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Abstract. We study the security of the linear generator over a
finite field. It is shown that the seed of a linear generator can be
deduced from partial information of a short sequence of consecutive
outputs of such generators.

1. Introduction

Let p be a prime number and Fp be the finite field of p elements.
We identify the elements of Fp with the integer numbers in the range
{0, . . . , p− 1}. Given a polynomial f(X) ∈ Fp[X], we define the poly-
nomial congruential generator (un) of elements of Fp by the recurrence
relation,

un+1 = f(un), n = 0, 1, . . . ,

where u0 ∈ Fp is the initial value or seed.
One of the most popular polynomial congruential generators is the

so-called linear congruential generators, given by the polynomial f(X) =
aX + b. Indeed, it is still useful in many applications and is a part of
many standard computer software libraries. However, they cannot be
used in situations where unpredictability is required (for example, in
many cryptographic scenarios) because of their coarse lattice structure.
To overcome this deficiency, hiding some bits of the output has been
proposed, but unfortunately this setup is not secure either and the
same lattice structure has been the reason of many powerful attacks,
see [4, 5, 6, 10, 11, 12].

If we consider polynomials f(X) of higher degree over residue rings,
then the generators become hard to predict when many bits are dis-
carded and the residue ring has sufficiently many elements as it is shown
in [3, 9, 14]. On the other hand, if too many bits are revealed at each
stage then these type of generators are unfortunately polynomial time
predictable if sufficiently many bits of their consecutive elements are
given, see [1, 2, 7, 8] and references therein. As a result, in order to
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achieve the desired level security with this type of generators one has
unfortunately sacrifice the efficiency.

Another different approach is to work in extensions of finite fields
of small characteristic which offer a different way of “hidding” some
information about the elements of the sequence (un) by discrding some
of their coordinates in fixed basis over the ground field. Moreover,
such finite fields are easy to implement and operations are very efficient
compared to other fields or residue rings.

Unfortunately, the main result of this paper shows that linear con-
gruential generators over such extensions, even after hiding some of the
information about each output can be predicted in polynomial time and
thus remain insecure.

We structure the paper as follows. In Section 2, we start with a short
outline of the background needed to understand the rest paper. The
algorithm that we want to present is divided in two stages, which are
given in Section 3 and Section 4. Finally, in Section 5 we present some
conclusions and open questions.

2. Preparations

Let q = ps, where s is a positive integer and p is a prime number
and let Fq be the finite field of q elements. We recall that Fq can be
considered as a linear space over Fp, see [13] for a background on finite
fields.

We define the linear generator over a finite field as the sequence (un)
defined by the following recurrence,

(1) un+1 = aun + b, a, b ∈ Fq, a 6= 0, n = 0, 1, . . .

However, we assume this sequence is not directly used, only part of each
element of (un) is known to the attacker whose goal is, after observing
several outputs, to continue to generate the same sequence.

More precisely, given a basic (γ1, . . . , γs) of Fq over Fp, we recall that
every element α ∈ Fq can be expressed as a unique linear combination

α = c1γ1 + · · ·+ csγs, c1, . . . , cs ∈ Fp,

where (c1, . . . , cs) are called the coefficients of α in the basis (γ1, . . . , γs).
We suppose that the basis (γ1, . . . , γs) is fixed and known.

Definition 1. Given a set I ⊆ {1, . . . , s} and two elements α, β ∈ Fq

we say that β is an I-approximation of α if the coefficients of α and β
differ only at the positions i ∈ I.
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Given a set I ⊆ {1, . . . , s}, we also denote,

(2) L(I) =

{∑
i∈I

ciγi | ci ∈ Fp, ∀i ∈ I

}
.

Thus if β is an I-approximation of α if and only if β − α ∈ L(I).
We show how to recover the elements of the sequence (un) given

by (1) from several I-approximations.
We assume that the coefficients a and b of the equation (1) are known.

However, we do not assume that the set I is known, so our algorithm
works in two stages:

• recovering the set I;
• recovering the initial value u0.

Throughout the paper a polynomial time algorithm means with com-
plexity (log q)O(1).

