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Abstract. The nonlinear congruential method is an attractive alterna-
tive to the classical linear congruential method for pseudorandom num-
ber generation. In this paper we present new discrepancy bounds for
sequences of s-tuples of successive nonlinear congruential pseudorandom
numbers of higher orders modulo a composite integer M .

1 Background

For an integer M > 1, we denote by ZZM the residue ring modulo M . In this paper
we present some distribution properties of a generalization of pseudorandom
number generators, first introduced in [7], defined by a recurrence

un+1 ≡ f(g1(un, . . . , un−r+1), . . . , gr(un, . . . , un−r+1)) (mod M), (1)

where

f(X1, . . . , Xr), g1(X1, . . . , Xr), . . . , gr(X1, . . . , Xr) ∈ ZZM [X1, . . . , Xr]

for n ≥ r − 1 with some initial values u0, . . . , ur−1.
To study this pseudorandom number generator, we define the sequence of

polynomials fk(X) ∈ ZZM [X], with X = X1, . . . , Xr by the recurrence relation

fk(X) ≡ fk−1(g1(X), . . . , gr(X)) (mod M), k ≥ 1 (2)

where f0(X) = f(X).
It is obvious that (1) becomes periodic with some period t ≤ M r. Through-

out this paper we assume that this sequence is purely periodic, i.e. un = un+t

beginning with n = 0, otherwise we consider a shift of the original sequence.
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Although the distribution of nonlinear congruential generators has been stud-
ied extensively, see [5,6,9] for instance, much less is known for its higher orders
analogue. A result for a class of polynomials for prime moduli was established
in [7], where this was later extended to a larger family of polynomials in [8]. In
this paper we show a generalization of this result to a larger class of pseudoran-
dom number generators.

1.1 Notation and First Results

This section begins with some notation. It will be assumed that N, Ai, Bi and
bi represent integer positive numbers and 0 is the r-dimensional 0 vector. The
elements of ZZM will be identified with the integers {0, . . . , M − 1}. For this
reason, we can define eM (z) = exp(2πiz/M) for any element z ∈ ZZM .

For a polynomial f , G is the gcd of the coefficients of nonconstant monomials
with M .

We will denote f (p)(X) ≡ f(X) (mod p) of total degree d′ for a polynomial f
with integer coefficients and total degree d. Finally, we define degXr

f , the degree
of the coefficient Xr of the polynomial f , to be degXr

modulo every prime factor
p of M .

Lemma 1. Given a polynomial in the ring ZZM [X],

f(X) ≡
d1∑

i1=0

. . .

dr∑

ir=0

bi1,...,irX
i1
1 . . .X ir

r (mod M)

with degXr
f ≥ 1 , total degree d, then exist polynomials

h1(Xr), . . . , hr−1(Xr) of degree less than d(�log d� + 1) such that

g(p)(Xr) = f (p)(a1 + h
(p)
1 (Xr), . . . , ar−1 + h

(p)
r−1(Xr), Xr) (3)

is a nonconstant polynomial for any p|M , p � |G and any values
a1, . . . , ar−1 ∈ ZZM .

Proof. Let p|M be a prime number not dividing G and D = �log d� + 1. By the
definition of G, we note that f (p)(X) is not a constant polynomial and it can be
expressed as f (p)(X) = h(X1, . . . , Xr−1)Xd′

r +f ′(X) where f ′(X) is a polynomial
of degree stricly less than d′ in Xr. If d′ = 0 then f (p)(X) = h(X1, . . . , Xr−1),
but in any case h is a not a constant polynomial.

Let IF be an extension field of degree D over ZZp. By the cardinality of IF,
there exist ξ1, . . . , ξr−1 ∈ IF such as h(ξ1, . . . , ξr−1) �= 0.

