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Abstract

Nonlinear congruential pseudorandom number generators can have
unexpectedly short periods. Shamir and Tsaban introduced the class
of counter-dependend generators which admit much longer periods. In
this paper, using a technique recently developed by Niederreiter and
Shparlinski, we present discrepancy bounds for sequences of s-tuples
of successive pseudorandom numbers generated by counter-dependent
generators modulo a composite M .

1 Introduction

In this paper we study some distribution properties of counter-dependent
nonlinear congruential pseudorandom number generators introduced by [26]
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and defined by a recurrence congruence modulo an integer M of the form

un+1 = f(un, n) (mod M), 0 ≤ un ≤ M − 1, n = 0, 1, . . . , (1)

with some initial value u0, where f(X, Y ) ∈ ZZM [X, Y ] is a polynomial over
the residue ring ZZM = ZZ/MZZ.

It is obvious that the sequence (1) eventually becomes periodic with some
period t ≤ M2. Throughout this paper we assume that this sequence is purely
periodic, that is, un = un+t beginning with n = 0, otherwise we consider a
shift of the original sequence.

In the case that f(X, Y ) = h(X) ∈ ZZM [X] does not depend on the second
variable we get the well-studied nonlinear congruential pseudorandom num-
ber generators, see [5, 7, 10, 18] for the distribution of the elements and for
power distribution in prime fields see [22].

However, in this case the period t is at most M and it is possible that the
generated sequences have unexpectedly short period.

In the case that f(X, Y ) = g(X) + Y ∈ ZZM [X, Y ] we get the counter-
assisted nonlinear congruential pseudorandom number generators defined in
[26]. These generators are special nonlinear congruential pseudorandom num-
ber generators of order 2 defined by

un+1 = F (un, un−1) (mod M), 0 ≤ un ≤ M − 1, n = 1, 2, . . .

where F (X, Y ) = g(X) − g(Y ) + X + 1 with some special initial values u0

and u1 satisfying u1 = g(u0) + 1. When the order is greater than two, only
in the case M = p is a prime, have been analyzed in [9, 11, 28].

Distribution and structural properties of general counter-dependent nonlin-
ear congruential generators over finite fields have first been analyzed in [6, 22].
Here, we establish results about the distribution about residue rings using a
technique recenlty introduced in [18]. We start this article introducting some
notations and stating known theorems. In Section 3 we prove results about
the distribution of the points(un

M
, . . . ,

un+s−1

M

)
(2)

in the s-dimensional unit cube [0, 1)s in terms of a discrepancy bound, where
n runs through a part of the period, n = 0, . . . , N − 1, 1 ≤ N ≤ t.
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A uniform distribution of these points, i.e., a low discrepancy, is a desirable
feature for pseudorandom numbers in quasi-Monte Carlo methods, see e.g.
[15, 17, 21, 29].

Finally, in Section 4, we show how for some M , we obtain improvements on
these distribution results.

2 Definitions and Auxiliary Results

Through this article log represent the logarithm base 2. Given an integer M ,
we define ω(M) is the number of distinct prime divisors of M and τ(M) is
the number of divisors of M .

Lemma 1. For every sufficiently large M , the bounds

τ(M) = O(M
1

log log M )

and

ω(M) = O(log M/ log log M)

hold.

Proof. The bound for τ(M) follows directly from Theorem 317 in [12], and
noting that 2ω(M) ≤ τ(M), then the bound for ω(M) also follows. ut

These bounds hold for suffiently large M , but for most values of M we can
get improvements.

Lemma 2. The bounds

τ(M) ≤ (log M)2 and ω(M) ≤ 3 log log M

hold for most values of M .

Proof. From Hardy and Ramanujan (see [14]), we note that for most M ,

τ(M) = (log M)log 2+o(1).

