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Abstract The Naor-Reingold sequences with elliptic curves are used in cryptogra-

phy due to their large linear complexity. Here we provide a new bound on the linear

complexity of these sequences. Our result improves the previous one obtained by I.E.

Shparlinski and J.H. Silverman and holds in more cases.
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1 Introduction

In this paper we provide a bound for the linear complexity of the Naor-Reingold se-

quences in elliptic curves. The original sequence was presented in Naor and Reingold

(2004) as a primitive for cryptographic protocols. In Shparlinski (2000b), the author

introduced analog sequences based on elliptic curves.

For a prime p, we denote by Fp the field with p elements. The elements of Fp will be

identified with the set of integers {0, . . . , p− 1}.
Let E be an elliptic curve over Fp, that is a rational curve given by the following

Weierstrass equation

Y 2 = X3 + aX + b, A, B ∈ Fp, 4A3 + 27B2 6= 0.

It is well-known that points of the curve over Fp, including the special point O at

infinity, have a group structure with an appropriate composition rule where O is the

neutral element.

Let G be a point of the curve E with prime order l. We introduce the auxiliary function

ϕa(x) := ax0
0 · · · a

xn−1

n−1 ∈ F∗
l where x =

∑n−1
i=0 xi2

i is the binary representation of x.
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Then, each vector a = (a0, . . . , an−1) ∈ (F∗
l )n defines a finite sequence in the subgroup

〈G〉 as follows,

fa(x) := ϕa(x)G.

The Naor-Reingold Elliptic sequence is defined as,

uk = X(fa(k)), k = 0, 1, . . . 2n − 1. (1)

where X(P ) is the abscissa of P ∈ E.

Note that we have required that the order of G is prime, which is not necessary for

the definition of the sequence, but the results in the prime case are the basis for the

results in the composite case.

It has been shown that, if the decisional Diffie-Hellman assumption holds, then in

general the index k is not enough to compute in polynomial time uk, even if an at-

tacker performs polynomially many queries to a random oracle (Naor and Reingold

2004, Theorem 4.1). Bound on the distribution of the Naor-Reingold sequence is given

in Shparlinski (2000a) and the article Ibeas (2008) investigates its period.

We recall that the linear complexity of an N -element sequence:

f(x), x = 0, . . . , N − 1

is the order L of the shortest linear recurrence

f(x+ L) = cL−1f(x+ L− 1) + · · ·+ c1f(x+ 1) + c0f(x), x = 0, . . . , N − L− 1.

The linear complexity of the Naor-Reingold Elliptic sequence has been studied in

Silverman and Shparlinski (2001). We cite the main result, in order to keep the paper

self-contained.

Theorem 1 Suppose that γ > 0 and n are chosen to satisfy

n ≥ (2 + γ) log l.

For any δ > 0 and sufficiently large l, the linear complexity La of the sequence

(X (fa(k)))2
n−1
k=0 satisfies:

La ≥ min

(
l1/3−δ,

l(γ−3δ)

log2 l

)

for all but at most O((l − 1)n−δ) vectors a ∈ (F∗
l )n.

This result provides lower bounds for it, assuming that the dimension n of the

parameter a is bigger than 2 log l. We obtain a lower bound for the linear complexity

that is nontrivial even when n ∼ 4 log l/3.
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2 Preliminaries

Throughout the paper the implied constants in the symbols ‘O’ and ‘�’ are absolute,

and log denotes the binary logarithm. Using the techniques in Friedlander et al (2000),

it is straightforward to prove the following:

Lemma 1 Let K, H ⊆ F∗
l be a set of cardinality #K = K and #H = h, respectively.

Using the following notation,

Lr(K,H) = #{(k, y) ∈ K ×H | rk = y},

there exists r ∈ F∗
l such that Lr(K, h) ≥ Kh/l.

For convenience, we denote

Lr(K, h) = #{(k, y) ∈ K × F∗
l | rk = y, 0 < y < h},

when H = {0 < y < h}. The following results appeared in a stronger version in Silver-

man and Shparlinski (2001).