It is easy to check that

f (p)(X1 + ξ1Xr, . . . , Xr−1 + ξr−1Xr, Xr) = h(ξ1, . . . , ξr−1)Xd′′
r + f ′′(X) (4)

where d ≥ d′′ > 0 and f ′′(X) is a polynomial with total degree less than d′′ − 1
in Xr. Let E be a extension field of degree d + 1 over IF and let θ be a defining
element of E over both ZZp and E, i.e. E ≡ ZZp(θ) ≡ IF(θ).
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The evaluation of the polynomial in (4)

f (p)(a1 + ξ1θ, . . . , ar−1 + ξr−1θ, θ) �= 0, a1, . . . , ar−1 ∈ ZZp (5)

because the degree of the minimal polynomial of θ over IF is d + 1.

For i = 1, . . . , r−1, each element ξiθ can be expressed as h
(p)
i (θ), where h

(p)
i (Xr) ∈

ZZp[Xr]. Applying the Chinese Remainder Theorem to the different polynomials
h

(p)
i (Xr) for each prime p|M , we find the corresponding hi(Xr). By construction,

f (p)(a1 + h
(p)
1 (Xr), . . . , ar−1 + h

(p)
r−1(Xr), Xr) is not the zero polynomial by (5)

for any integer values a1, . . . , ar−1.

Now, we proceed to define a family of polynomials depending on g1(X),. . . ,gr(X)
which will be the main subject of the article.

Let IK be a field. We denote by T as the set of polynomials, f , such that∑s−1
j=0 aj (fk+j(X) − fl+j(X)) is nonconstant, where fi(X) are defined by (2)

and aj ∈ IK, with at least one aj �= 0 and k �= l.
Here is a sufficient condition for a certain polynomial to be in class T . To

prove the result, we need some background.
We start defining a homomorphism of polynomial rings φ : IK[X1, . . . , Xr] →

IK[X1, . . . , Xr] with φ(Xi) = gi(X).
Polynomials g1(X), . . . , gr(X) are said to be algebraically independent if the

application φ is injective. φk denotes the composition of the function φ k times
with φ0 being the identity map.

Lemma 2. Let f(X) be a polynomial in IK[X] and g1(X), . . . , gr(X) be al-
gebraically independent and IF be an extension field of IK. Suppose that there
exists (b1, . . . , br), (c1, . . . , cr) ∈ IFr two different zeros of the polynomials
g1(X), . . . , gr(X) with f(c1, . . . , cr) �= f(b1, . . . , br), then f ∈ T .

Proof. Suppose that k > l, and exist a0, . . . , as−1 ∈ IK with a0 �= 0 satisfying;∑s−1
j=0 aj (fk+j(X) − fl+j(X)) = K, where K ∈ IK.
Then

s−1∑

j=0

aj (fk+j(X) − fl+j(X)) = φk−1
(∑s−1

j=0 aj (f1+j(X) − f1−k+l+j(X))
)

and this implies K =
∑s−1

j=0 aj ((f1+j(X)) − (f1−k+l+j(X))) because φ is an
injective map.

By equation (2), we notice that for k �= 0, we have that fk(b1, . . . , br) =
fk−1(0, . . . , 0) = fk(c1, . . . , cr), so substituting in the equation both points and
subtracting the result, we get that a0 = 0.

The last remark in this section is that conditions in this criterion can be tested
using Groebner basis.
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1.2 Exponential Sums and Previous Results

We start by listing some previous bounds on exponential sums which will be
used to establish our main results.

The first Lemma is the well-known Hua-Loo Keng bound in a form which is
a relaxation of the main result of [11] (see also Section 3 of [3] and Lemma 2.2
in [6]), followed by its multidimensional version.

Lemma 3. For any polynomial f(X) = bdX
d + . . . + b1X + b0 ∈ ZZM [X ] of

degree d ≥ 1, there is a constant c0 > 0 where the bound
∣∣∣∣∣

∑

x∈ZZM

eM (f(x))

∣∣∣∣∣ < ec0dM1−1/dG1/d

holds, where G = gcd(bd, . . . , b1, M).

Lemma 4. Let f(X), with total degree d ≥ 2 and degree greater than one in
Xr, be a polynomial with integer coefficients, with G = 1. Then the bound

∣∣∣∣∣∣

∑

x1,...,xr∈ZZM

eM (f(x1, . . . , xr))

∣∣∣∣∣∣
≤ ec0d2(log d+1)M r−1/(d2(log d+1))

holds, where c0 is some positive constant.