3. Recovering the set I

First we show that for almost all s+1 consecutive I-approximations
w0, w1, . . . , ws to u0, u1, . . . , us one can find the set I.

Theorem 2. There exists a polynomial time algorithm that, given s+1
consecutive I-approximations wi to ui, i = 0, . . . , s for some set I ⊆
{1, . . . , s} of cardinality k = ]I and an integer j ∈ {1, . . . , s}, decides
correctly whether j ∈ I, provided that

(ε0, . . . , εs) 6∈ E(a, b, I), where εi = ui − wi, i = 0, . . . , s,

and E(a, b, I) ⊂ Fs+1
q is a certain set of cardinality

]E(a, b, I) = pk(s+1)−1

that depends only on a, b and I.

Proof. We start with the case b = 0, then we consider the general case.
Since, a ∈ Fq so we know that

a0 + a1a+ · · ·+ asa
s = 0

where a0, . . . , as ∈ Fp are not all zeros. It is clear that if b = 0 then
un = anu0, which implies

a0u0 + a1u1 + · · ·+ asus = 0.

Recalling the definition of ε0, . . . , εs, we obtain

a0ε0 + . . .+ asεs = w

where
w = −a0w0 − . . .− asws.
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Clearly w ∈ L(I). We now expand w in the basis (γ1, . . . , γs).

w =
s∑

i=1

γidi

If dj 6= 0, then the algorithm outputs j ∈ I and in this case it is
always correct.

If dj = 0, then the algorithm outputs j 6∈ I, which is correct unless
(ε0, ε1, . . . εs) ∈ E(a, b, I) where

E(a, b, I) =

(x0, . . . , xs) ∈ L(I)s+1 |
s∑

i=0

aixi =
∑

i∈I\{j}

γidi

 .

Clearly, ]E(a, b, I) = pk(s+1)−1 which completes the proof in the case
b = 0.

For b 6= 0, we consider the sequence vn = un − b(an − 1)(a − 1)−1.
This sequence satisfies vn = anu0 so our previous argument applies to
vn, which concludes the proof. ut

Clearly if the “noise” sequence εi, i = 0, 1, . . . is uniformly distributed
in L(I) then the algorithm of Theorem 2 is correct with probability
1 − 1/p ≥ 1/2. So applying it with I approximations to m tuples
(uh, . . . , uh+s), h = 0, . . . ,m − 1, and making a majority decision on
whether j ∈ I we obtain an probabilistic algorithm, polynomial in m
and log q, with exponentially small probability of wrong output.

4. Recovering the initial value u0

We now assume that we are given t consecutive I-approximations
with a known set I. We first study the case t > 2 and then the case
t = 2.

Theorem 3. There exists a polynomial time algorithm that given a
set I ⊆ {1, . . . , s} of cardinality k = ]I and t > 2 consecutive I-
approximations wi to ui, i = 0, . . . , t − 1, finds u0 correctly, provided
a 6∈ F(I), for a certain set F(I) ⊂ Fq of cardinality

]F(I) < 2pdt +

(
k

t− 2

)
p2k−t+2,

where dt is the largest divisor d of s with d < t, that depends only on I
Proof. Without loss of generality, we can suppose that

I = {1, . . . , k},
that is, the components of ui − wi, i = 0, . . . , t − 1, are zeroes except
maybe at the first k positions.
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As before we define εi = ui − wi, i = 0, . . . , t − 1. Using the Equa-
tion (1) we derive the following system of linear equations

(3) aεi − εi+1 = ei, i = 0, . . . , t− 2,

where
ei = wi+1 − (b+ awi), i = 0, . . . , t− 2,

We also recall that ε0, . . . , εt−1 ∈ L(I). Thus (3) leads to a system of
s(t−1) linear equations for kt unknowns of the expansion of ε0, . . . , εt−1
in the basis (γ1, . . . , γs).

This is system is certainly consistent and if it has a unique solution
than in polynomial time we can find ε0, . . . , εt−1 and then u0 = w0+ε0.

