = (N3\D(ZN )); ai �≤ aj if i �= j.
k := 1;1

for i = 1, 2, 3 do2

m := 0, M := N.;3

while M −m > 1 do4

l :=

⌊
m + M

2

⌋
;

5

if P (lei) then6

m := l;7

else8

M := l;9

end10

end11

ak := Mei;12

k := k + 1;13

end14

generator involving two variables, and lines 45–54 (part III) work for the (possibly
missing) generator with all three variables.

The key fact is that if (a, 0, 0) is one of the generators we are looking for in the
first part, then for any l ∈ N, P (l, 0, 0) ⇐⇒ l < a. We can perform a binary search
to obtain the three generators.

In the second part, we start with generators involving the first two variables,
continue with the one without the y, and so on. For instance, for the first case,
we look at the generator (0, a, 0) found in the previous step. Then if (q, ∗, 0) is the
generator with lowest first component involving the first two variables, we can use
P (l, a − 1, 0) ⇐⇒ l < q to find q by a binary search. Once this is done, we fix the
generator’s second component ∗, aided by P (q, l, 0) ⇐⇒ l < ∗. In a similar way, we
continue to discover all the generators in this form.

Finally, there is only one generator possibly missing, which must satisfy R(b) = 0.
So, steps 45–47 find a candidate. This possible generator is checked for possible
irredundancy in the remaining lines.

To finish the method, we need a way to decide P (b). In fact, we can use integer
programming to solve the problem of finding a shortest path; see Lemma 5.1.

However, we need to find the minimum element according to the ordering ≺. We
can follow Algorithm 6.2, which takes as input a matrix A to represent the monomial
ordering (see [2]) in this way:

x ≺ y ⇐⇒ Ax <
lex

Ay.

We represent the matrix rows with subindices: A1, . . . , Am. Then we obtain
Algorithm 6.2.

Proposition 6.2. Algorithm 6.2 is correct.

Proof. Steps 1–6 are clear. The only trouble arises when the vector that we
get as result of the integer programming–type search c has the same �1-norm as b,
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Algorithm 6.1: MDD description. The three jumps case. (II)

for i = {(1, 2), (1, 3), (2, 3)} do15

T := ai[2][i[2]] − 1;16

Q := 0;17

repeat18

m := Q, M := ai[1][i[1]];19

while M −m > 1 do20

l :=

⌊
m + M

2

⌋
;

21

if P (lei[1] + Tei[2]) then22

m := l;23

else24

M := l;25

end26

end27

Q := M ;28

if Q < ai[1][i[1]] then29

m := 0, M := T ;30

while M −m > 1 do31

l :=

⌊
m + M

2

⌋
;

32

if P (Qei[1] + lej[2]) then33

m := l;34

else35

M := l;36

end37

end38

ak := Qei[1] + lei[2];39

k := k + 1;40

T := l − 1;41

end42

until Q = ai[1][i[1]] ;43

end44

Algorithm 6.1: MDD description. The three jumps case. (III)

c := N − j1 mod N ;45

b := D(c);46

b[1] := b[1] + 1;47

for i = 1, . . . , k − 1 do48

if ai ≤ b then49

k := k − 1;50

STOP;51

end52

ak := b;53

end54
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Algorithm 6.2: Deciding if a given path lies in an MDD.

Input: j1, . . . , jr, N ∈ N, gcd(j1, . . . , jr, N) = 1, A ∈ Rm×r, b ∈ Nr.
Output: Boolean value P (b) := (b = D(R(b))).
Execute an integer programming–type algorithm to get c, an element with1

minimum �1-norm in R−1(R(b));
if ‖c‖1 < ‖b‖1 then2

OUTPUT false;3

else4

if c ≺ b then5

OUTPUT false;6

else7

Compute a basis for the lattice8

L := {c ∈ Nr | < c, (j1, . . . , jr) >= 0, < c, (1, . . . , 1) >= 0};
for i = 1, . . . ,m do9

Set ∗ = (< Ai,b > −(min A)/2);10

Set the boolean value α, depending on whether there is a point in11

the set (b + L) ∩ Nr ∩ {c ∈ Nr | < c, A1 >=< b, A1 >, . . . , <
c, Ai−1 >=< b, Ai−1 >,< c, Ai >≤ ∗};
if α then12

OUTPUT false;13

end14

end15

OUTPUT true;16

end17

end18

and b � c. In this case, we have to decide whether there is another vector d ∈ Nr,
satisfying

‖d‖1 = ‖b‖1 = ‖c‖1, d ≺ b.

