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Abstract. In this paper we present an heuristic algorithm and its im-
plementation in C++ program for integer factoring with high-order bits
known based on lattice reduction techniques. Our approach is inspired
in algorithms for predicting pseudorandom numbers.

1 Introduction

Many very well known and important cryptographic protocols are based on
the assumption that factoring large composite integers is computationally dif-
ficult. The most famous one is RSA cryptosystem, which is currently used in
a wide variety of products, platforms and industries around the world. RSA is
incorporated into all of the major protocols for secure Internet communications,
including S/MIME and S/WAN.

In this paper, we consider a number N which is product of two primes: P
and Q. We analyze the assumption that factoring is computationally difficult
when the cryptanalyst has access to extra information.

In cryptographic applications, the cryptanalyst may have available additional
information above and beyond the number N itself, see [17]. In practice, Alice or
Bob (one of them) typically knows P and Q already, and uses these factors im-
plicitly and/or explicitly during her/his cryptographic computations. The results
of these computations may become known to the cryptanalyst, who thereby may
find himself at an advantage compared to a pure factoring situation. The neces-
sary information and timing measurements may be obtained by passively eaves-
dropping on an interactive protocol. The Chinese Remainder Theorem (CRT)
is also often used to optimize RSA private key operations. With CRT, y mod P
and y mod Q are computed first (being y is the message to send). These initial
modular reduction steps can be vulnerable to timing attacks. The simplest such
attack is to choose values of y that are close to P or to Q, and then use timing
measurements to determine whether the guessed value is larger or smaller that
the actual value of P and Q.

So in practice, extra information may become available to the cryptanalyst,
for one of the following reasons:

– loss of the equipment that generated P and Q,
– explicit release of partial extra information as part of a protocol, for instance

exchange of secret,



– timing measurements,
– routine usage of P and Q to decrypt mail, sign messages, etc.,
– poor physical security to guard P and Q,
– any other heuristic attack . . .

Suppose that an attacker is able to find the high-order h bits of the smallest
prime P : can we recover P and Q in polynomial time in log N?

A directed application of this problem comes from paper [23]. Here, an
identity-based variant of RSA in which the user’s modulus N is related to his
identity is proposed. For example, the high-order bits of N may be the user’s
name encoded in ASCII. If N is generated in such a way, somewhat more than
the high order 1

4 log2 N bits of P are revealed to the public.
From now, given an integer number A, log A means log2 A and polynomial

time means polynomial in log N .
Regarding positive answers for this problem, we can mention the work by

Rivest and Shamir [22] using a special case of integer programming, which needs
about h = 1

3 log N bits of P . The paper [10] by Coppersmith used a lattice-based
method to factor N using h = 3

10 log N bits of P .
The king result is also due to Coppersmith [7–9] which requires only h =

1
4 log N bits of P and also uses lattice reduction techniques. We do not know
any efficient implementation of the algorithm, (see [16] for special polynomials),
which is quite involved.

In practice, if the number of bits from P is near the threshold 1
4 log N , the

size of intermediate steps grows. This is, less bits known imply more computing
time. The dimension of the lattice is big, as well as the size of lattice coefficients.
Finally, his method requires the resultant of two bivariate integer polynomials.
Others variants of Coppersmith’s approach are in [16, 11, 13].

In this paper we introduce some ideas to solve this important problem. Our
heuristic algorithm is based on the same approach used for predicting non-linear
pseudorandom numbers, see [3, 5]. In contrast to algorithm in [7–9]:

– it is asymptotically less efficient,
– it does not require to compute any resultant of integer bivariate polynomials,

but it requires to exclude a very small set of primes Q,
– it requires lower size lattice coefficients and smaller lattice dimension,
– it is easy to implement.

