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Abstract. One of the main contributions which Harald Niederreiter
made to mathematics is related to pseudorandom sequences theory. In
this article, we improve on a bound on one of the pseudorandom number
generators (PRNGs) proposed by Harald Niederreiter and Arne Winter-
hof and study its lattice structure. We obtain that this generator passes
general lattice tests for arbitrary lags for high dimensions.
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1 Introduction

Pseudorandom numbers are used in many fields, like cryptography, financial
mathematics, simulations, etc. The diversity among methods comes from the
different nature of requirements, citing a famous sentence “what is appropiate
for a video game is not appropiate for a nuclear reactor”.

Linear methods are the most popular choice for generating pseudorandom
sequences and are implemented in the API of the java language. Inversive meth-
ods are popular and competitive alternatives to the linear method for generating
pseudorandom numbers, see [7] and the surveys [8, 9, 16, 17].

In this paper we analyze the lattice structure of digital explicit inversive
pseudorandom numbers introduced in [10] and further analyzed in [6, 11, 12, 14].
To introduce this class of generators we need some notation.

Let q = pr be a prime power and Fq the finite field of order q. Let

γ =

{
γ−1, if γ ∈ F∗q ,
0, if γ = 0.
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We order the elements of Fq = {ξ0, ξ1, . . . , ξq−1} using an ordered basis {γ1, . . . , γr}
of Fq over Fp for 0 ≤ n < q,

ξn = n1γ1 + n2γ2 + · · ·+ nrγr,

if
n = n1 + n2p+ · · ·+ nrp

r−1, 0 ≤ ni < p, i = 1, . . . , r.

For n ≥ 0 we define ξn+q = ξn. Then the digital explicit inversive pseudorandom
number generator of period q is defined by

ρn = αξn + β, n = 0, 1, . . .

for some α, β ∈ Fq with α 6= 0. Digital explicit inversive pseudorandom number
generators are used for generating low discrepancy sequences. If

ρn = cn,1γ1 + cn,2γ2 + · · ·+ cn,rγr

with all cn,i ∈ Fp, we derive digital explicit inversive pseudorandom numbers of
period q in the interval [0, 1) by defining

yn =

r∑
j=1

cn,jp
−j , n = 0, 1, . . . .

Bounds on the discrepancy of points generated from these sequences appear
in [10] and in [1, 2]. Also, inversive methods were considered by Hu and Gong
in [5] where it was proven a bound on the autocorrelation of this family of
sequences.

Our goal in this paper is to study the behaviour of the digital explicit inversive
pseudorandom number generator under a generalized test introduced in [13]. For
the convenience of the reader, we give here a brief description of this test.

For given integers L ≥ 1, 0 < d1 < · · · < dL−1 < T and (sn) a sequence of ele-
ments in Fq, (sn) passes the L−dimensionalN -Lattice Test with lags d1, . . . , dL−1
if the vectors

{sn − s0 : sn = (sn, sn+d1
, . . . , sn+dL−1

), for 0 ≤ n < N},

span FL
q . The greatest dimension L such that (sn) passes the L-dimensional

N -lattice test for all lags d1, . . . , dL−1 is denoted by T ((sn), N).
The authors in [14] studied the lattice test for digital explicit inversive gen-

erators and they obtained bounds on T ((ρn), N), even in parts of the sequence.
We cite here part of their main result.

Lemma 1 (Theorem 1 and 2 in [14]). Let (ρn) be a sequence arising from
a digital explicit inverse pseudorandom number generator defined over Fq with
q = pr, then we have that,

T ((ρn), N) ≥ logN − log logN − 1

r − 1
− 1,
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for 2 ≤ N < q if r > 1. For r = 1 the inequality

T ((ρn), N) ≥ N

2
− 1,

holds for 2 ≤ N < q.

We want to stress the different nature of both results. For r = 1, the bound is
linear in N whereas only a logarithmic lower bound is given for r > 1. Indeed,
the bound for r > 2 can be obtained when N = q for any sequence (sn) of period
q with sufficiently high linear complexity, see [4].

Here, we show that this bound can be improved using hyperplane arrange-
ments.

2 Hyperplane Arrangements

Hyperplane arrangements is a concept well studied in the field of combinatorial
geometry, see [3]. We only introduce enough theory to understand the proof of
the main result and follow the nice introduction given in [15].