Further, since
2ω(M) ≤ τ(M),

then ω(M) ≤ 3 log log M for most values of M . ut
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For a sequence of N points

Γ = (γ1,n, . . . , γs,n)N
n=1 (3)

of the half-open interval [0, 1)s, denote by ∆Γ its discrepancy , that is,

∆Γ = sup
B⊆[0,1)s

∣∣∣∣TΓ(B)

N
− |B|

∣∣∣∣ ,
where TΓ(B) is the number of points of the sequence Γ which hit the box

B = [α1, β1)× . . .× [αs, βs) ⊆ [0, 1)s

and the supremum is taken over all such boxes. For an integer vector a =
(a1, . . . , as) ∈ ZZs we put

|a| = max
i=1,...,s

|ai|, r(a) =
s∏

i=1

max{|ai|, 1}. (4)

Also, denote by gcd(α0, . . . , αN−1) the greatest common divisor of the inte-
gers α0, . . . , αN−1. We need the Erdös–Turán–Koksma inequality (see Theo-
rem 1.21 of [3]) for the discrepancy of a sequence of points of the s-dimensional
unit cube, which we present in the following form.

Lemma 3. There exists a constant Cs > 0 depending only on the dimension
s such that, for any integer L ≥ 1, for the discrepancy of a sequence of
points (3) the bound

∆Γ < Cs

 1

L
+

1

N

∑
0<|a|≤L

1

r(a)

∣∣∣∣∣
N∑

n=1

exp

(
2πi

s∑
j=1

ajγj,n

)∣∣∣∣∣


holds, where |a|, r(a) are defined by (4) and the sum is taken over all integer
vectors

a = (a1, . . . , as) ∈ ZZs

with 0 < |a| ≤ L.

The currently best value of Cs is given in [2]. We put

e(z) = exp(2πiz/M).

4



For a polynomial f(X, Y ) ∈ ZZM [X, Y ] of total degree d we define the se-
quence of polynomials fk(X, Y ) ∈ ZZM [X, Y ] by the recurrence relation

fk+1(X, Y ) = f (fk(X, Y ), Y + k) , k = 0, 1, . . . , (5)

where f0(X, Y ) = X. It is clear that deg fk ≤ dk and that

un+k = fk (un, n) . (6)

This allows us to state the following lemma which we will also need and can
also be found in [6].

Lemma 4. Let f(X, Y ) ∈ ZZM [X, Y ] be a polynomial of local degree in X of
value dp ≥ 2 modulo every prime divisor p of M and fk(X, Y ) is defined as

in (5). Then the local degree in X of f
(p)
k (X, Y ) = fk(X, Y ) (mod p) equals

dk
p, k = 0, 1, . . ..

Proof. It is trivial to see that

f
(p)
k (X, Y ) = f (p)(f

(p)
k−1(X, Y ), Y + K − 1) (mod p).

So, using a Lemma in the article [6], we have finished ut

The following lemma is the 2-dimensional version of Theorem 2.6 in [1] in a
slightly weaker form.

Lemma 5. Let F (X, Y ) be a polynomial with integer coefficients with the
gcd of all of them, except the independent term, is one and total degree d
then the bound ∣∣∣∣∣

M∑
x,y=1

eM(F (x, y))

∣∣∣∣∣ ≤ e14d32ω(M)(τ(M))M2−1/d

holds.

This now allows us to state and prove the following Lemma.

Lemma 6. Let F (X, Y ) be a polynomial with integer coefficients and total
degree d. Then the bound∣∣∣∣∣

M∑
x,y=1

eM(F (x, y))

∣∣∣∣∣ ≤ e14d32ω(M/G)(τ(M/G))M2−1/dG1/d

holds, where G is the gcd of all the coefficients of F except the independent
term.
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Proof. We suppose that G > 1 otherwise Lemma 5 applies.

Let FG(x, y) = F (x, y)/G and m = M/G. Then,∣∣∣∣∣
M∑

x,y=1

eM(F (x, y))

∣∣∣∣∣ = G2

∣∣∣∣∣
m∑

x,y=1

em(FG(x, y))

∣∣∣∣∣ ≤ G2e14d32ω(m)τ(m)(m)2−1/d.

(7)
and the result follows. ut

Now, we are going to introduce some results about the sequence fk(X, Y )
that we will have to use in the proofs.

