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Abstract. In this paper we present algorithms for finding a shortest
path between two vertices of any weighted undirected and directed cir-
culant graph with two jumps. Our shortest path algorithm only requires
O(log N) arithmetic steps and the total bit complexity is O(log3 N),
where N is the number of the graph’s vertices. This method has been
derived from some Closest Vector Problems (CVP) of lattices in dimen-
sion two and with �1-norm.

1 Introduction

An undirected circulant graph CN (j1, j2, . . . , jm) with N vertices, labeled with
integers modulo N , and jumps j1, j2, . . . , jm, is a graph in which each vertex n,
0 ≤ n ≤ N − 1, is adjacent to all the vertices n ± ji mod N , with 1 ≤ i ≤ m.
In contrast, a directed circulant graph DCN (j1, j2, . . . , jm) with N vertices, and
jumps j1, j2, . . . , jm is a graph in which each vertex n, 0 ≤ n ≤ N−1, is adjacent
to all the vertices n+ji mod N , with 1 ≤ i ≤ m. Throughout the paper we employ
the term circulant graph for both undirected and directed circulant graphs.

This kind of graphs have a vast number of applications in telecommunication
networking, VLSI design and distributed computation. Their properties, such as
diameters and reliabilities, have been the focus of many research in computer
network design [1–3, 6, 15, 19].

Every circulant graph can be associated to a lattice L which consists of the
integer solutions (x1, . . . , xm) ∈ ZZm to the system of congruences

j1x1 + · · · + jmxm ≡ 0 mod N. (1)

Given two vertices r and s, a path from r to s in CN (j1, j2, . . . , jm) can be
described by an integer vector x = (x1, . . . , xm) ∈ ZZm such that∑m

i=1 xiji ≡ s − r mod N.
And a shortest path x is a path with minimum �1-norm. In contrast, a path

from r to s in the directed circulant graph DCN (j1, j2, . . . , jm) can be described
by a integer positive vector x = (x1, . . . , xm) ∈ INm verifying the above equation,
and a shortest path x is a path with minimum �1-norm.
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For general graphs, finding a shortest path between two vertices is a well
known and important problem. Efficient polynomial time algorithms have been
developed for various routing problems. However, for the family of circulant
graphs, there is an important distinction to be made, and that concerns the nat-
ural input size to a problem. For an arbitrary graph it is common to consider the
input size to be N2, which is the number of bits in its adjacency matrix. However,
any circulant graph can be described by only m integers. In this representation
the input size is O(m log N). Thus polynomial time algorithms for general graphs
may exhibit exponential complexity in the special case of circulant graphs, for
this compact input representation.

In [4] the authors establish relations between several routing applications for
undirected circulant graphs and the problem of finding the shortest vector in
the �1−norm in the above lattice. They present an algorithm which solves the
Shortest-Loop problem in polynomial time for this input measure. In contrast,
they show that the Shortest-Path problem is NP-hard for this concise represen-
tation.

The particular case m = 2, that is, undirected circulant graphs of degree
four or distributed double-loop networks and directed circulant graphs of degree
two or double-loop networks has been extensively studied, see the surveys [2,
9]). When N is given as a unary input and the time complexity is measured
in terms of N , there are several shortest path algorithms for circulant graphs
of degree four and for directed circulant graph of degree two, see for instance
[6, 8, 10, 17, 18]. Typically, they require O(N) arithmetic steps or O(log N) time
for preprocessing and constant processing time at each node on the route. But a
lower bound of the diameter for circulant graph and directed circulant graphs is
Ω(

√
N) (see [2]). So, they are in both cases exponential in the input size log N .

The paper [5] shows an algorithm to compute a shortest path in the circulant
graph CN (1, h) (the so called chordal ring graphs) in O(h/g +log h) time, where
g = gcd(h, N). Obviously, it has also exponential time complexity.

