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Abstract. Let p be a prime and let a and b be integers modulo p. The
inversive congruential generator (ICG) is a sequence (un) of pseudoran-
dom numbers defined by the relation un+1 ≡ au−1

n + b mod p. We show
that if b and sufficiently many of the most significant bits of three consec-
utive values un of the ICG are given, one can recover in polynomial time
the initial value u0 (even in the case where the coefficient a is unknown)
provided that the initial value u0 does not lie in a certain small subset
of exceptional values.

1 Introduction

For a prime p, denote by IFp the field of p elements and always assume that it is
represented by the set {0, 1, . . . , p− 1}. Accordingly, sometimes, where obvious,
we treat elements of IFp as integer numbers in the above range.

For fixed a, b ∈ IF∗p, let ψa,b be the permutation of IFp defined by

ψa,b(w) =

{
aw−1 + b, if w 6= 0,
b, if w = 0.

We refer to the coefficients a and b as the multiplier and shift , respectively.
We define the inversive generator (un) of elements of IFp by the recurrence

relation
un+1 = ψa,b (un) , n = 0, 1, . . . , (1)

where u0 is the initial value.
This generator has proved to be extremely useful for Quasi-Monte Carlo type

applications, and in particular exhibits very attractive uniformity of distribution



and nonlinearity properties, see [11–14] for surveys or recent results. This paper
concentrates on the cryptographic properties of the inversive generator.

In the cryptographic setting, the initial value u0 and the constants a and b
are assumed to be the secret key, and we want to use the output of the generator
as a stream cipher. Of course, if several consecutive values un are revealed, it is
easy to find u0, a and b. So in this setting, we output only the most significant
bits of each un in the hope that this makes the resulting output sequence difficult
to predict. In a recent paper [2], we have shown that not too many bits can be
output at each stage: the inversive generator is unfortunately polynomial time
predictable if sufficiently many bits of its consecutive elements are revealed, so
long as a small number of secret keys are excluded. However, most of the results
of [2] only hold after excluding a small set of pairs (a, b). If this small set is not
excluded, the algorithm for finding the secret information may fail. An optimist
might hope that by deliberately choosing the pair (a, b) to lie in this excluded set,
one can generate cryptographically stronger sequences. This paper aims to show
that this strategy is unlikely to succeed. Namely we introduce some modifications
and additions to the method of [2] which allow us to attack the generators no
matter how the values of a and b are chosen. We demonstrate our approach in
the special case when b is public. Of course, the assumption that b is public
reduces the relevance of the problem to cryptography. But we believe that the
extra strength of the result we obtain makes this situation of interest in its own
right. We also believe this approach can be extended to the case when both a
and b are secret.

Assume that the sequence (un) is not known but, for some n, approximations
wj of 3 consecutive values un+j , j = 0, 1, 2, are given. We show that if b is public,
the values un+j and a can be recovered from this information in polynomial time
if the approximations wj are sufficiently good and if a certain small set of initial
values u0 are excluded. (The results in [2] exclude a small set of pairs (a, b) in
addition to values of u0, and so in this sense our result here is stronger.)

Throughout the paper the term polynomial time means polynomial in log p.
Our results involve another parameter ∆ which measures how well the values wj

approximate the terms un+j . This parameter is assumed to vary independently
of p subject to satisfying the inequality ∆ < p (and is not involved in the
complexity estimates of our algorithms).

We should emphasise that this paper is concerned with rigorous results
(see [2] for a discussion of both rigorous and heuristic methods).

The remainder of the paper is structured as follows.
We start with a short outline of some basic facts about lattices in Section 2.1

and rational functions Section 2.2. In Section 3.1 we formulate our main results
and outline the plan of the proof, which is given in Section 3.2. Finally, Section 4
makes some final comments and poses several open questions.
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2 Lattices and Rational Functions

2.1 Background on Lattices

Here we collect several well-known facts about lattices which form the back-
ground to our algorithms.

We review several related results and definitions on lattices which can be
found in [3]. For more details and more recent references, we also recommend
consulting [1, 4, 5, 8–10].

Let {b1, . . . ,bs} be a set of linearly independent vectors in IRr. The set

L = {z : z = c1b1 + . . .+ csbs, c1, . . . , cs ∈ ZZ}

is called an s-dimensional lattice with basis {b1, . . . ,bs}. If s = r, the lattice L
is of full rank.