The remainder of the paper is structured as follows. We start with a short
outline of some basic facts about lattices in Section 2. In Section 3 we introduce
Coppersmith’s method (Subsection 3.2) and then we give the first approach in
Subsection 3.3. In Section 4 we comment details of the C++ implementation us-
ing the NTL (Number Theory Library) [21] and discuss the results of numerical
tests. Finally, the last section states a couple of short conclusions.

2 Background on Lattices

Here we collect several well-known facts about lattices which form the back-
ground to our algorithms.



We review several related results and definitions on lattices which can be
found in [4, 12]. For more details and more recent references, we also recommend
consulting [1, 14, 19, 20].

Let {b1, . . . , bs} be a set of linearly independent vectors in IRr. The set

L = {c1b1 + . . . + csbs, c1, . . . , cs ∈ ZZ}

is called an s-dimensional lattice with basis {b1, . . . , bs}. If s = r, the lattice L
is of full rank.

To each lattice L one can naturally associate its volume

vol(L) =
(
det (〈bi, bj〉)s

i,j=1

)1/2

,

where 〈a, b〉 denotes the inner product. This definition does not depend on the
choice of the basis {b1, . . . , bs}.

For a vector u, let ‖u‖ denote its Euclidean norm. The famous Minkowski
theorem gives the upper bound:

min {‖z‖ : z ∈ L \ {0}} ≤ s1/2vol(L)1/s (1)

on the shortest nonzero vector in any s-dimensional lattice L in terms of its
volume.

The Minkowski bound (1) motivates a natural question, named Shortest Vec-
tor Problem (SVP): how to find the shortest nonzero vector in a lattice. Unfor-
tunately, there are several indications that this problem is NP-hard when the
dimension grows. This study has suggested several definitions of a reduced basis
{b1, . . . , bs} for a lattice, trying to obtain a shortest vector by the first basis
element b1. The celebrated LLL algorithm of Lenstra, Lenstra and Lovász [18]
provides a concept of reduced basis and a desirable solution in practice.

Another related problem is the Closest Vector Problem, CVP: Given a lattice
L ⊆ IRr and a shift vector t ∈ IRr, the goal consists on finding a vector in the
set t +L with minimum norm. It is well-known that the CVP is NP-hard when
the dimension grows. An approximate polynomial time solution is presented in
[2].

However, both computational problems SVP and CVP are known to be solv-
able in deterministic polynomial time (polynomial in the bit-size of a basis of L)
provided that the dimension of L is fixed (see [15], for example). The lattices in
this paper are of fixed (and low) dimension.

The lattices employed in this paper consist of integer solutions x = (x0, . . . , xs−1) ∈
ZZs of a system of congruences

s−1∑
i=0

aijxi ≡ 0 mod qj , j = 1, . . . ,m,

modulo some integers q1, . . . , qm. Typically (although not always) the volume
of such a lattice is the product Q = q1 . . . qm. Moreover all the aforemen-
tioned algorithms, when applied to such a lattice, become polynomial in log Q.



If {b1, . . . , bs} is a basis of the above lattice, by the well-known Hadamard in-
equality we have:

s∏
i=1

‖bi‖ ≥ vol(L). (2)

3 Integer Factoring with high-order bits known

In this section we present an sketch of an algorithm for integer factoring with
high-order bits known.

3.1 Notation

Given a number N which is product of two primes P and Q, we suppose that
P < Q. Our results involve a parameter ∆ which measures how many high-
order bits of P are known. This parameter is assumed to vary independently of
P subject to satisfy the inequality ∆ < P .

More precisely, we say that an integer w is a ∆-approximation to the integer
u when |w − u| ≤ ∆.

So, in the case where the high-order h bits of the prime P are given, we
can build a ∆-approximation P0 to P , by taking the h high-order bits of P and
blog P c+ 1− h zeroes. In this case, ∆ = 2blog Pc+1−h − 1, that is,

P − P0 ≤ ∆ ∼=
P

2h
.

By dividing N into P0, we obtain a ∆1-approximation Q0 to Q:

|Q−Q0| ≤ ∆1
∼=

Q∆

P
.