We remark in Section 2 that given a path c, not necessarily a shortest one,
in an undirected circulant graph then the problem of finding a shortest path
is equivalent to problem of finding a vector that is closest to vector −c in the
lattice defined by Equation 1 with respect to �1 norm. The well known paper [12]
presents an algorithm for solving the Closest Vector Problem in a lattice given
by a basis with respect to �1, �2 and �∞ norms. Moreover, fixed the dimension of
the lattice, Kannan’s algorithm is polynomial in the bit-size of the lattice’s basis.
So, fixed the number of the jumps m, the paper [12] provides a polynomial time
algorithm of finding a shortest path in undirected circulant graphs. According
with the above paragraph, this simple observation could be considered as a minor
contribution of the present paper.

In this article we give a polynomial time deterministic algorithm to compute
a shortest path between two vertices in any weighted circulant graph with N ver-
tices and two jumps. Our algorithm only requires O(log N) arithmetic steps and
the total bit operations is O(log3 N). It is based on Closest Vector Problems for
�1-norm. The paper is divided into five sections. In Section 2 we introduce some
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known lattice concepts and show the relation between Shortest Path Problem
and the Closest Vector Problem in a lattice for �1-norm. The Section 3 is devoted
to describe a cubic polynomial time algorithm for solving the two dimensional
CVP for �1-norm. As consequence of the two previous sections we obtain an
algorithm for finding a shortest path in any undirected circulant graph of degree
four. Section 4 is dedicated for finding a shortest path in double-loop networks.
Finally, in Section 5, we analyze the problem in weighted circulant graphs.

2 Closest Vector Problem Versus Shortest Path Problem

The fundamental objects we are dealing with in this section are lattices, defined
as a discrete subgroup of the space IRm. Equivalently, a lattice is the set of integer
linear combinations of some linearly independent vectors. Here we collect some
definitions and well-known facts about lattices which can be found, for instance,
in [7, 14, 16].

Let {b1, . . . ,bs} be a set of linearly independent vectors in IRm. The set

L = {z : z = c1b1 + . . . + csbs, c1, . . . , cs ∈ ZZ}
is called an s-dimensional lattice with basis {b1, . . . ,bs}.

One basic lattice problem is the Shortest Vector Problem (SVP): given a
lattice L and norm ‖ · ‖, finding a nonzero lattice with the smallest norm among
all non-zero vectors in the lattice. Unfortunately, there are several indications
that this problem is NP-complete. This study has suggested several definitions
of a reduced basis for a lattice. The following concept is the generalization of the
reduced basis concept in celebrated LLL algorithm [13] for lattices of rank 2 to
an arbitrary norm [11].

Definition 1. A basis {u,v} is called reduced or Gauss-reduced respect to a
norm ‖ · ‖ if ‖u‖, ‖v‖ ≤ ‖u + v‖, ‖u − v‖.
The algorithm in [11] computes a Gauss-reduced basis from a basis {u,v} of the
lattice L ⊂ ZZ2 for any computable norm in O(log M) arithmetic steps where
M = max(‖u‖, ‖v‖) and a bound for total bit complexity is O(log3 M). Notice
that, possibly, swapping u and v, we can always assume that ‖u‖ ≤ ‖v‖. Then,
‖u‖ and ‖v‖ are the two successive Minkowski minima.

Another related problem for which no polynomial time solution exists is the
Closest Vector Problem, CVP:

Definition 2. Given a basis B generating the lattice L ⊆ IRm, a vector v ∈ IRm,
and a norm in IRm; the Closest Vector Problem consists on finding a vector in
the set v + �L with minimum norm.

The vertex-symmetry of circulants allows their analysis starting from any ver-
tex, which simplifies their study. We may assume the routing is from vertex 0
to vertex j ∈ ZZN . Using the well known Extended Euclidean Algorithm we
compute a path c = (c1, . . . , cm) from 0 to vertex j, that is, a solution of the
congruence equation: j1x1 + j2x2 + · · · + jmxm ≡ j mod N.
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We consider the lattice L given in Equation (1), then we have the following
observation:

Lemma 1. With the above notation, we have:
- A vector w is a shortest path between 0 and j in CN (j1, . . . , jm) if and only if
w solves the CVP in the lattice L with norm �1 and for the vector c.
- A vector w=(x1, . . . , xm) is a shortest path between 0 and j in DCN (j1, . . . , jm)
if and only if w solves the CVP in the lattice L with norm �1 and for the vector
c verifying that xi ≥ ci, i = 1, . . . , m.