To each lattice L one can naturally associate its volume

vol (L) =
(

det (〈bi,bj〉)si,j=1

)1/2
,

where 〈a,b〉 denotes the inner product, which does not depend on the choice of
the basis {b1, . . . ,bs}.

For a vector u, let ‖u‖ denote its Euclidean norm. The famous Minkowski
theorem, see Theorem 5.3.6 in Section 5.3 of [3], gives the upper bound

min {‖z‖ : z ∈ L \ {0}} ≤ s1/2 vol (L)1/s (2)

on the shortest nonzero vector in any s-dimensional lattice L in terms of its

volume. In fact s1/2 can be replaced by the Hermite constant γ
1/2
s , for which we

have
1

2πe
s+ o(s) ≤ γs ≤

1.744

2πe
s+ o(s), s→∞.

The Minkowski bound (2) motivates a natural question: how to find the
shortest vector in a lattice. The celebrated LLL algorithm of Lenstra, Lenstra
and Lovász [7] provides a desirable solution in practice, and the problem is known
to be solvable in deterministic polynomial time (polynomial in the bit-size of the
basis of L) provided that the dimension of L is fixed (see Kannan [6, Section 3],
for example). The lattices in this paper are of fixed dimension. (Note that there
are several indications that the shortest vector problem is NP-complete when
the dimension grows.)

In fact, in this paper we consider only very special lattices. Namely, only
lattices which are consisting of integer solutions x = (x0, . . . , xs−1) ∈ ZZs of the



system of congruences

s−1∑
i=0

aijxi ≡ 0 mod qj , j = 1, . . . ,m,

modulo some integers q1, . . . , qm. Typically (although not always) the volume
of such a lattice is the product Q = q1 . . . qm. Moreover all the aforementioned
algorithms, when applied to such a lattice, become polynomial in logQ.

2.2 Zeros of Rational Functions

Our second basic tool is essentially the theorem of Lagrange which asserts that
a non-zero polynomial of degree N over any field has no more than N zeros in
this field. In fact we apply it to rational functions which require only obvious
adjustments.

The rational functions we consider belong to a certain family of functions
parametrised by small vectors in a certain lattice, thus the size of the family
can be kept under control. Zeros of these rational functions correspond to po-
tentially “bad” initial values of the inversive generator (1). Thus, if all rational
functions in this family are not identical to zero modulo p then we have an upper
bound on the number of such “bad” initial values. Hence, a crucial part of our
approach is to study possible vanishing of functions in the above family and to
show that this may happen only for very few values of the coefficients of the
generator (1). To establish this property we repeatedly use the fact that non-
trivial linear combinations of rational functions with pairwise distinct poles do
not vanish identically.

3 Predicting the Inversive Generator with Unknown
Multiplier

3.1 Formulation of the Main Result and Plan of Proof

Assume the multiplier a of the inversive generator is unknown, but shift b is given
to us. We show that we can recover u0 and a for all but O(∆5) values of u0 when
given approximations to three consecutive values un, un+1, un+2 produced by the
inversive generator, except when u0 lies in a small set of exceptional values. To
simplify the notation, we assume that n = 0 from now on.

Theorem. Let p be a prime number and let ∆ be an integer such that
p > ∆ ≥ 1. Let a, b ∈ IF∗p. There exists a set U(∆; a, b) ⊆ IFp of cardinality
#U(∆; a, b) = O(∆5) with the following property. Whenever u0 6∈ U(∆; a, b)
then, given approximations |wj − uj | ≤ ∆, j = 0, 1, 2 to three consecutive values
u0, u1, u2 produced by the inversive generator (1), and given the value of b, one
can recover u0 and a in deterministic polynomial time.

An outline of the algorithm given in the proof of this Theorem goes as follows.
The algorithm is divided into six stages.