Let ε0 = P − P0 and ε1 = Q−Q0. From N = PQ we obtain:

f(ε0, ε1) = 0,

where
f(ε0, ε1) = (P0 + ε0)(Q0 + ε1)−N.

And with
|ε0| ≤ ∆, |ε1| ≤ ∆1. (3)

The main objective is to find roots of this innocent polynomial f(ε0, ε1).
A big and important result for arbitrary bivariate and irreducible integer

polynomial is due to Coppersmith.



3.2 Coppersmith method

We start stating one of the main result in [8]:

Theorem 1 (Theorem 2-[8]). Let p(ε0, ε1) be an irreducible polynomial in two
variables over ZZ, of maximum degree δ in each variable separately. Let ∆, ∆1

be bounds on the desired solutions x0, y0. Define p∗(ε0, ε1) = p(ε0∆, ε1∆1) and
let W be the absolute value of the largest coefficient of p∗(ε0, ε1). If

∆∆1 ≤ W 2/(3δ)−ε2−14δ/3,

then in polynomial time in (log W, δ, 1/ε) we can find all integer pairs (x0, y0)
with p(x0, y0) = 0 bounded by |x0| ≤ ∆, |y0| ≤ ∆1.

In order to apply the above result to the problem of factoring an integer when
we know the high-order bits of one of the factors and according Coppersmith
[8, 9], we suppose that we know N = PQ and the high-order h = 1

4 log2 N bits
of P . We apply Theorem 2 to polynomial f(ε0, ε1) given by Equation (3.1) and
take:

|ε0| < P0N
−1/4 = ∆,

|ε1| < Q0N
−1/4 = ∆1,

δ = 1, W = N3/4.

As corollary it follows:

Theorem 2 (Theorem 4-[8]). In polynomial time we can find the factoriza-
tion of N = PQ if we know the high-order ( 1

4 log2 N) bits of P

The proof of this result is quite involved and uses lattice reduction techniques.
In one hand, the proof requires the calculation of the associated lattice volume.
The corresponding matrix has (k + δ)2 rows and (k + δ)2 + k2 columns, where
k is an integer satisfying

k >
2
3ε

.

Fixed the degree δ, a bound for the lattice dimension is O(k2).

Remark 1. Given h = ( 1
3 log2 N) bits of P we want to find the appropriate

integer k.
We know that ∆∆1 < W 2/(3δ)−ε2−14δ/3 and since W 3/4, we obtain

(
1
4

+
3
8
ε) log2 N < h =

1
3

log2 N.

Then ε < 2
9 . On the other hand, k > 2

3ε implies k > 3. So the lattice dimension
is bigger than 41.

In next subsection we present a new approach where for 1
3 log2 N bits of P

we need a lattice of dimension only 4.



3.3 One round lattice reduction

First of all, we remark that if P0 and Q0 are given as in Subsection 3.1, they are
unique, that is, if we know the high-order h bits of P and N is fixed, then P0 and
Q0 are uniquely determined. Now we present the main result in this subsection:

Theorem 3. For a prime P and natural numbers g and h, there is a set
V(P, g, h) ⊆ ZZP of cardinality #(V(P, g, h)) = O(22 log P+g−3h) with the fol-
lowing property. Given N = PQ and the high-order h bits of P , whenever
Q 6∈ V(P, g, h), there exists an algorithm recovering P and Q on determinis-
tic polynomial time, where g = blog Qc.

Proof. First, we will suppose the number of bits of the prime P is given, then we
know g. Let P0, Q0,∆1,∆ as in Subsection 3.1, where P0 is a ∆-approximation
to P and Q0 is a ∆1-approximation to Q. We can reformulate the theorem as
follows: there is a set V(∆, ∆1) ⊂ ZZP of cardinality #(V(∆, ∆1)) = O(∆2∆1)
with the following property. Whenever Q 6∈ V(∆, ∆1), there exists an algorithm
recovering P and Q on deterministic polynomial time.