Obviously, if such a vector d does exist, it lies in the set (b + L) ∩ Nr. So, we check
in steps 9–14 if there is another path c such that Ac <

lex
Ab.

7. Diameter and average minimum distance. Two notable parameters in a
digraph are the diameter and the average minimum distance. The former represents
the worst delay in the communication between two nodes, and the latter represents
the average delay. In this section we show formulae to compute those parameters in a
circulant digraph given by the irredundant irreducible decomposition of the monomial
ideal IS .

7.1. Diameter. Given an MDD of a digraph (Γ, S), it is easy to obtain the
diameter

d = max{‖a‖1 | a ∈ D(Γ)}.
The description of the monomial ideal IS in terms of its irreducible components per-
mits a simplification.

Proposition 7.1. Let mb1 ∩ · · · ∩mbn be the irredundant irreducible decomposi-
tion of the ideal IS. Then

d = max{‖bi‖1 − r | i = 1, . . . , r}.
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Proof. If we define the corners of IS as

E(D) := {a ∈ D(Γ) | a + ei �∈ D(Γ) ∀i = 1, . . . , r},

then it is clear that d = max{‖a‖1 | a ∈ E(D)}. We will prove that {a + 1 | a ∈
E(D)} = {b1, . . . ,bn}.

Let i ∈ {1, . . . , n}. By Theorem 2.2, we have bi ≥ 1. Let us check that a :=
bi − 1 ∈ E(D). If xa ∈ IS , we would have xa ∈ mbi ⇒ ∃j ∈ {1, . . . , r} | aj ≥
bij = aj + 1. So, xa �∈ IS . Further, if ∃j ∈ {1, . . . , r} such that xa+ej �∈ IS , then
∃k ∈ {1, . . . , n}, k �= i | xa+ej �∈ mbk ⇒ a + ej � bk ⇒ bi ≤ bk ⇒ mbk ⊆ mbi . So,
xa+ej ∈ IS and a ∈ E(D).

On the other hand, let a ∈ E(D). First we will see that IS ⊆ ma+1. Suppose
that xu ∈ IS\ma+1. Then a + 1 > u ⇒ a ≥ u. Since xu ∈ IS , then xa ∈ IS ; this is a
contradiction because a ∈ E(D). If ma+1 were not an irreducible component in the
decomposition of IS , it would be satisfied:

∃j ∈ {1, . . . , n} | m
bj � m

a+1 ⇒
{

a + 1 ≤ bj

a + 1 �= bj

}
⇒ ∃i ∈ {1, . . . , r} | xa+ei ∈ D(Γ).

7.2. Average minimum distance. Again, given an MDD of a digraph, it is
easy to obtain the average minimum distance. Let N be the number of nodes.

d̄ =

∑
c∈Γ ‖D(c)‖1

N
=

∑
xu �∈IS

‖u‖1

N
.

The following result provides a formula for computing d̄ in digraphs with a degener-
ated MDD.

Lemma 7.2. Let IS = ma+1 = mb. Then

∑
xu �∈IS

‖u‖1 =
b1 · · · br

2
(b1 + · · · + br − r) =

a1 + · · · + ar
2

r∏
i=1

(ai + 1).

Proof. By Proposition 7.1, we have

d = ‖b‖1 − r = ‖a‖1.

On the other hand,

u = (u1, . . . , ur) ∈ D(Γ) ⇐⇒ ∀i ∈ {1, . . . , r}, ui < bi.