Stage 1: We assume that the two exceptional values 0 and −a/b lie in
U(∆; a, b). We construct a certain lattice L (see (5) below) of dimen-
sion five; this lattice depends on the approximations w0, w1, w2 and
the integer b. We also show that a certain vector e directly related to
missing information about u0, u1, u2 is a very short vector in this lattice.
A shortest nonzero vector f = (f0, . . . , f4) in L is found; see [6] for the
appropriate algorithm.
Stage 2: We show that f provides some valuable information about e
for all initial values u0 except for u0 from a certain exceptional set
V(∆; a, b) ⊆ IFp of cardinality #V(∆; a, b) = O(∆5) (which is defined
as a set of zeros of a certain parametric family of rational functions).
Stage 3: We show that if f0 6= 0 then recovering e (and hence the secret
information u0 and a) from f is straight forward. If f0 6= 0, the algorithm
terminates at this stage.
Stage 4: We show that if f0 = 0 then the vector f enables us to compute
small integers r and s such that b = r/s mod p. (In fact these integers
can be found independently by the continued fraction algorithm.) The
algorithm uses this information, together with the integers w0, w1, w2

and b, to compute a second lattice L′ of dimension four. There is a
short vector e′ in L, and again this vector is closely related to the secret
information u0 and a.
Stage 5: We show that all short vectors in L′ are parallel to e′ for all
initial values u0 except for u0 from another exceptional set V ′(∆; a, b) ⊆
IFp of cardinality #V ′(∆; a, b) = O(∆5) (which is also defined as a set of
zeros of a certain parametric family of rational function).
Stage 6: We find a shortest nonzero vector f ′ in L′ and show that if
u0 6∈ U(∆; a, b), where

U(∆; a, b) = {0,−a/b} ∪ V(∆; a, b) ∪ V ′(∆; a, b)

then recovering e′ (and thus finding the secret information) from f and
f ′ is now straightforward.

3.2 Proof of the Main Result

The theorem is trivial when ∆5 ≥ p, and so we assume that ∆5 < p. Let us
fix a, b ∈ IF∗p. We assume that u0 ∈ IFp is chosen so as not to lie in a certain
subset U(∆; a, b) of IF∗p. This subset is of cardinality O(∆5), but as its definition
is fairly complicated we define it gradually as we move through the proof.

Stage 1: Building the lattice L. We begin by defining a lattice L, and showing
how knowing a short vector in L usually leads to the recovery of the secret
information.

We may assume that u0u1 6≡ 0 mod p, for clearly there are at most two values
of u0, namely u0 ≡ 0 (mod p) and u0 ≡ −a/b (mod p) for which this does not



hold, and we place these two values in U(∆; a, b). From

u1 ≡ au−10 + b mod p and u2 ≡ au−11 + b mod p

we derive

u1u0 ≡ a+ bu0 mod p and u1u2 ≡ a+ bu1 mod p. (3)

Therefore,
u1(u2 − u0) ≡ b(u1 − u0) mod p. (4)

For j ∈ {0, 1, 2}, define εj = uj − wj . We have that |εj | ≤ ∆. Now (4) becomes

(w1 + ε1)(w2 − w0 + ε2 − ε0) ≡ b(w1 − w0) + b(ε1 − ε0) mod p.

Writing

A ≡ (w1(w2 − w0)− b(w1 − w0))∆−2 mod p, B0 ≡ −(w1 + b)∆−1 mod p,

B1 ≡ (w2 − w0 − b)∆−1 mod p, B2 ≡ w1∆
−1 mod p and C ≡ 1 mod p,

we obtain

A∆2 +B0∆ε0 +B1∆ε1 +B2∆ε2 + Cε1(ε2 − ε0) ≡ 0 mod p.

Therefore the lattice L consisting of solutions x = (x0, x1, x2, x3, x4) ∈ ZZ5 of
the congruences

Ax0 +B0x1 +B1x2 +B2x3 + Cx4 ≡ 0 mod p,

x0 ≡ 0 mod ∆2,

x1 ≡ x2 ≡ x3 ≡ 0 mod ∆,

(5)

contains a vector

e =
(
∆2e0, ∆e1, ∆e2, ∆e3, e4

)
=
(
∆2, ∆ε0, ∆ε1, ∆ε2, ε1(ε2 − ε0)

)
.

We have
e0 = 1, |e1|, |e2|, |e3| ≤ ∆, |e4| ≤ 2∆2

thus the Euclidean norm ‖e‖ of e satisfies the inequality

‖e‖ ≤
(
∆4 +∆4 +∆4 +∆4 + 4∆4

)1/2 ≤ 3∆2.

Let f = (∆2f0, ∆f1, ∆f2, ∆f3, f4) ∈ L be a shortest nonzero vector in L. So
‖f‖ ≤ ‖e‖ ≤ 3∆2. We have

|f0| ≤ ‖f‖∆−2 ≤ 3, |f1|, |f2|, |f3| ≤ ‖f‖∆−1 ≤ 3∆, |f4| ≤ ‖f‖ ≤ 3∆2.