However this fails if the system (3) has more than one solution. Now,
we show that this implies that a ∈ F1 ∪ F2, where

F1 = {a ∈ Fq | aα = β, 0 < w (α) ≤ k − t+ 2, w (β) ≤ k} ,
F2 = {a ∈ Fq | F (a) = 0, F (X) ∈ Fp[X]∗, degF ≤ t− 1} .

Assuming that the system of equations (3) besides (ε0, . . . , εt−1) has
another solution (ε̃0, . . . , ε̃t−1) then

di = εi − ε̃i ∈ L(I), i = 0, . . . , t− 1,

is a nontrivial solution of the following linear system of equations:

(4) ayj − yj+1 = 0, j = 0, . . . , t− 2.

We see from (4) that if (d0, . . . , dt−1) is a nonzero vector then all
components are nonzero elements of L(I), that is

(5) di 6= 0, i = 0, . . . , t− 1.

We consider the linear subspace over Fp generated by d0, . . . , dt−1.
We consider the following two cases:

• Suppose that d0, . . . , dt−1 are linearly independent over Fp, then
by Gaussian elimination, we know that there exists a nonzero
element α, which is a linear combination of d0, . . . , dt−2 and
β ∈ L(I) with w(α) ≤ k − (t − 2), and aα = β. This means
that a ∈ F1.
• Suppose that d0, . . . , dt−1 are linearly dependent over Fp. We

now see that there exits j ∈ {1, . . . , t− 1} such that

dj = c0d0 + c1d1 + · · ·+ cj−1dj−1

with c0, c1, . . . , cj−1 ∈ Fp. By (4) and (5) it is equivalent to the
relations

aj = c0 + c1a+ · · ·+ cj−1a
j−1.

Thus in that case a ∈ F2.
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For the cardinality of F1 we immediately get

(6) ]F1 ≤
(

k

t− 2

)
p2k−t+2.

To estimate ]F2 we note any a ∈ F2 is a root of an irreducible
polynomial of degree at most t over Fp. Since we also have a ∈ Fps ,
from the well-known properties of irreducible polynomials over finite
fields (see [13], for example) we derive∏

a∈F2

(X − a)
∣∣∣ ∏

j|s
j<t

(
Xpj − a

)
.

Therefore

(7) ]F2 ≤
∑
j|s
j<t

pj ≤
dt∑
j=1

pj ≤ 2pdt .

Combining (6) and (7) we conclude the proof. ut

Using the trivial estimate dt ≤ t − 1 we immediately see that the
cardinality of the set F(I) of Theorem 3 satisfies

]F(I) < 2pt−1 +

(
k

t− 2

)
p2k−t+2.

Thus, if the number of approximation can be optimised then with t =
k + 1 we derive:

Corollary 1. There exists a polynomial time algorithm that given a
set I ⊆ {1, . . . , s} of cardinality k = ]I and t = k + 1 consecutive
I-approximations wi to ui, i = 0, . . . , k, finds u0 correctly, provided
a 6∈ F(I), for a certain set F(I) ⊂ Fq of cardinality

]F(I) < (k + 2)pk+1

that depends only on I.

Finally, we notice that although the conditions of Theorem 3 requires
t ≥ 3 approximations, a nontrivial result is also possible in the case
t = 2.

Theorem 4. There exists a polynomial time algorithm that given a
set I ⊆ {1, . . . , s} of cardinality k = ]I and t = 2 consecutive I-
approximations wi to ui, i = 0, . . . , t − 1, finds u0 correctly provided
a 6∈ F(I), where F(I) ⊂ Fq is a certain set of cardinality ]F(I) < p2k

that depends only on I.
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Proof. The proof is a verbatim of that of Theorem 3, except that we
note there is only one case: d0, d1 are always linearly independent. ut

5. Comments and Open Problems

We note that the result of Corollary 1 is nontrivial for the values of
k with, say, k < s − c0 log s/ log p for any constant c0 > 1. Extending
this result to large values of k, say, up to k ≤ s−c0 with some constant
c0 is an interesting open question.

In our argument it is necessary that the positions where the approxi-
mations differ from the correct values are always the same. Eliminating
this condition, that is, recovering u0 from some approximations wi to
ui, i = 0, . . . , t−1, in Hamming metrics is another challenging problem.
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