It is well known that CVP is NP-hard. However, for any fixed dimension
CVP can be solved exactly in polynomial time for the Euclidean norm �2. The
algorithm presented in [12] can also be adapted to find the �1 closest and the
�∞ closest vectors. His algorithm requires cubic polynomial time (polynomial in
the bit-size of the lattice’s basis) for solving the two dimensional case.

In the next section we present an elementary cubic polynomial time algorithm
for solving the two dimensional CVP with respect �1-norm which can also be
extended for solving the shortest path in directed circulant graphs.

3 An Algorithm for Solving Two Dimensional CVP

The main problem addressed in this section is how to compute a vector that
is closest to another given vector in a two dimensional lattice with respect to
�1-norm.

For the rest of the paper we only consider the �1 norm. We denote by ‖·‖ this
norm acting over a vector. As we are dealing with vectors u ∈ IR2, we denote
their components by u = (u1, u2).

3.1 Reduction by a Vector

Given u,v in IR2, with v 	= 0, we can find α ∈ ZZ such that the value ‖u− αv‖
is minimal, that is, we want to make u as short as possible by subtracting an
integer multiple of v (see [11, 16]).

The main goal of this subsection is to obtain a such smallest vector with
extra properties for our purpose. The algorithm REDUCE is an important tool of
this paper:

Algorithm 1.
INPUT: u,v ∈ IR2, v 	= 0.
OUTPUT: Reducev(u) ∈ u + ZZv / ‖Reducev(u)‖

= min{‖u + αv‖ / α ∈ ZZ}.
– Select i ∈ {1, 2}, j ∈ {1, 2}\{i} such that |vi| > |vj |. If |v1| = |v2|, then

i := 1.
– Return the vector with minimum norm between:

u−
⌊

ui

vi

⌋

v ∧ u −
⌈

ui

vi

⌉

v.

If both have the same norm, return the one with ith non-negative component.
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The next result collects several properties of this concept for later use.

Lemma 2. Let u,v ∈ IR2 be two vectors such that v 	= 0. Let i ∈ {1, 2}, j ∈
{1, 2}\{i} as in Algorithm 1, that is, |vi| > |vj | ∨ (i = 1 ∧ |v1| = |v2|). We
have the following properties:

1. r = Reducev(u) ⇒ |ri| < |vi|.
2. h ∈ u + ZZv ⇒ Reducev(h) = Reducev(u).
3. Reducev(Reducev(u)) = Reducev(u).
4. Reducev(u) = Reduce−v(u).

The properties 2, 3 and 4 in last Lemma show that Reducev(u) is invariant
in the set u + ZZv.

In order to gauge the norm reduction performed by REDUCE procedure, the
next result provides this bound.

Proposition 1. Let u,v ∈ IR2 be two vectors such that v 	= 0. Let i ∈ {1, 2},
j ∈ {1, 2}\{i} as in Algorithm 1 with |vi| = β|vj | for some 1 ≤ β ∈ IR. If

|vi| ≤ |ui| and |uj | 	= 0, then: ‖Reducev(u)‖ ≤ α(1+ 1
β )+2

2α+2 ‖u‖, where |ui| = α|uj |,
for some α ∈ IR .

A first consequence of the above result is that:
α(1+ 1

β )+2

2+2α ≤ 1, because β ≥ 1.
And if β > 1 then the inequality is strict. This result can be extended for the
cases vjuj = 0.

3.2 The Method’s Core

We start with three vectors in IR2, two of them linearly independent: w + ZZ <
u,v >, rank(u,v) = 2.