Note that we may compute f in polynomial time from the information we are
given.



Stage 2: Defining the first exceptional set V(∆; a, b). The vector d defined by
f0e − e0f lies in L and has first component 0. We might hope that e and f
are always parallel, in which case d would be the zero vector. Sadly, this is not
always the case. So we claim that something weaker is true: namely that d2 = 0
and d3 − d1 = 0 unless u0 belongs to the set V(∆; a, b) which we define below.
Before we establish this claim, we prove some facts about the vector d.

Using the first congruence in (5), we find that

B0∆d1 +B1∆d2 +B2∆d3 + Cd4 ≡ 0 mod p (6)

where we define

di = f0ei − e0fi = f0ei − fi for i ∈ {0, 1, 2, 3}. (7)

Note that |di| ≤ 3|ei|+ |fi| and hence

|d1|, |d2|, |d3| ≤ 6∆ and |d4| ≤ 9∆2. (8)

Using the definitions of B0, B1, B2 and C, we find that

−(w1 + b)d1 + d2(w2 − w0 − b) + d3w1 + d4 ≡ 0 mod p,

and after the substitutions wi = ui − εi we find

(d3 − d1)u1 + d2u2 − d2u0 ≡ b(d2 + d1) + E mod p (9)

where
E = −d4 − ε0d2 + ε1(d3 − d1) + ε2d2.

The bound (8) implies that |E| ≤ 33∆2. We now write this equality as a rational
function of u0. Setting

Ψ1(u) =
bu+ a

u
and Ψ2(u) =

(a+ b2)u+ ab

a+ bu
,

we have that ui = Ψ(u0) for i ∈ {1, 2}. So (9) becomes

(d3 − d1)Ψ1(u0) + d2Ψ2(u0)− d2u0 ≡ b(d2 + d1) + E mod p. (10)

Let us consider the rational function

Φd (u) = (d3 − d1)Ψ1(u) + d2Ψ2(u)− d2u

corresponding to the left hand side of (10). Clearly, Φd (u) can be written as the
quotient of a polynomial of degree at most 3 and a polynomial of degree at most
2.

We assert that if d2 6= 0 or d3−d1 6= 0 then Φd (u) is not a constant function.
We prove the contrapositive implication. So assume that Φd (u) is constant. Now
Ψ1(u) is not constant, since a 6≡ 0 mod p. So Ψ1(u) has a pole at 0 (and has no
other poles). Similarly, Ψ2(u) is not constant and so has a pole at −a/b (and no



other poles). The functions Ψ1(u) and Ψ2(u) have poles at distinct places and
u has no finite poles at all, so the only way that Φd (u) can be the constant
function is if d2 ≡ 0 mod p and d3 − d1 ≡ 0 mod p. But our bounds (8) on the
size of d now imply that d2 = 0 and d3 − d1 = 0. This establishes our assertion
about Φd (u).

Suppose that d2 6= 0 or d3 − d1 6= 0. Since Φd (u) is a nonconstant quotient
of two polynomials of degree at most 3, the congruence (10) can be satisfied
for at most 3 values of u0 once d1, d2, d3 and E have been chosen. There are
O(∆) choices for each of d1, d2 and d3, by (8). There are O(∆2) choices for E
since |E| ≤ 33∆2. Hence there are only O(∆5) values of u0 that satisfy some
congruence of the form (10) where d and E satisfy the appropriate bounds. We
place these O(∆5) values of u0 in V(∆; a, b), and once this is done we see that
the case when d2 6= 0 or d3 − d1 6= 0 cannot occur (for then (10) would imply
that u0 ∈ V(∆; a, b)).

This establishes the claim we made in the first paragraph of Stage 2, so we
may assume that d2 = 0 and d3 − d1 = 0.

Stage 3: Predicting the generator when f0 6= 0. Suppose that f0 6= 0. The
definition (7) of d2 shows that 0 = d2 = f0ε1 − f2. Thus ε1 ≡ f2/f0 mod p and
so we may compute the secret information ε1. To obtain the remainder of the
secret information, we note that the following three congruences hold:

a+ b(ε0 + w0) ≡ (ε0 + w0)(ε1 + w1) mod p,

a+ b(ε1 + w1) ≡ (ε1 + w1)(ε2 + w2) mod p,

f0ε0 − f1 ≡ f0ε2 − f2 mod p.