We define the following relation in D(Γ): (u1, . . . , ur) ≡ (a1−u1, . . . , ar−ur). So,
every equivalence class contains two elements (whose degrees add up to ‖a‖1) or only
one. This last happens if and only if ∀i ∈ {1, . . . , r}, ui = ai − ui ⇒ 2‖u‖1 = ‖a‖1.
We can state the following:

∑
xu �∈I

‖u‖1 =
N

2
d,

and the proof is complete.
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Note 7.3. In the above case, that is, when IS is an irreducible ideal, we have
d̄ = d/2.

To discuss the general case we introduce some new notation. Let mb1 ∩ · · · ∩mbn

be the irreducible decomposition of the monomial ideal IS ; so we define

dΔ := exponent
(
gcd(xbi | i ∈ Δ)

)
∀Δ ⊆ {1, . . . , n}, Δ �= ∅.

σ(u) :=
u1 · · ·ur

2
(u1 + · · · + ur − r).

Our next goal is to find a formula for the average minimum distance. We will apply
the general inclusion-exclusion principle as follows.

Proposition 7.4. Let mb1 ∩ · · · ∩ mbn be the irreducible decomposition of the
ideal IS. We have ∑

xu �∈IS

‖u‖1 =
∑

∅�Δ⊆{1,...,n}
(−1)#Δ+1σ(dΔ).

Proof. Applying Lemma 7.2, we obtain∑
∅�Δ⊆{1,...,n}

(−1)#Δ+1σ(dΔ) =
∑
Δ

(−1)#Δ+1
∑

xu �∈mbi ∀i∈Δ

‖u‖1.

If xu �∈ IS , that is, if ∃i ∈ {1, . . . , n} | xu �∈ mbi , then the above sum includes ‖u‖1

exactly once, as seen in the following equation, where j = #{j ∈ 1, . . . , n} |xu �∈ mbi :(
j

1

)
−
(
j

2

)
+ · · · + (−1)j+1

(
j

j

)
= 1.

This completes the proof.
Considering the ideal I1 = (x4, x2y2, y3) from Example 2.1, the sum of the degrees

of the monomials outside this ideal is (see Figure 7.1)∑
xu �∈I1

‖u‖1 = σ(2, 3) + σ(4, 2) − σ(2, 2) = 9 + 16 − 4 = 21.

The several results introduced in section 2 permit a strong reduction in the number
of sum terms we need to consider in the expression of Proposition 7.4. For instance,
if we consider Example 2.3, Proposition 7.4 solves (see Figure 7.2)∑
xu �∈I

‖u‖1 = σ(8, 2, 1) + σ(7, 2, 4) + σ(3, 3, 5) + σ(4, 3, 2) + σ(4, 5, 1)

− [σ(7, 2, 1) + σ(3, 2, 1) + σ(4, 2, 1) + σ(4, 2, 1) + σ(3, 2, 4)

+ σ(4, 2, 2) + σ(4, 2, 1) + σ(3, 3, 2) + σ(3, 3, 1) + σ(4, 3, 1)]

+ σ(3, 2, 1) + σ(4, 2, 1) + σ(4, 2, 1) + σ(3, 2, 1) + σ(3, 2, 1)

+ σ(4, 2, 1) + σ(3, 2, 2) + σ(3, 2, 1) + σ(4, 2, 1) + σ(3, 3, 1)

− [σ(3, 2, 1) + σ(3, 2, 1) + σ(4, 2, 1) + σ(3, 2, 1) + σ(3, 2, 1)] + σ(3, 2, 1)

= σ(8, 2, 1) + σ(7, 2, 4) + σ(3, 3, 5) + σ(4, 3, 2) + σ(4, 5, 1)

− [σ(7, 2, 1) + σ(3, 2, 4) + σ(4, 2, 2) + σ(3, 3, 2) + σ(4, 3, 1)]

+ s(3, 2, 2) = 454.
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Fig. 7.2.

Clearly, if b ∈ Nr has a zero coordinate, then σ(b) = 0. This fact produces several
cancellations in the formula of Proposition 7.4. We end up with a sum of the simplex
labels, affected with the sign: + for faces, − for edges, and + for nodes.