We are going to find the shortest element in that set with respect to �1 norm.
The method consists on recursively apply REDUCE algorithm to the “translation”
vector w by some vectors in ZZ < u,v >. Our purpose is to guarantee that each
step reduces the vector’s norm by a constant factor, until we reach some property.
To perform this goal, we select a particular basis of the lattice ZZ < u,v >:

Definition 3. A lattice basis {u,v} is call extra-reduced when:

Reducev(u) = u ∧ Reduceu(v) = v.

In order to study some properties of this kind of lattice basis, we classify
vectors u = (u1, u2) ∈ IR2 in two types: horizontal, if |u1| ≥ |u2| and vertical,
if |u1| < |u2|.
Lemma 3. Let {u,v} be two linear independent vectors: We have

1. If {u,v} is a Gauss-reduced basis then one of the basis vectors is vertical
and the other one is horizontal or both basis vectors are horizontal.
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2. If {u,v} is an extra-reduced basis then it is also Gauss-reduced and one of
the vector is vertical and the other oner horizontal.

Kaib and Schonrr showed in [11] how to get a reduced basis (referred to any
norm, in particular �1) of lattice in two dimensions. Thanks Lemma 3, it is easy
to reach an extra-reduced basis, by just applying REDUCE procedure.

Algorithm 2.
INPUT: u,v ∈ IR2, Gauss-reduced basis of a lattice.
OUTPUT: U,V ∈ IR2, extra-reduced basis of the same lattice.

1. Set the vectors U, V so that {U,V} = {u,v} and ‖U‖ ≤ ‖V‖.
2. if ‖U‖ < ‖V‖, do V := ReduceU(V).
3. else

1. if U and V are horizontal,
i. if |U1| 	= |U2|, swap U and V.
ii. V := ReduceU(V).

2. else
i. if U is vertical, swap U and V.

3. if U2 < 0, U := −U.
4. if V1 < 0, V := −V.

We will use then this extra-reduced basis to perform iterative reductions of
the vector w.

Algorithm 3.
INPUT: w,u,v ∈ IR2; {u,v}, extra − reduced basis (u, hor., v, ver.).
OUTPUT: W ∈ w + ZZ < u,v >, |W1| < |u1|, |W2| < |v2|.

– W := w.
– while |W1| ≥ |u1| ∨ |W2| ≥ |v2|

• if |W1| ≥ |u1|, do W := Reduceu(W).
• else do W := Reducev(W).

From Lemma 2 and Proposition 1 we can obtain the following:

Lemma 4. Algorithm 3 is correct and the number of performed loops is
O(log ‖w‖).

3.3 The Whole Process

We have reached a vector in w + ZZ < u,v > with some properties. We need
to conclude our job by getting the shortest vector among all. We will use the
following technical result:

Lemma 5. Let {u1,u2} be a reduced basis (respect to any norm) of a lattice in
IRm. Let w = α1u1 + α2u2 be a lattice vector (α1, α2 ∈ ZZ). Then, we have:

‖α1u1‖, ‖α2u2‖ ≤ 2‖w‖.
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Let us suppose now we have reached a description w + ZZ < u,v > of the
original set, where {u,v} is an extra-reduced basis ( u is horizontal and v is
vertical), and with |w1| < |u1|, |w2| < |v2|. Let W be a closest vector to w with
respect �1 norm.

Then, d := W−w ∈ ZZ < u,v > and ‖d‖ ≤ 2‖w‖ = 2(|w1|+|w2|) < 2(|u1|+
|v2|). We try to bound the coefficients of d as a lattice member: d = αu + βv.
We distinguish two cases and applying previous Lemma 5

– |u1| ≥ |v2| then ‖αu‖ ≤ 2‖d‖ ⇒ |α| ≤ 4(|u1|+|v2|)
|u1|+|u2| ≤ 8.

– |u1| < |v2| then ‖βv‖ ≤ 2‖d‖ ⇒ |β| ≤ 4(|u1|+|v2|)
|v1|+|v2| ≤ 8.