(11)

The first two of these congruences follow from (3), and the second follows from
the fact that d1 = d3 together with the definition (7) of d. But, since ε1 is now
known, the system (11) is linear in the variables a, ε0 and ε2. These equations
have a unique solution if and only if bf0 6≡ 0 mod p (as can be seen by calculating
the appropriate 3× 3 determinant). Our assumption that f0 6= 0 together with
our bound on |f0| shows that f0 6≡ 0 mod p. Since b ∈ IF∗p, we find that bf0 6≡
0 mod p and so we may solve the system (11) to find ε0, ε2 and a. Finally, we
compute u0 from w0 and ε0 and so the algorithm terminates successfully in this
case. So we are done when f0 6= 0.

Stage 4: Building the lattice L′. We may now assume that f0 = 0. So di = −fi,
i = 1, 2, 3, 4. We aim to show that b must have a special form.

The fact that d2 = 0 and d3−d1 = 0 means that the congruence (9) becomes

0 ≡ bd1 + E mod p.

Using the definition of E, we find that bd1 ≡ d4 mod p, and so bf1 ≡ f4 mod p.
It is easy to see that f1 6≡ 0 mod p (for the congruences f2 ≡ −d2 ≡ 0 mod p,
f3 ≡ −d3 ≡ −d1 ≡ f1 mod p and f4 ≡ bf1 mod p would contradict the fact that
f is a nonzero vector). Hence b ≡ f4/s1 mod p and so we may write

b ≡ r/s mod p, where r = f4/ gcd(f1, f4) and s = f1/ gcd(f1, f4).



Note that r and s are coprime, |r| ≤ 3∆2 and |s| ≤ 3∆. Moreover we know r
and s since we have computed f . Also note that r and s are determined by b,
up to sign. To see this, suppose that r′ and s′ are coprime integers such that
|r′| ≤ 3∆2, |s′| ≤ 3∆ and r′/s′ ≡ b ≡ r/s mod p. Then rs′ ≡ sr′ mod p and
since both rs′ and sr′ have absolute value at most 9∆3 we find that rs′ = sr′.
But since gcd(r, s) = gcd(r′, s′) = 1 we now find that r = σr′ and s = σs′ for
some element σ ∈ {1,−1}.

We now consider a new lattice: the lattice L′ consisting of solutions x =
(x0, x1, x2, x3) ∈ ZZ4 of the congruences

A′x0 +B′x1 +B′1x2 + C ′x4 ≡ 0 mod p,

x0 ≡ 0 mod ∆3,

x1 ≡ x2 ≡ 0 mod ∆2,

(12)

where

A′ ≡ sA∆−1 mod p, B′ ≡ sw1∆
−2 mod p,

B′1 ≡ s(w2 − w0)∆−2 mod p and C ′ ≡ 1 mod p.

It is easy to check that the lattice (12) contains the vector

e′ =
(
∆3e′0, ∆

2e′1, ∆
2e′2, e

′
3

)
,

where
e′ =

(
∆3, ∆2(ε2 − ε0), ∆2ε1, sε1(ε2 − ε0)− r(ε1 − ε0)

)
.

We have
e′0 = 1, |e′1| ≤ 2∆, |e′2| ≤ ∆, |e′3| ≤ 24∆3

thus the Euclidean norm ‖e′‖ of e′ satisfies the inequality

‖e‖ ≤
(
∆6 + 4∆6 +∆6 + 576∆6

)1/2 ≤ 25∆3.

Stage 5: Defining the second exceptional set V ′(∆; a, b). We now show that all
short vectors in L′ are parallel to e unless u0 belongs to the set V ′(∆; a, b) which
we define below.