In Cayley digraphs of degree two the associated monomial ideal has only one
or two irreducible components (see Proposition 3.6). Then the computation of the
average minimum distance is immediate. For digraphs of degree three we can follow
this strategy:

• Construct the Miller–Sturmfels graph G as in the previous examples such
that each irreducible component corresponds with the least common multiple
of some generators of the minimal system.

• Let E be the set of all edges, F the set of faces, and N the set of vertices
of G:

d̄ =
1

N

(∑
e∈F

σ(e) −
∑
e∈E

σ(e) +
∑
e∈N

σ(e)

)
.
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8. Degenerated L-shapes. We recall that an MDD is degenerated if the asso-
ciated monomial ideal is irreducible, that is, of the form

(
Xα1

1 , . . . , Xαr
r

)
. In general,

the family of graphs having this property does not have optimal properties according
to the ratio nodes/diameter. In this section we present families of circulant digraphs
having a degenerated MDD and with a relatively small diameter.

Proposition 8.1. Let a, s, k be natural numbers such that gcd(a, s) = 1 and
a < s. The monomial ideal associated with Csk(a, s) is IS = (xs, yk) for any monomial
ordering.

Proof. Since K[x, y]/IS is an artinian ring (see Theorem 2.2), the minimal system
of generators of IS contains monomials of the form xα, yβ . We claim that β = k.
In order to prove it, we note that D(si) = (0, i) ∀i = 0, . . . , k − 1. In fact, let
i ∈ {0, . . . , k− 1} and suppose that ∃(u, v) ∈ N2, | u+ v ≤ i with R(u, v) = si. Then

si ≡sk au + sv ⇒ ∃h ∈ N / si = au + sv + hsk ⇒ s|au ⇒ s|u

⇒

⎧⎨
⎩

u = 0
∨
∃t ∈ N∗ / u = st.

In the first case, we have

i = v + kh ≤ k − 1 ⇒ h = 0 ⇒ v = i.

In the second,

i = at + v + kh ≤ k − 1 ⇒ h = 0, i = at + v ≥ u + v ⇒ at ≥ u,

but this a contradiction because a < s. So, β ≥ k. On the other hand, D(0, k) = 0 =
D(0, 0) implies β = k. Finally, suppose that (see Figure 8.1)

IS = (xα, xγyδ, yk), γ < α, δ < k, R(γ, δ) = R(0, k) = 0.

Thus,

R(γ, k) = R(γ, δ) + R(0, k − δ) = R(0, k − δ),

R(γ, k) = R(γ, 0) + R(0, k) = R(γ, 0).

Therefore, one of the two vectors (0, k − δ), (γ, 0) should be in IS , but this is false.
Consequently, IS is degenerated and

sk = dim (K[x,y]/(xα,yk)) = αk ⇒ s = α.

The following example shows that we cannot omit from the above result hypothe-
ses the requirement a < s.

Example 8.2. The monomial ideal IS associated with C60(7, 6) and any graded
monomial ordering in K[x, y] is not degenerated: IS = (x12, x6y3, y7).

Using the Gröbner bases theory and previous results we can generalize Proposi-
tion 8.1 from two jumps to an arbitrary number of them.

Proposition 8.3. Let α1, . . . , αr be positive integers, neither of them equal to
one. Setting N := α1 · · ·αr, the circulant digraph CN (1, α1, α1α2, . . . , α1 · · ·αr−1)



CAYLEY DIGRAPHS AND MONOMIAL IDEALS 781

)

(α, 0)

(γ, δ)

(γ, k)

)

k0,(

(0,0

Fig. 8.1.

is associated to the—incidentally, irreducible—monomial ideal (Xα1
1 , . . . , Xαr

r ), with
any graded monomial ordering. The Gröbner basis of the associated binomial ideal is
{Xαi

i −Xi+1 | i = 1, . . . , r − 1} ∪ {Xαr
r − 1}.