Let d be a positive integer and R the field of real numbers. We denote by

a = (a1, . . . , ad), a1, . . . , ad ∈ R

elements of Rd, where Rd is a vector space of dimension d over the field R.
We also consider matrices with the usual operations involving matrices, namely
multiplication, addition and transposition. Also, it is needed the topological
concept of dimension of a set of points in Rd. Vectors in Rd are matrices with d
rows and 1 column. The notation for the transposition of a matrix A is AT.

Definition 1. Given a ∈ R − {0} and b ∈ R, the set {x ∈ Rd : aTx = b} is
called a hyperplane.

We also use a · x to denote aTx, which correspond to the standard dot product,
and the matrix form Ax = b to encode the finite set of hyperplanes H =
{H1, . . . ,Hm}, where

Hi = {x ∈ Rd :

d∑
j=1

ai,jxj = bi}. (1)

Definition 2. A set of hyperplanes in Rd partitions the space into relatively
open convex polyhedral regions, called faces, of all dimensions. This partition is
called a hyperplane arrangement.

We make a distinction between the two sides of a hyperplane. A point p ∈ Rd is
on the positive side of hyperplane Hi, denoted by H+

i , if

d∑
j=1

ai,jpj > bi.
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Similarly, we define p ∈ Rd is on the negative side of hyperplane Hi and we
denote it by H−i .

For each point p ∈ Rd we define a sign vector of length m consisting of
1, 0,−1 signs as follows:

sv(p)i =


1 if p ∈ H+

i ,

−1 if p ∈ H−i ,
0 if p ∈ Hi,

where i = 1, . . . ,m and m is the number of hyperplanes.

Definition 3. A face is a set of points with the same sign vector. It is called a
i-face if its dimension is i ≤ d and a cell if the dimension is d.

As a small comment, the dimension of a face is at least d minus the number of
ceros in the sign vector of any of the points of the face. The number of faces of
given dimension in a hyperplane arragement is given in the following result

Lemma 2 (Theorem 1.3 in [3]). Given any set of hyperplanes H = {H1, . . . ,Hm}
in Rd, then the number of i-faces in the correspondent hyperplane arrangement
can be bounded by,

i∑
j=0

(
d− j
i− j

)(
m

d− j

)
.

3 Main Result

Now, we have all the technical tools to prove the main result. The proof is a
minor modification of the one in [14, Theorem 1] and the only difference is the
estimate for the number of possible carries. Nevertheless, for the sakeness of
completeness, we include it here without claiming any priority over it.

Theorem 1. For the sequence of elements (ρn) defined by an inversive pseudo-
random number generator of period q = pr, we have

6T ((ρn), N) ≥
(

N

(r)r−1

)1/r

,

for 2 ≤ N ≤ q.

Proof. The case r = 1 is stated in Lemma 1 so assume that r ≥ 2 and the
sequence (ρn) does not pass the L-dimensional N -lattice test for some lags 0 <
d1 < d2 < · · · < dL−1 < q. Put

ρn = (ρn, ρn+d1
, . . . , ρn+dL−1

), n ≥ 0,

and let V be the subspace of FL
q spanned by all ρn−ρ0 for 0 ≤ n < N . Consider

the orthogonal space of V , i. e. {u : u · v = 0, ∀v ∈ V }, whose dimension is
different from 0. So, there exits α 6= 0 such that,

ρn · α = ρ0 · α, for 0 ≤ n < N.
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Calling δ = ρ0 · α and j the smallest index with αj 6= 0 we have 1

αjρn+dj
+ αj+1ρn+dj+1

+ · · ·+ αL−1ρn+dL−1
= δ, for 0 ≤ n < N. (2)

For all 1 ≤ i < L and 0 ≤ di, n < q, let

di =

r∑
j=1

di,jp
j−1, 0 ≤ di,1, . . . , di,r < p,

and

n =

r∑
j=1

njp
j−1, 0 ≤ n1, . . . , nr < p,

be the p-adic expansions of di and n, respectively. We now define the vectors
of the carries that occur in the additions of n + di. Let wi,1 = 0 and define for
1 ≤ h ≤ r recursively

wi,h+1 =

{
1, if di,h + nh + wi,h ≥ p,
0, otherwise.

Then we have

n+ di =

r∑
j=1

zi,jp
j−1, 0 ≤ zi,1, . . . , zi,r < p,

with

zi,j = di,j + nj + wi,j − wi,j+1p, 1 ≤ j ≤ r,

and

ξn+di
= ξn + ξdi

+ wi, where wi =

r∑
j=1

wi,jγj .