The result is trivial when 4∆2∆1 ≥ P , and so we assume 4∆2∆1 < P .
The set V(∆, ∆1) of primes Q that we are going to exclude consists of values

Q satisfying the following congruence:

d1Q + E ≡ 0 mod P, (4)

where |d1| ≤ 4∆ and |E| ≤ 8∆∆1. Note that there are at most O(∆2∆1) choices
for d1 and E. Once these parameters are chosen, there can be at most one choice
for Q such that d1Q + E ≡ 0 mod P . Hence, #(V(∆, ∆1)) = O(∆2∆1).

Suppose that Q 6∈ V(∆, ∆1). An outline of our proof goes as follows. We aim
to show that the integers εj occur as certain components of a short vector in an
appropriate lattice; this lattice can be constructed from the information that we
are given. We find ε0 and ε1 by using well-known techniques for finding short
vectors in lattices, and then we use the equalities P = ε0 + P0 and Q = ε1 + Q0

to recover P and Q. We obtain

f(ε0, ε1) = 0.

More explicitly, the method is derived from the following construction.

A = P0Q0 −N, B = Q0∆,

C = P0∆1, D = ∆∆1,

then

A∆∆1 + B∆1ε0 + C∆ε1 + Dε0ε1 = 0. (5)



Therefore, the lattice L consisting of integer solutions x = (x0, x1, x2, x3) ∈ ZZ4

of the system of congruence equations:

Ax0 + Bx1 + Cx2 + Dx3 = 0,
x0 ≡ 0 mod ∆∆1,

x1 ≡ 0 mod ∆1,

x2 ≡ 0 mod ∆,

(6)

contains the vector

e = (∆∆1e0,∆1e1,∆e2, e3) = (∆∆1,∆1ε0,∆ε1, ε0ε1). (7)

We aim to show that e is a small vector in the lattice L. We have:

e0 = 1, |e1| ≤ ∆ |e2| ≤ ∆1, |e3| ≤ ∆∆1.

Using the bounds given in Equation (3), the Euclidean norm of e satisfies the
inequality

‖e‖ ≤
√

∆2∆2
1 + ∆2∆2

1 + ∆2∆2
1 + ∆2∆2

1 = 2∆∆1. (8)

Assume there is another vector f = (∆∆1f0,∆1f1,∆f2, f3) ∈ L with

‖f‖ ≤ ‖e‖ ≤ 2∆∆1.

which is not parallel to e, in particular:

|f0| ≤ 2, |f1| ≤ 2∆ |f2| ≤ 2∆1, |f3| ≤ 2∆∆1. (9)

We define the vector d = f0e − e0f . The first component of the vector d
is zero, and d lies in the lattice L. Then, the first congruence in Equation (6)
implies that

B∆1d1 + C∆d2 + Dd3 = 0.

Simplifying the above equation:

Q0d1 + P0d2 + d3 = 0, (10)

where di = eif0−fi. Note that |di| ≤ 2|ei|+ |fi| for i = 1, 2, 3 and so our bounds
on ei and fi imply

|d1| < 4∆, |d2| < 4∆1, |d3| < 4∆∆1. (11)

From Equation (10), if d1 = d2 = 0 then d3 = 0. But this implies d = 0 and
so f0e = e0f . This contradicts the fact that f and e are not parallel.

The case d1 = 0 6= d2 is easily avoided because the assumption 4∆2∆1 < p
implies p−∆ > 4∆∆1, and so, the resulting equation P0d2 + d3 = 0 cannot be
satisfied.