Proof. We recall the univariate case that appears as Lemma 3. Then let

g(X) = f(X1 + h1(Xr), X2 + h2(Xr), . . . , Xr)

where hi(Xr) are the polynomials defined in Equation (3). It is easy to see that
∣∣∣
∑

eM (f(x1, x2 . . . , xr))
∣∣∣ =

∣∣∣
∑

eM (g(x1, x2 . . . , xr))
∣∣∣ .

where the summations are taken over x1, x2 . . . , xr ∈ ZZM since (x1, . . . , xr) →
(x1 + h1(xr), x2 + h2(xr), . . . , xr) merely permutates the points. By Lemma 1,
for any selection x1, . . . , xr−1 this polynomial is not constant modulo p and the
gcd of the coefficients of g and M are coprime. Hence, applying Lemma 3, we
have

∣∣∣∣∣∣

∑

x1,x2...,xr∈ZZM

eM (g(x1, x2 . . . , xr))

∣∣∣∣∣∣

≤
∑

x1,...,xr−1∈ZZM

∣∣∣∣∣
∑

xr∈ZZM

eM (g(x1, x2 . . . , xr))

∣∣∣∣∣

≤ ec0d2(log d+1)M r−1/d2(log d+1).

We obtain the last step by noting that the degree of g in Xr can be bounded by
d2(log d + 1) and so we are done.
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This now allows us to state and prove the following Lemma.

Lemma 5. Let f(X) be a polynomial with integer coefficients with
degXr

f ≥ 1 and total degree d. Recalling the definition of G,
∣∣∣∣∣∣

∑

x1...,xr∈ZZM

eM (f(x1, . . . , xr))

∣∣∣∣∣∣
≤ ec0d2(log d+1)M r(G/M)1/d2(log d+1)

Proof. We let
fG(x1, . . . , xr) = (f(x1, . . . , xr) − f(0))/G

and m = M/G.
Then,

∣∣∣∣∣∣

∑

x1,...,xr∈ZZM

eM (f(x1, . . . , xr))

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

x1,...,xr∈ZZM

eM (f(x1, . . . , xr) − f(0))

∣∣∣∣∣∣

= Gr

∣∣∣∣∣∣

∑

x1,...,xr∈ZZm

em (fG(x1, . . . , xr))

∣∣∣∣∣∣

Now fG(x1, . . . , xr) satisfies the conditions in Lemma 4, so:

Gr

∣∣∣∣∣∣

∑

x1,...,xr∈ZZm

em(fG(x1, . . . , xr))

∣∣∣∣∣∣
≤ Grec0d2(log d+1)(m)r−1/d2(log d+1)

and so the result follows.

Lastly, we will make use of the following lemma, which is essentially the multi-
dimensional version of Lemma 2.3 of [6].

Lemma 6. Let f(X) ∈ ZZM [X] be a polynomial such that f (p) ∈ T for every
p|M and let

s−1∑

j=0

aj (fk+j(X) − fl+j(X)) =
d1∑

i1=0

. . .

dr∑

ir=0

bi1,...,irX
i1
1 . . . X ir

r ,

where k �= l. Recalling the definition of G, the following equality
G = gcd(a0, . . . , as−1, M) holds.

Proof. We put Aj = aj/G and m = M/G, j = 0, . . . , s − 1. In particular,

gcd(A0, . . . , As−1, m) = 1. (6)

It is enough to show that the polynomial

H(X) =
s−1∑

j=0

Aj (fk+j(X) − fl+j(X))

is nonconstant modulo any prime p|m, for k �= l.
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By definition, we have

H(p)(X) ≡
s−1∑

j=0

Aj

(
f

(p)
k+j(X) − f

(p)
l+j(X)

)
(mod p)

and H(p)(X) can not be a constant polynomial, since f (p) ∈ T and so we are
done.