Proof. First of all, every element of the proposed basis lies in the binomial ideal.
This is because their associated lattice points,

{(0, . . . ,
i
�
αi,−1, . . . , 0) | i = 1, . . . , r − 1} ∪ {(0, . . . , 0, αr)},

are paths for node 0. Then the initial ideal of this lattice ideal must contain the
following one:

(Xα1
1 , . . . , Xαr

r ) ⊆ IS .

We know that the dimension of the quotient vector space K[x]/IS equals the number
of nodes N = α1 · · ·αr. Moreover, the dimension of K[x]/(Xαi

i | i = 1, . . . , r) is N , so
both ideals must coincide. In order to obtain a reduced Gröbner basis, we must have
one binomial for each generator in the initial ideal. That is, the reduced Gröbner
basis is

{Xαi
i −mi(x) | i = 1, . . . , r},

where mi is a monomial satisfying mi �∈ (Xα1
1 , . . . , Xαr

r ). Then mi = xa, with ai <
αi, i = 1, . . . , r. Set Xr+1 := 1. Then (Xαi

i −Xi+1)−(Xαi
i −mi) = mi−Xi+1 belongs

to the ideal. If mi �= Xi+1, we would have αi+1 = 1, which is a contradiction.
The following result is an immediate consequence.
Corollary 8.4. Let d, r be two positive integers. Let k be the residue class of d

modulo r. Then, if we fix

α1 = · · · = αk =
d− k

r
+ 2, αk+1 = · · · = αr =

d− k

r
+ 1,

the following is a directed circulant graph with r jumps, N := α1 · · ·αr nodes, and
diameter d:

CN (1, α1, α1α2, . . . , α1 · · ·αr−1).

We note that the number of vertices is

N =

(
d− k

r
+ 2

)k (
d− k

r
+ 1

)r−k

.
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Fig. 8.2. Family of circulant digraphs.

Once r is fixed, increasing the diameter d makes the number of nodes in this graph
family increase as O(dr).

Proposition 8.1 provides a family with diameter 2
√
N − 2 and average minimum

distance
√
N − 1. Let d > 1 be a natural number:

C( d+2
2 )

2

(
1,

d + 2

2

)
if d ≡ 0 mod 2 and C (d+1)(d+3)

4

(
1,

d + 1

2

)
if d ≡ 1 mod 2.

Basically, this family was discovered in the paper [32]. However, determining d2(N)
and finding the optimal CN (j1, j2) is an open problem.

In the case of undirected circulant graphs of degree four, i.e., CN (j1,−j1, j2,−j2),
several papers have shown that the lower bound 1

2

(√
2N − 1 − 1

)
can be achieved by

taking j1 = 1
2

(√
2N − 1 − 1

)
and j2 = 1

2

(√
2N − 1 − 1

)
+ 1; see the survey [3]. In

the middle, that is, between circulant digraphs of degree two and circulant graphs of
degree four, Proposition 8.3 and the above corollary provide a very attractive family
of circulant graph of degree three; see Figure 8.2. Let d > 2 be a natural number:

C( d+3
3 )

3

(
1,

d + 3

3
,

(
d + 3

3

)2
)

if d ≡ 0 mod 3,

C (d+2)2(d+5)
27

(
1,

d + 2

3
,

(
d + 2

3

)2
)

if d ≡ 1 mod 3,

C (d+4)2(d+1)
27

(
1,

d + 4

3
,

(
d + 4

3

)2
)

if d ≡ 2 mod 3.

Graphs in this family have diameter d and average minimum distance d/2.

9. Conclusions. In this paper we have proposed monomial ideals as a natural
tool for studying Cayley digraphs with a finite abelian group as vertex set. We have
generalized the L-shape concept in the plane to L-shape in the r-dimensional affine
space. We think that this new point of view may shed light on problems in multiloop
computer networks. We also have introduced the Gröbner bases theory in this context,
which seems very useful. Many interesting questions remain unsolved. We would like
to provide fault tolerance routing algorithms. From a more practical point of view,
it would be interesting to investigate the implementation in computer networks of
the family of circulant graphs of degree three under parameters such as routing, fault
tolerance, etc.
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