Assume, for a contradiction, that there is another vector

f ′ = (∆3f ′0, ∆
2f ′1, ∆

2f ′2, f
′
3) ∈ L′

with ‖f ′‖ ≤ ‖e′‖ ≤ 25∆3 which is not parallel to e′. The vector d′ defined by
d′ = f ′0e

′ − e′0f ′ lies in L′ and has first component 0. Using the first congruence
in (12), we find that

B′∆2d′1 +B′1∆
2d′2 + C ′d′3 ≡ 0 mod p (13)

where for i ∈ {1, 2, 3} we define d′i = f ′0e
′
i − e′0f ′i = f ′0e

′
i − f ′i . Note that |d′i| ≤

25|e′i|+ |f ′i | and hence

|d′1| ≤ 75∆, |d′2| ≤ 50∆, |d′3| ≤ 252∆3. (14)



Using the definitions of B′, B′1 and C ′, we find that

sw1d
′
1 + s(w2 − w0)d′2 + d′3 ≡ 0 mod p,

and after the substitutions wi = ui − εi we find

u1sd
′
1 + s(u2 − u0)d′2 ≡ E′ mod p (15)

where
E′ = −d′3 + sε1d

′
1 − s(ε0 − ε2)d′2.

The bounds (14) imply that |E′| ≤ 253∆3. We now write this equality as a
rational function of u0. Then (15) becomes

sd′1Ψ1(u0) + sd′2Ψ2(u0)− sd′2u0 ≡ E′ mod p. (16)

Let us consider the rational function

Φ′d′ (u) = sd′1Ψ1(u) + sd′2Ψ2(u)− d′2u

corresponding to the left hand side of (16). Clearly, Φ′d′ (u)can be written as the
quotient of a polynomial of degree at most 3 and a polynomial of degree at most
2.

Now, Φ′d′ (u) is a non-constant rational function of u. Suppose Φ′d′ (u) is
constant. Then (arguing as for Φd (u) above) we must have that d′1 ≡ d′2 ≡
0 mod p. But then (13) shows that d′3 ≡ 0 mod p, and so our bounds (14) on the
absolute value of d′1, d

′
2 and d′3 imply that d′1 = d′2 = d′3 = 0. This implies that

d′ = 0 and so e′ and f ′ are parallel. This contradicts our choice of f ′, and so we
must have that Φ′d′ (u) is a non-constant rational function of u.

Since Φ′d′ (u) is of degree at most 3, the congruence (16) can be satisfied for at
most 3 values of u0 once s, d′1, d′2 and E′ have been chosen. There are at most 2
choices for s (as s is determined up to sign by b). There are O(∆) choices for each
of d′1, and d′2, by (14). There are O(∆3) choices for E′ since |E′| ≤ 253∆3. Hence
there are only O(∆5) values of u0 that satisfy some congruence of the form (16)
where the d′i and E′ satisfy the appropriate bounds. We place these O(∆5)
values of u0 in V ′(∆; a, b), and so we get a contradiction to our assumption that
f ′ and e′ are not parallel. So all short vectors in L′ are parallel to e′ whenever
u0 6∈ V ′(∆; a, b).

Stage 6: Predicting the generator for f0 = 0. We apply a deterministic poly-
nomial time algorithm for the shortest vector problem in a finite dimensional
lattice to find a shortest nonzero vector f ′ in L′, and this vector must be parallel
to e′. We recover e′ by using the fact that e′ = f ′/f ′0. This gives us ε1 which
is used to calculate u1. In order to compute u0 we have to solve the following
linear system of congruences in the unknowns ε0 and ε2:

f ′0(ε2 − ε0) ≡ f ′1 mod p,

f ′0(sε1(ε2 − ε0)− r(ε1 − ε0)) ≡ f ′3 mod p,
(17)



which has a unique solution. Finally, a can be calculated by using the fact that
a ≡ u0u1 − bu0 mod p. Defining

U(∆; a, b) = {0,−a/b} ∪ V(∆; a, b) ∪ V ′(∆; a, b)

which finishes the proof. ut

4 Remarks and Open Questions

Obviously our result is nontrivial only for ∆ = O(p1/5). Thus increasing the size
of the admissible values of ∆ (even at the cost of considering more consecutive
approximations) is of prime importance.

One can presumably obtain a very similar result in the dual case, where a is
given but the shift b is unknown.

As we have mentioned several other results about predictability of inversive
and other nonlinear generators have recently been obtained in [2]. However, they
are somewhat weaker than the present result because each of them excludes
a certain small exceptional set of pairs of parameters (a, b). We believe that
the approach of this work may help to eliminate this drawback. Certainly this
question deserves further study.

We do not know how to predict the inversive (and other generators considered
in [2]) in the case when the modulus p is secret as well. We remark that in the
case of the linear congruential generator a heuristic approach to this problem
has been proposed in [4]. However it is not clear how to extend this (even just
heuristically) to the case of nonlinear generators.
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