Lemma 2 For any integer n > 2 and 0 < ∆ < 1 for all except at most O(∆(l − 1)n)

vectors a ∈ (F∗
l )n, the Naor-Reingold elliptic sequence contains at least ∆2n−2 distinct

elements.

Lemma 3 Fix integers 1 ≤ d0 < d1, . . . , < dL ≤ h < p and fix elements c0, . . . , cL ∈
Fp with cL 6= 0. For any point Q ∈ E, consider the following Fp−linear combination

of abscissas of multiples of Q,

L(Q) = c0X(d0Q) + c1X(d1Q) + . . .+ cLX(dLQ).

Then, there are at most 2(L+ 1)h2 points Q ∈ E such that L(Q) = 0.

Many properties of the linear complexity have been studied by several authors. We will

also use Lemma 2 from Shparlinski (2000a).

Lemma 4 Consider a finite sequence (f(x))N−1
x=0 in a field K, with linear complexity

L. Then, for any integers M ≥ 1, h ≥ 1, and 0 ≤ e0, . . . , eL ≤ h there are some

elements c0, . . . , cL ∈ K (not all zero) such that

L∑
i=0

cif(Mb+ ei) = 0

for any integer b with 0 ≤Mk + h ≤ N − 1.

3 Linear complexity bound

We are ready to prove the main result of the article. The combination of the technique

developed in Shparlinski (2000a), Silverman and Shparlinski (2001) with Lemma 1

yields a nontrivial result even in the case n ∼ (4/3 + γ) log l. Furthermore, this bound

improves the one provided in Silverman and Shparlinski (2001).
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Theorem 2 For γ > 0 and 0 < δ < 1 such that

n > (4/3 + γ) log l + 4. (2)

The linear complexity La of the sequence (X (fa(k)))2
n−1
k=0 satisfies:

La ≥ min
(
l(γ/3−δ)2−7, l(1/3−δ)

)
for all but at most O((l − 1)n−δ) vectors a ∈ (F∗

l )n.

Proof First of all, we define

s = min (bn/2c, b(1− δ) log lc) , h = b2(n−2s−1)/3l1/3c.

For any a = (a0, . . . , an−1), we denote,

a− = (a0, . . . , as−1), a+ = (as, . . . , an−1).

Let A be the set of vectors such that each of the Naor-Reingold elliptic sequences de-

fined by vectors a− and a+ generate at least 2s−2l−δ and 2n−s−2l−δ distinct elements,

respectively. Using Lemma 2, we have that #A = (l − 1)n +O(ln−δ).
We show that the bound holds for any vector a ∈ A. Let us consider the set

K = {ax0
0 . . . a

xs−1

s−1 | x0, . . . , xs−1 ∈ {0, 1}} = ϕa[0, 2s − 1].

The cardinality of this set is at least 2s−2l−δ, for a ∈ A. By Lemma 1, there exists

r ∈ F∗
l such that Lr(K, h) ≥ 2(n+s−7)/3/l2/3+δ.

If Lr(K, h) > La, we choose d1, . . . , dLa
∈ K and such that 0 ≤ yi := dir < h. Let

0 ≤ e0 < · · · < eLa
< 2s be the integers such that ϕa(ei) = di. Using Lemma 4, we

derive
La∑
i=0

ciX(fa(2sb+ ei)) = 0

for 0 ≤ b < 2n−s − 1. Let m := r−1 ∈ F∗
l . We have that

fa(2sb+ ei) = mϕa(2sb)rϕa(ei)G = yi
(
mϕa(2sb)G

)
,

where b =
∑n−s−1
j=0 bj2

j . Now, as a ∈ A, this linear combination

L(Q) = c0X(y0Q) + c1X(d1Q) + . . .+ cLX(yLQ)

is zero for the points mϕa+(b)G, which are at least 2n−s−2l−δ, because a ∈ A. This

is a contradiction with Lemma 3, because it will imply

22(n−2s−1)/3l2/3La ≥ 2n−s−3l−δ

and that is impossible. Therefore, La ≥ Lr(K, h) and the result follows.
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