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1 Introduction

In this paper we provide a bound for the linear complexity of the so-called Naor-
Reingold sequence of elements in a finite prime field. This sequence is presented
in [4] as a primitive for crytptographic protocols.

For a prime p, we denote by Fp the field with p elements and identify them
with the integers in the range {0, . . . , p− 1}. We write F∗

p for the group of units
in this field.

Let p, t be prime numbers, n a positive integer, and g ∈ F∗
p an element of

multiplicative order t. Then, a vector a = (a0, . . . , an−1) ∈ (F∗
t )
n defines the

following finite sequence in the subgroup 〈g〉:

fa(x) := gϕa(x),

where ϕa(x) := ax0
0 · · · a

xn−1

n−1 ∈ F∗
t and x =

∑n−1
i=0 xi2

i is the binary represen-
tation of x. Note that we have required that the order of g is prime, which is
not necessary for the definition of the sequence. It would be interesting to deal
with this general case as well.

It has been shown that, if the decisional Diffie-Hellman assumption holds, then
in general the index x is not enough to compute in polynomial time fa(x), even
if an attacker performs polynomially many oracle calls (see [4, Theorem 4.1]).
A bound on the discrepancy of the Naor-Reingold sequence is given in [6] and
the article [3] investigates its period.

We recall that the linear complexity of an N -element sequence over a ring:

f(x), x = 0, . . . , N − 1

is the order L of the shortest linear recurrence

f(x+L) = aL−1f(x+L−1)+· · ·+a1f(x+1)+a0f(x), x = 0, . . . , N−L−1.

The linear complexity of the Naor-Reingold sequence has been studied in
[2, 5]. Those articles provide lower bounds for it, assuming that the dimension
n of the parameter a is bigger than the logarithm of t. In particular, those
bounds do not apply in the case n ∼ log t, for the set of excluded parameters
covers almost the whole range. Note that this is a natural assumption, for those
two parameters define the representation size of the sequence. In this article we
modify the proof of [5] and obtain a lower bound for the linear complexity that
is nontrivial even when n ∼ log t.
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2 Preliminaries

Throughout the paper the implied constants in the symbols ‘O’ and ‘�’ are
absolute, and log denotes the binary logarithm. We state now an immediate
consequence of the proof of Lemma 2 from [1]:

Lemma 1 Let K ⊆ F∗
t be a set of cardinality #K = K, and write

Lr(K, h) = #{(k, y) ∈ K × F∗
t | rk = y, 0 ≤ y < h}.

There exists r ∈ F∗
t such that Lr(K, h) ≥ Kh/t.

We will also use Lemma 2 from [5].

Lemma 2 Consider a finite sequence (f(x))
N−1
x=0 in a field K, with linear com-

plexity L. Then, for any integers M ≥ 1, h ≥ 1, and 0 ≤ e0, . . . , eL ≤ h there
are some elements c0, . . . , cL ∈ K (not all zero) such that

L∑
j=0

cjf(Mb+ ej) = 0

for any integer b with 0 ≤Mk + h ≤ N − 1.

We prove now a result about the number of elements in a generic Naor-Reingold
sequence. A more general result can be found in [7].

Proposition 3 For any integers n ≥ j > 0 and for all except at most (3j −
1)(t− 1)n−1/2 vectors a ∈ (F∗

t )
n, the Naor-Reingold sequence contains at least

2j distinct elements.

Proof. If the sequence fa(x), x = 0, . . . , 2n−1 contains fewer than 2j values,
there must be one repetition among the first 2j . Suppose that fa(x) = fa(y),
with

x =

j−1∑
i=0

xi2
i, y =

j−1∑
i=0

yi2
i.

Then,
ax0
0 · · · a

xj

j = ay00 · · · a
yj
j . (1)

Let i be the most significant position such that xi 6= yi. Without loss of gener-
ality, we can suppose that xi = 1, yi = 0. Equation (1) gives

ai = ay0−x0

0 · · · ayi−1−xi−1

i−1 .

Once fixed the values a0 . . . , ai−1 and the exponents y0 − x0, . . . , yi−1 − xi−1;
then ai is determined as well. Therefore, there are at most 3i(t−1)n−1 possibil-
ities for the parameter vector a. Summing up all these values from the possible
indices i, we obtain the result. �
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3 Linear complexity bound

We are ready to prove the main result of the article. The combination of the
technique developed in [5, 7] with Lemma 1 yields a nontrivial result even in
the case n ∼ log t. Furthermore, this bound improves the one provided in [5]
when n� (1 + log3 2) log t.

Theorem 4 Let γ > 0 and 0 < ε < 1 such that

n > log t+ γ − 4.

The linear complexity La of the sequence (fa(x))
2n−1
x=0 satisfies:

La ≥ min(2γ , t(1−ε)/ log 3)

for all but at most O(tn−ε) vectors a ∈ (F∗
t )
n.

Proof. Take a = (a0, . . . , an−1) and split it into the following two:

a− = (a0, . . . , as−1),

a+ = (as, . . . , an−1),

where

s = min

(
bn/2c,

⌊
1− ε
log 3

log t

⌋)
.

Let A be the set of vectors such that each of the Naor-Reingold sequences
defined by vectors a− and a+ generate at least 2s distinct elements. Using
Proposition 3, we have that #A = (t− 1)n +O(tn−ε).

We show that the bound holds for any vector a ∈ A. Let us consider the set

K := {ax0
0 . . . a

xs−1

s−1 | x0, . . . , xs−1 ∈ {0, 1}} = ϕa[0, 2s − 1].

The cardinality of this set is at least 2s, for a ∈ A. By Lemma 1, there exists
r ∈ F∗

t such that Lr(K, 2s−1) ≥ 22s−1/t.
If Lr(K, 2s−1) > La, we choose d1, . . . , dLa ∈ K and such that 0 ≤ yi :=

dir < 2s−1. Let 0 ≤ e0 < · · · < eLa < 2s be the integers such that ϕa(ei) = di.
Using Lemma 2, we derive

La∑
i=0

cifa(2sb+ ei) = 0

for 0 ≤ b < 2n−s − 1. Let m := r−1 ∈ F∗
t . We have that

fa(2sb+ ei) = gmϕa(2
sb)rϕa(ei) =

(
gmϕa(2

sb)
)yi

,
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where b =
∑n−s−1
j=0 bj2

j . Now, as a ∈ A, the polynomial

F (X) = c0X
y0 + c1X

y1 + . . .+ cLaX
yLa

has at least 2s − 1 roots. This is impossible because degF ≤ 2s−1. Therefore,
La ≥ Lr(K, 2s−1) and the result follows. �
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