Lemma 7. Let f(X, Y ) ∈ ZZM [X, Y ] be a polynomial of local degree in X,
dp ≥ 2 modulo every prime divisor p of M and let

s−1∑
j=0

aj (fk+j(X, Y )− fl+j(X, Y )) =

D1∑
i1=0

D2∑
i2=0

Bi1i2X
iY j.

Then, for any k 6= l we have that these equality

gcd(B10, B01, . . . , BD1D2 , M) = gcd(a0, . . . , as−1, M).

holds.

Proof. We put Aj = aj/G, j = 0, . . . , s − 1 and m = M/G, where G =
gcd(a0, . . . , as−1, M). In particular,

gcd(A0, . . . , As−1, m) = 1. (8)

It is enough to show that

H(X, Y ) =
s−1∑
j=0

Aj (fk+j(X, Y )− fl+j(X, Y ))

is not a constant polynomial modulo any prime p|m.

We take f (p) to be the reduction of f modulo p. By our assumption, the
local degree of X in f (p) is dp ≥ 2. Denoting by f

(p)
k the kth iteration of f (p)

defined similarly to (5) and by H(p)(X, Y ) as H(X, Y ) mod p. Thus,

H(p)(X, Y ) =
s−1∑
j=0

Aj

(
f

(p)
k+j(X, Y )− f

(p)
l+j(X, Y )

)
(mod p).
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Let h be the largest j = 1, . . . , s with gcd(Aj, p) = 1 (we see from (8) that
such h exists). Then for k > l the polynomial H(p)(X, Y ) has local degree in
X exactly dk+h

p , using lemma 4 and finishing the proof. ut

3 Discrepancy Bound

Let the sequence (un) generated by (1) be purely periodic with an arbitrary
period t. For an integer vector a = (a0, . . . , as−1) ∈ ZZs we introduce the
exponential sum

Sa(N) =
N−1∑
n=0

e

(
s−1∑
j=0

ajun+j

)
.

Theorem 8. Let the sequence (un), given by (1) with a polynomial
f(X, Y ) ∈ ZZM [X, Y ] with f(X, Y ) of total degree d and local degree in X, at
least 2 modulo every prime divisor p of M , be purely periodic with period t,
and t ≥ N ≥ 1, then the bound

max
gcd(a0,...,as−1,M)=G

|Sa(N)| = O
(
N1/2M(log log log(M/G))−1/2

)
holds, where the implied constant depends only on s and d.

Proof. Select any a = (a0, . . . , as−1) ∈ ZZs with gcd(a0, . . . , as−1, M) = G. It
is obvious that for any integer k ≥ 0 we have∣∣∣∣∣Sa(N)−

N−1∑
n=0

eM

(
s−1∑
j=0

ajun+k+j

)∣∣∣∣∣ ≤ 2k.

Therefore, for any integer K ≥ 1,

K|Sa(N)| ≤ W + K2,

where

W =

∣∣∣∣∣
N−1∑
n=0

K−1∑
k=0

eM

(
s−1∑
j=0

ajun+k+j

)∣∣∣∣∣ ≤
N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

eM

(
s−1∑
j=0

ajun+k+j

)∣∣∣∣∣ .
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Accordingly, we obtain

W 2 ≤ N

N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

eM

(
s−1∑
j=0

ajfk+j (un, n)

)∣∣∣∣∣
2

≤ N

M∑
x,y=1

∣∣∣∣∣
K−1∑
k=0

eM

(
s−1∑
j=0

ajfk+j (x, y)

)∣∣∣∣∣
2

= N

K−1∑
k=0

K−1∑
l=0

M∑
x,y=1

eM

(
s−1∑
j=0

aj (fk+j (x, y)− fl+j (x, y))

)
.