1.3 Discrepancy

For a sequence of N points

Γ = (γ0,n, . . . , γs−1,n)N−1
n=0 (7)

of the half-open interval [0, 1)s, denote by ΔΓ its discrepancy, that is,

ΔΓ = sup
B⊆[0,1)s

∣∣∣∣
TΓ (B)

N
− |B|

∣∣∣∣ ,

where TΓ (B) is the number of points of the sequence Γ which hit the box

B = [α0, β0) × . . . × [αs−1, βs−1) ⊆ [0, 1)s

and the supremum is taken over all such boxes.
For an integer vector a = (a0, . . . , as−1) ∈ ZZs we put

|a| = max
i=0,...,s−1

|ai|, r(a) =
s−1∏

i=0

max{|ai|, 1}. (8)

We need the Erdös–Turán–Koksma inequality (see Theorem 1.21 of [4]) for the
discrepancy of a sequence of points of the s-dimensional unit cube, which we
present in the following form.

Lemma 7. There exists a constant Cs > 0 depending only on the dimension s
such that, for any integer L ≥ 1, for the discrepancy of a sequence of points (7)
the bound

ΔΓ < Cs

⎛

⎝ 1
L

+
1
N

∑

0<|a|≤L

1
r(a)

∣∣∣∣∣∣

N−1∑

n=0

exp

⎛

⎝2πi
s−1∑

j=0

ajγj,n

⎞

⎠

∣∣∣∣∣∣

⎞

⎠

holds, where |a|, r(a) are defined by (8) and the sum is taken over all integer
vectors

a = (a0, . . . , as−1) ∈ ZZs

with 0 < |a| ≤ L.

The currently best value of Cs is given in [2].
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2 Discrepancy Bound

Let the sequence (un) generated by (1) be purely periodic with an arbitrary
period t. For an integer vector a = (a0, . . . , as−1) ∈ ZZs we introduce the expo-
nential sum

Sa(N) =
N−1∑

n=0

eM

⎛

⎝
s−1∑

j=0

ajun+j

⎞

⎠ .

Theorem 1. Let the sequence (un), given by (1) with a polynomial f (p)(X) ∈ T ,
for every prime divisor p of M , with total degree d and degXr

f ≥ 1, be purely
periodic with period t and t ≥ N ≥ 1. The bound

max
gcd(a0,...,as−1,M)=G

|Sa(N)| = O
(
N1/2M r/2(log log(M/G))−1/2

)

holds, where G = gcd(a0, . . . , as−1, M) and the implied constant depends only on
s and d.

Proof. The proof follows a strategy first seen in [9].
Select any a = (a0, . . . , as−1) ∈ ZZs with gcd(a0, . . . , as−1, M) = G.

It is obvious that for any integer k ≥ 0 we have
∣∣∣∣∣∣
Sa(N) −

N−1∑

n=0

eM

⎛

⎝
s−1∑

j=0

ajun+k+j

⎞

⎠

∣∣∣∣∣∣
≤ 2k.

Therefore, for any integer K ≥ 1,

K|Sa(N)| ≤ W + K2,

where

W =

∣∣∣∣∣∣

N−1∑

n=0

K−1∑

k=0

eM

⎛

⎝
s−1∑

j=0

ajun+k+j

⎞

⎠

∣∣∣∣∣∣
≤

N−1∑

n=0

∣∣∣∣∣∣

K−1∑

k=0

eM

⎛

⎝
s−1∑

j=0

ajun+k+j

⎞

⎠

∣∣∣∣∣∣
.

Accordingly, letting x = x1, . . . , xr, we obtain

W 2 ≤ N

N−1∑

n=0

∣∣∣∣∣∣

K−1∑

k=0

eM

⎛

⎝
s−1∑

j=0

ajfk+j (un, . . . , un−r+1)

⎞

⎠

∣∣∣∣∣∣

2

≤ N
∑

x∈ZZr
M

∣∣∣∣∣∣

K−1∑

k=0

eM

⎛

⎝
s−1∑

j=0

ajfk+j (x)

⎞

⎠

∣∣∣∣∣∣

2

= N
K−1∑

k=0

K−1∑

l=0

∑

x∈ZZr
M

eM

⎛

⎝
s−1∑

j=0

aj (fk+j (x) − fl+j (x))

⎞

⎠ .
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If k = l, then the inner sum is trivially equal to M r. There are K such sums.
Otherwise the polynomial