To sum up, jointing Algorithms 2, 3 and 4, we reach our goal:

Algorithm 4.
INPUT: u,v, extra-reduced basis (u, hor. v, ver.)

w, with |w1| < |u1|, |w2| < |v2|
OUTPUT: W, shortest vector in w + Z < u,v >.

– U := u, V := v.
– if |U1| < |V2|, swap U and V.
– for α = [−8, . . . , 8] do

• Wα := ReduceV(w + αU).
– Return a vector with minimum norm in {Wα / |α| ≤ 8}.

When studying lattices from a complexity point of view, it is customary to
assume that the basis vectors (and therefore any lattice vector) have all rational
coordinates. It is easy to see that rational lattices can be converted to integer
lattices (i.e., sublattices of ZZm) by multiplying all coordinates by an appropriate
integer scaling factor.

If a, b are two integers, such that b 	= 0, we denote by quo(a, b), rem(a, b) the
unique integers verifying: a = b · quo(a, b) + rem(a, b), 0 ≤ rem(a, b) < |b|, i.e.,
quo(a, b), rem(a, b) are the quotient and the remainder of the Euclidean division
of a by b.

For every real number x ∈ IR, as usual we denote by sgn (x) its sign.
In the case of lattices with integer coefficients, Algorithm 1 admits the fol-

lowing form:

Algorithm 5.
INPUT: u,v ∈ ZZ2, v 	= 0.
OUTPUT: Reducev(u) ∈ u + ZZv / ‖Reducev(u)‖

= min{‖u + αv‖ / α ∈ ZZ}.
– Find i ∈ {1, 2}, j ∈ {1, 2}\{i} such that |vi| > |vj |. If |v1| = |v2|, select

i := 1.
– Return the vector with minimum norm between:

u − quo(ui, vi)v, u − (quo(ui, vi) + sgn (vi))v.

If both share the same norm, return u− quo(ui, vi)v.



784 Domingo Gómez et al.

It is straightforward to check both Algorithm 1 and Algorithm 5 have same
output for integer vectors. Then, clearly given an undirected circulant graph
CN (j1, j2) and vertex j ∈ ZZN , we can decide if there exists a shortest path
from vertex 0 to vertex j and, in the affirmative case, we can compute one on
O(log3 N) bit operations.

4 Directed Circulant Graphs

Our method can be easily extended to directed circulant graphs DCN (j1, j2).
First, we need to introduce the concept of positive reduction of a vector. Given
two vectors u = (u1, u2) and v = (v1, v2) 	= 0, we are looking for α ∈ ZZ such
that the value ‖u − αv‖ is minimal and having both components positive. In
general, u − αv with both components positive may not achieve the minimum
norm over all integer component u − βv, with α, β integral.

Algorithm 6.
INPUT u,v ∈ ZZ2, v 	= 0
OUTPUT PRedv(u) ∈ (u + ZZv) ∩ IN2,

‖PRedv(u)‖ ≤ ‖u + αv‖ ∀α ∈ ZZ/u + αv ∈ IN2 ∨
∅, if (u + ZZv) ∩ IN2 = ∅

1. Find i ∈ {1, 2}, j ∈ {1, 2}\{i} such that |vi| > |vj |. If |v1| = |v2|, select
i := 1.

2. Set ε =
{−1, if |v1| ≥ |v2|

1 , if |v1| < |v2|.
3. Compute ∆ := ε sgn (u1v2 − u2v1).
4. If vj = 0,

B := ∆sgn (vi) .

1. If B = −1, Output ∅.
2. If B ≥ 0, Output u− sgn (vi) quo(ui, |vi|)v.

5. If vj 	= 0,
A := −∆sgn (vj) , B := ∆sgn (vi) .

1. If (A = −1 ∧ B = −1), Output ∅.
2. If (A = −1 ∧ B ≥ 0), Output u − sgn (vi) quo(ui, |vi|)v.
3. If (A ≥ 0 ∧ B = −1), Output u − sgn (vj) quo(uj , |vj |)v.
4. If (A ≥ 0 ∧ B ≥ 0),

i. w := u− sgn (vi) quo(ui, |vi|)v.
ii. If w ∈ IN2, Output w.
iii. Else, Output ∅.