Previously only trivial estimates were used to count the number of possible
choices for wj , . . . , wL−1. Now, we are going to use hyperplane arrangements to
bound this number. Consider the following sets of hyperplanes in Rr,

{H1
i,j : 1 ≤ i ≤ L, 1 ≤ j ≤ r} ∪ {H2

i,j : 1 ≤ i ≤ L, 1 ≤ j ≤ r},

where

H1
i,j = {x ∈ Rr : xj + di,j = p− 0.1}, H2

i,j = {x ∈ Rr : xj + di,j = p− 1.1}.

It is easy to encode the union of these two sets of hyperplanes by Ax = b
as in Equation (1). Matrix A is a matrix with 2Lr rows and r columns that

1 if j = 0, we will denote d0 = 0, although the lags are d1, . . . , dL−1.
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it is constructed by stacking 2L identity matrices of dimension r. The first L
components of vector b are just joining the following L vectors,

(p− 0.1, . . . , p− 0.1), (p− d1,1 − 0.1, . . . , p− d1,r − 0.1),

. . . , (p− dL−1,1 − 0.1, . . . , p− dL−1,r − 0.1),

and the next L components are,

(p− 1.1, . . . , p− 1.1), (p− d1,1 − 1.1, . . . , p− d1,r − 1.1),

. . . , (p− dL−1,1 − 1.1, . . . , p− dL−1,r − 1.1).

Using the previous notation, it is trivial that if n, n′ are two different integers
satisfying

ξn+di
= ξn + ξdi

+ wi, ξn′+di
= ξn′ + ξdj

+ w′i,

with wi 6= w′i for some i ∈ 1, . . . , r, then the sign vectors of the points (n1, . . . , nr),
(n′1, . . . , n

′
r) ∈ Rr are different, where

n =

r∑
j=1

njp
j−1, n′ =

r∑
j=1

n′jp
j−1, 0 ≤ n1, . . . , nk, n

′
1, . . . , n

′
k < p.

The reason is the following, if sv((n1, . . . , nr)) = sv((n′1, . . . , n
′
r)), then both

points must be in the same side of the hyperplanes H1
i,1, H

2
i,1 for i = 1, . . . , L,

which is equivalent to,

di,1 + n1 > p− 0.1 ⇐⇒ di,1 + n′1 > p− 0.1, =⇒ wi,2 = w′i,2.

In general, wi,h = w′i,h because

– wi,h = w′i,h = 1 and the points lie in the same side of H2
i+L,h+1.

– wi,h = w′i,h = 0 and the points lie in the same side of H1
i,h+1.

We are only interested in the faces of dimension greater or equal than r − 1 2

Using Lemma 2, we get that the number of (r − 1)-faces plus the number of
r-faces is less than

(r + 1)

r−1∑
j=0

(
2rL

r − j

)
≤ (6rL)r−1.

So there exists a vector (wj , . . . , wr−1) such that for at least

N

(6rL)r−1
,

different n with 0 ≤ n < N we have ξn+di = ξn + ξdi + wi, j ≤ i < r. We have
ρn+di

= 0 for some value 1 ≤ i < r for at most r − j different n. If ρn+d 6= 0
then we can write ρn+d = αξn+d + β. By Equation (2), we have

αjαξn + ξdj
+ wj + β + . . .+ αL−1αξn + ξdL−1

+ wL−1 + β = δ,

2 because we always consider wi,1 = 0. It is also equivalent to discard x1, i. e. working
in Rr−1.
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for at least N/(6rL)r−1−L different elements ξn. Operating and using Lagrange
theorem, the number of solutions of the previous equation is less than L, so

2L ≥ N/(6rL)r−1 or, 6L ≥
(

N
(r)r−1

)1/r
and this finishes the proof.

Final Comments

No effort has been put in getting the best possible constant in the theorem. The
reason is to avoid technical details as much as possible and focus on hyperplane
arrangements. The new idea in this paper is using hyperplane arrangements,
which seems to be new to study sequences via additive order. We think that
this could lead to improvements to study distribution of sequences via additive
order. However, new ideas are needed to be added. For example, hyperplane
arrangements applied to the results in [2], give better constants in the results
but not significant improvements. Also, the result in this paper applies only
when p is sufficiently large. It would certainly be very interesting to see how to
apply this technique for p = 2.

This work is supported in part by the Spanish Ministry of Science, project
MTM2011-24678
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