If k = l, then the inner sum is trivially equal to M2. There are K such sums.
Otherwise, using Lemma 5, the polynomial

∑s−1
j=0 aj (fk+j (x, y)− fl+j (x, y))

is nonconstant and has total degree at most dK+s−2. Hence we can apply
Lemmas 6 and 7 together with Lemma 1 to the inner sum, obtaining the
upper bound

ec0dK+s−2

M2−1/dK+s−2+1/ log log MG1/dK+s−2

for at most K2 sums. Hence,

W 2 ≤ KNM2 + K2Nec0dK+s−2

M2−1/dK+s−2+1/ log log MG1/dK+s−2

Now, without too much loss of generality we may assume dK+s−2 ≥ 2. Next
we put K = dc1 log log log(M/G)e, for some constant c1 to guarantee that
the first term dominates and the result follows. ut

Next, let Ds(N) denote the discrepancy of the points given by(un

M
, . . . ,

un+s−1

M

)
, n = 0, . . . , N − 1,

in the s-dimensional unit cube [0, 1)s. Using the last theorem, we proof the
following:

Theorem 9. If the sequence (un), given by (1) with a polynomial
f(X, Y ) ∈ ZZM [X, Y ] with f(X, Y ) of total degree d and local degree in X at
least 2 modulo every prime divisor of M , is purely periodic with period t and
t ≥ N ≥ 1, then the bound

Ds(N) = O
(
N−1/2M(log log log log M)s/(log log log M)1/2

)
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holds, where the implied constant depends only on s and d.

Proof. The statement follows from Lemma 3, taken with

L =
⌈
N1/2M−1(log log log M)1/2

⌉
and the bound of Theorem 8, where all occurring G = gcd(a1, . . . , as, M) are
at most L. ut

4 Improvements on bounds for some M

In this section we will show that for some values of M , we can improve our
bounds. Let Sa(N) and Ds(N) be defined as before.

Theorem 10. Let the sequence (un), given by (1) with a polynomial
f(X, Y ) ∈ ZZM [X, Y ] with f(X, Y ) of total degree d and local degree in X, at
least 2 modulo every prime divisor of M , be purely periodic with period t and
t ≥ N ≥ 1. Also suppose that

τ(M) ≤ (log M)2 and ω(M) ≤ 3 log log M.

Then the bound

max
gcd(a0,...,as−1,M)=G

|Sa(N)| = O
(
N1/2M(log log(M/G))−1/2

)
holds, where the implied constant depends only on s and d.

The proof is basically the same, using the bounds given in the theorem instead
of Lemma 2.

Recalling lemma 1 we obtain:

Corollary 11. Let the sequence (un), given by (1) with a polynomial
f(X, Y ) ∈ ZZM [X, Y ] with f(X, Y ) of total degree d and local degree in X at
least 2 modulo every prime divisor of M , be purely periodic with period t and
t ≥ N ≥ 1, then for most M , the bound

max
gcd(a0,...,as−1,M)=G

|Sa(N)| = O
(
N1/2M(log log(M/G))−1/2

)
holds, where the implied constant depends only on s and d.
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Using Theorem 10

Theorem 12. Let the sequence (un), given by (1) with a polynomial
f(X, Y ) ∈ ZZM [X, Y ] with f(X, Y ) of total degree d and local degree in X at
least 2 modulo every prime divisor of M , be purely periodic with period t and
t ≥ N ≥ 1. Also suppose that M satisfy the inequalities:

τ(M) ≤ (log M)2 and ω(M) ≤ 3 log log M.

Then the bound

Ds(N) = O
(
N1/2M(log log log M)s/(log log M)1/2

)
holds, where the implied constant depends only on s and d.

And again, if we used that for many choices of M , the last inequalities holds:

Corollary 13. If the sequence (un), given by (1) with a polynomial
f(X, Y ) ∈ ZZM [X, Y ] with f(X, Y ) of total degree d and local degree in X at
least 2 modulo every prime divisor of M , be purely periodic with period t and
t ≥ N ≥ 1, then for almost all M the bound

Ds(N) = O
(
N−1/2M(log log log M)s/(log log M)1/2

)
holds, where the implied constant depends only on s and d.

5 Open Questions

We remark that the technique used in [23] can not be used here. It would be
useful if an improvement using such or a similar method could be found.
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