It is easy to check that the previous algorithm is correct and a bound for the
bit complexity on computing PRedv(u) is O(log2 M), where M =max(‖u‖, ‖v‖).

Once this tool is fixed, let us describe the method to reach a shortest path
in a directed circulant graph. Firstly, we act as seen in the previous section to
compute an extra reduced basis of the associated lattice {u,v}, and a shortest
path for the corresponding undirected circulant graph w.

We can state that there always exists one path in the directed circulant graph
with bounded length.
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Lemma 6. Let w,u,v ∈ ZZ2, such that {u,v} is an extra reduced basis for the
lattice they generate. Then, ∃d∈(w+ZZ < u,v >)∩IN2, ‖d‖≤6 max{‖u‖, ‖v‖}.
Proof. Let M = max{‖u‖, ‖v‖}. We consider the translated lattice

w − (2M, 2M) + ZZ < u,v > .

By Algorithm 3, this set contains an element z, with |z1| < |u1|, |z2| < |v2|. So,
‖z‖ ≤ 2M . Clearly z + (2M, 2M) belongs to the set (w + ZZ < u,v >) ∩ IN2,
and its norm is bounded by 6M . ��

Finally, we follow a similar argument than in Section 3 to reach the shortest
path for the directed graph.

Algorithm 7.
INPUT: w ∈ ZZ2, {u,v}, extra reduced basis.
OUTPUT: d, shortest element in (w + ZZ < u,v >) ∩ IN2.

– Find a shortest element z in w + ZZ < u,v >.
– if ‖u‖ ≥ ‖v‖

• for α = −16, . . . , 16 do dα := PRedv(z + αu).
– else

• for α = −16, . . . , 16 do dα := PRedu(z + αv).
– Return a vector with minimum norm in {dα / |α| ≤ 16}.

Proof. Let w,u,v ∈ ZZ2, such that {u,v} is an extra reduced basis for the lattice
they generate. Let W be a shortest element in a translated lattice w + ZZ <
u,v > and let d be a shortest element in (w + ZZ < u,v >) ∩ IN2. We have:
d − W = αu + βv, verifying |α| ≤ 16 if ‖u‖ ≥ ‖v‖, |β| ≤ 16 if ‖v‖ ≥ ‖u‖.

Let M = max{‖u‖, ‖v‖}, by Lemma 5 and Lemma 6 and since {u,v} is an
extra reduced basis, we have:

‖αu‖, ‖βv‖ ≤ 2‖d− w‖ ≤ 2‖d‖ + 2‖W‖ ≤ 12M + 4M ≤ 16M.
��

5 Weighted Circulant Graphs

In this section, we consider weighted circulant graphs with two jumps CN (j1, j2)
and weights w = (w1, w2).

Theorem 8. Given a circulant graph CN (j1, j2) with weights w = (w1, w2) we
can find a shortest path on cubic polynomial time.

Proof. The distance of a path c = (c1, c2) in the weighted circulant graph is
‖c‖w = w1|c1| + w2|c2|.

Let c ∈ ZZ2 then ‖c‖w = ‖Φ(c)‖�1 where Φ is the injective group homomor-
phism Φ : ZZ2 → ZZ2, Φ((x, y)) = (w1x, w2y). Let j ∈ ZZN be a vertex of the
graph and let u,v be an extra-reduced basis of the circulant graph CN (j1, j2). By
Section 3 we compute on cubic polynomial time a shortest path c from vertex 0
to vertex j. Let d a solution to CVP for the lattice generated by < Φ(u), Φ(v) >
and target vector Φ(c), then Φ−1(d) is a shortest path in the weighted undi-
rected circulant graph. ��
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The algorithm in the above theorem can be adapted in a natural way to
weighted directed circulant graphs.
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