∑s−1
j=0 aj (fk+j (X) − fl+j (X)) is nonconstant since

f (p) ∈ T . Hence we can apply Lemma 5 and Lemma 6 (so that we only need
consider aj , j = 0, . . . , s − 1, instead of the coefficients of f) to the inner sum,
obtaining the upper bound

ec0d3(K+s−2)
M r−1/d3(K+s−2)

G1/d3(K+s−2)

for at most K2 sums and positive constant c0 and noting that
d2(log d + 1) < d3.
Hence,

W 2 ≤ KNM r + K2Nec0d3(K+s−2)
M r−1/d3(K+s−2)

G1/d3(K+s−2)
.

Now, without too much loss of generality we may assume (d + 1)3(K+s−2) ≥ 2.
Next we put K = �log log(M/G)/(3c log(d + 1))�, for some c > 2 to guarantee
that the first term dominates and the result follows.

Next, let Ds(N) denote the discrepancy of the points given by
(un

M
, . . . ,

un+s−1

M

)
, n = 0, . . . , N − 1,

in the s-dimensional unit cube [0, 1)s.

Theorem 2. If the sequence (un), given by (1) with a polynomial f (p)(X) ∈ T ,
for every prime divisor p of M , with total degree d and degXr

f ≥ 1 is purely
periodic with period t with t ≥ N ≥ 1, then the bound

Ds(N) = O
(
N−1/2M r/2(log log log M)s/(log log M)1/2

)

holds, where the implied constant depends only on s and d.

Proof. The statement follows from Lemma 7, taken with

L =
⌈
N1/2M−r/2(log log M)1/2

⌉

and the bound of Theorem 1, where all occurring G = gcd(a0, . . . , as−1, M) are
at most L.

References

1. Arkhipov, G.I., Chubarikov, V.N., Karatsuba, A.A.: Trigonometric Sums in Num-
ber Theory and Analysis, de Gruyter Expositions in Mathematics, Berlin, vol. 39
(2004)

2. Cochrane, T.: Trigonometric approximation and uniform distribution modulo 1.
Proc. Amer. Math. Soc. 103, 695–702 (1988)

3. Cochrane, T., Zheng, Z.Y.: A Survey on Pure and Mixed Exponential Sums Modulo
Prime Numbers. Proc. Illinois Millenial Conf. on Number Theory 1, 271–300 (2002)



On the Distribution of Nonlinear Congruential Pseudorandom Numbers 203

4. Drmota, M., Tichy, R.F.: Sequences, discrepancies and applications. Springer,
Berlin (1997)

5. El-Mahassni, E.D., Shparlinski, I.E., Winterhof, A.: Distribution of nonlinear
congruential pseudorandom numbers for almost squarefree integers. Monatsh.
Math. 148, 297–307 (2006)

6. El-Mahassni, E.D., Winterhof, A.: On the distribution of nonlinear congruential
pseudorandom numbers in residue rings. Intern. J. Number Th. 2(1), 163–168
(2006)

7. Griffin, F., Niederreiter, H., Shparlinski, I.: On the distribution of nonlinear recur-
sive congruential pseudorandom numbers of higher orders. In: Fossorier, M.P.C.,
Imai, H., Lin, S., Poli, A. (eds.) AAECC 1999. LNCS, vol. 1719, pp. 87–93.
Springer, Heidelberg (1999)

8. Gutierrez, J., Gomez-Perez, D.: Iterations of multivariate polynomials and discrep-
ancy of pseudorandom numbers. In: Bozta, S., Sphparlinski, I. (eds.) AAECC 2001.
LNCS, vol. 2227, pp. 192–199. Springer, Heidelberg (2001)

9. Niederreiter, H., Shparlinski, I.E.: On the distribution and lattice structure of non-
linear congruential pseudorandom numbers. Finite Fields and Their Appl. 5, 246–
253 (1999)

10. Niederreiter, H., Shparlinski, I.E.: Exponential sums and the distribution of in-
versive congruential pseudorandom numbers with prime-power modulus. Acta
Arith. 92, 89–98 (2000)
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