Making the substitutions P0 = P −ε0 and Q0 = Q−ε1 in Equation (10) and
reducing modulo P , we find that

Qd1 + d3 − ε0d2 − ε1d1 ≡ 0 mod P. (12)

Writing:
E = d3 − ε0d2 − ε1d1,

we obtain:

Qd1 + E ≡ 0 mod P. (13)

The bounds (11) imply |d1| ≤ 4∆ and |E| ≤ 8∆∆1. But then (13) implies
that Q ∈ V(∆, ∆1), and so we have a contradiction. This contradiction shows
that there exists no small vector f in L other than vectors parallel to e.

We remark that L is defined using information we are given, and recall that
the shortest vector problem can be solved in deterministic polynomial (in the
bit size of a given basis of the lattice) time in any fixed dimension, see [15]. This
certainly applies to the lattice L. Once we have found a short vector f in L, we
know that e = f/f0 since f is parallel to e and since e0 = 1. Obviously, given
the second component ∆1ε0 of e we can find P .

To finish the proof, remember that we have assumed to know the number
blog P c. If we do not have this information we can apply the above algorithm
from 1 to blog Nc. Obviously the time complexity keep polynomial on log N .
This completes the proof. ut

For practical application of this bound, we note that in most of the cases the
values P and Q are taken randomly, then the probability that Q lies in V(∆, ∆1)
is:

∆2∆1

P
=

∆3Q

P 2
. (14)

And this is less than one if:

∆3 <
P 2

Q
. (15)

In other words:
log N

3
=

log P + log Q

3
≤ h. (16)

If this inequality holds, then we can probably find the complete factorization by
this method. In fact this was the first bound obtained by Rivest and Shamir [22].
However, the present algorithm compare favorably computationally speaking
with Coppersmith method, because we are working in a lattice of dimension 4
instead of 41, see Remark 1.

The previous theorem can be generalized to two rounds lattice reductions
obtaining a better result, see [6]. The details are complicated; moreover, in this
case we have to use the Closest Vector Problem CVP (see Section 2) instead of
SVP used in the Theorem 3.



4 Numerical results and implementation

The process explained in the previous section, including the generalization pro-
posed, can be sumarized in the following chart:�
�

�
�Process sketch

f ∈ Z[x, y]

f1, . . . , fm ∈ Z[X]

Linear eq. system
L, with bounded
solution e

Short solution f

�
�

��Q
Q

QQ
�

�
��Q

Q
QQ

no

yes

f provides
right zero

Actualize bounds

Extract another
system from f
Change of
unknown variables

�
�

��Q
Q

QQ
�

�
��Q

Q
QQ

no

yes

F provides
right zero

�
�

�
�return



We want to provide some experimental results. We have implemented the
algorithm introduced in the previous section on a Debian-PC computer with
two processors [1Ghz and 1Gb RAM]. Our implementation use the free library
NTL (Number Theory Library )[21] together with the library GMP (GNU
Multi Precision Library).

We present the result of some tests in the following table:

Bits of P Bits of Q Bits known Iterations Time
100 100 66 1 3.675 sec
100 100 60 2 10.271 sec
512 512 306 2 11.392 sec
512 512 300 3 14.025 sec
512 512 292 3 15.339 sec
1024 1024 624 2 7.240 sec
1024 1024 600 3 29. 357 sec
1024 1024 580 3 1 m. 35 sec

In every case choosen, the algorithm has returned the factorization. The first
two cases are toy examples. The next three ones are not trivial: factoring a 1024
bits integer is not easy at all. On the negative side, the results are quite distant
from Coppersmith result, the reason is that we need to perform more than one
round.

5 Conclusion

We have presented an heuristic algorithm for integer factoring with high-order
bits known and its implementation in C++ program. Unfortunately, we do not
know how to provide a rigorous proof of this method. It is no clear how to
evaluate the volume of the associated lattice in each iteration. Partial results
appear in [6] and we believe that the approach of this work can be completed.

Our algorithm is asymptotically less efficient than Coppersmith’s algorithm,
but experiments show that it works well in practice. We would like to compare
these experiments with the algorithms in [11, 13].

Finally, we also would like to improve our C++ program. Certainly this
question deserves further work.
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