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Abstract. We present several general results that show how al-
gebraic dynamical systems with a slow degree growth and also
rational automorphisms can be used to construct stronger pseu-
dorandom number generators. We then give several concrete con-
structions that illustrate the applicability of these general results.

1. Introduction

1.1. Motivation. It is well-known that most of the pseudorandom
number generators used in Monte Carlo methods and cryptography
are based on the iteration of rational functions, see [9, 18, 19, 22].
However, a “randomly” chosen system of such functions usually yields
a rather poor generator, with a short cycle length. Here we discuss
the properties of pseudorandom number generators based on the itera-
tion of several special systems of rational functions that lead to better
generators. Surprisingly, these constructions bring together several no-
tions which have intrinsic interest in the theory of polynomial rings
over finite fields, such as algebraic entropy and automorphisms. We
also give new explicit constructions of rational functions that satisfy
the desired conditions.

1.2. Degree growth of algebraic dynamical systems. Let F =
{F1, . . . , Fm} be a system of m rational functions in Fp(X1, . . . , Xm),
where p is prime and Fp denotes the finite field of p elements and each
element is represented by an integer in the range {0, . . . , p − 1}. For
each i = 1, . . . ,m we define the k-th iteration of the polynomial Fi,
i = 1, . . . ,m, by the recurrence relation

F
(0)
i = Xi, F

(k)
i = F

(k−1)
i (F1, . . . , Fm) = F

(k−1)
i (F),

k = 1, 2, . . . .
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It is certainly natural to expect that the degrees of the iterations F
(k)
i ,

i = 1, . . . ,m, grow exponentially with k (which is always the case for
iterations of nonlinear univariate polynomials). On the other hand, it
has been shown in recent works [11, 12, 13, 14, 16, 17] that there are rich
families of multivariate polynomial systems with much slower degree
growth and that such families lead to better pseudorandom number
generators.

We recall that the algebraic entropy of the dynamical system gener-
ated by F = {F1, . . . , Fm} is

δ(F) = lim
n→∞

logDn(F)

n
,

where Dk(F) is the degree of F (k), defined as the largest degree of the

components F
(k)
1 , . . . , F

(k)
m , see [1, 20, 21] and references therein. We

note that the existence of the above limit follows immediately from the
inequality Dk+m(F) ≤ Dk(F)Dm(F).

In particular, the polynomial systems constructed in [11, 13, 14, 16]
are of algebraic entropy zero. The degree growth of this class of systems
is polynomial in the number of iterations and therefore, it satisfies a
linear recurrence. This is in full agreement with [1, Conjecture 1], which
asserts that the generating function of the degree sequence Dn(F) is
rational, that is,

∞∑
n=0

Dn(F)Zn ∈ Z(Z),

where, as usual, Z denotes the ring of integers.
However, these constructions have two common features which may

potentially lead to cryptographically weak pseudorandom number gen-
erators that are based on these systems. More precisely,

• the ith rational function Fi is linear in at least one variable;
• these systems are of triangular shape, that is, Fi depends only

on Xi, . . . , Xm.

Here we introduce a new approach, namely, we show how to use the
rational automorphisms of Fp(X1, . . . , Xm) to overcome the above po-
tential weaknesses, see Section 2.4 for a definition and some specific
examples of automorphisms. This is the first step to study the distri-
bution of vectors generated by systems of rational functions with zero
algebraic entropy.

We present general results of this kind which we then apply to certain
specific examples which lead to new families of pseudorandom number
generators.
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1.3. Sparsity of polynomial systems. Another class of algebraic
dynamical systems which can be useful for designing good pseudo-
random number generators is the class of polynomial systems such
that their iterations have certain sparsity with respect to some vari-
ables (and with strictly positive algebraic entropy). For example, such
are the polynomial systems constructed in [15], for which we have

F
(k)
i = (Xi − hi)e

k
iGi + hi for some integers ei, elements hi ∈ Fp and

polynomials Gi ∈ Fp[Xi+1, . . . , Xm], i = 1, . . . ,m. Here we give more
examples of such systems and also show how to use polynomial auto-
morphisms to expand the class of such systems.

1.4. Pseudorandom number generators. We consider the sequence
of vectors defined by a recurrence relation over Fp of the form

(1) un+1,i = Fi(un,1, . . . , un,m), n = 0, 1, . . . ,

with some initial values u0,1, . . . , u0,m. We also assume that, 0 ≤ un,i <
p, i = 1, . . . ,m, n = 0, 1, . . ., and that if (un,1, . . . , un,m) is a pole
of Fi, then we set Fi(un,1, . . . , un,m) = 0 (certainly there is nothing
special in this choice and it can be set to any other fixed element from
Fp). Additionally, we need to suppose m ≥ 2, due to the difference
between the behaviour in the univariate and multivariate case. Using
the following vector notation

un = (un,1, . . . , un,m)

we have the recurrence relation

un+1 = F(un).

In particular, for any n, k ≥ 0 and i = 0, . . . ,m we have

un+k,i = F
(k)
i (un,1, . . . , un,m) or un+k = F (k)(un).

We also set 0−1 = 0 so that the relation (1) is always well-defined.
Clearly the sequence of vectors {un} is eventually periodic with some
period less than pm.

Furthermore, for a sequence {un} generated by (1) we define the
trajectory length as the smallest integer T ≥ 1 such that uT = ur for
some r < T . Clearly all vectors u0, . . . ,uT−1 are pairwise distinct, so
T ≤ pm. Some constructions of systems for which T achieves its largest
possible value pm are given in [12, 16].

We note that there is little doubt that analogues of our results also
hold over arbitrary finite fields, however some bounds of character sums
require more care. For example, an analogue of Lemma 2 over a finite
field of q elements of characteristic p requires an additional condition
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F/G 6= Hp −H for any rational function H over the algebraic closure
of Fp, that could be more difficult to verify.

1.5. General notation. As usual, Zq denotes the ring of the integers
modulo q and Z∗q represents the set of multiplicative units of Zq.

The polynomials over Fp are usually denoted by capital letters and
we omit the variables on which they depend if it is clear from the
context.

We use #S denotes the number of elements of a set S.
We recall that the notations U = O(V ), U � V and V � U are all

equivalent to the statement that |U | ≤ cV holds with some constant
c > 0. Throughout the paper, any implied constants in the symbols O,
� and�may occasionally depend, where obvious, on the dimension of
the points and some real positive parameters ε and δ, and are absolute
otherwise.

The letters, m,n, r, s in lower case, always denote integer numbers.

2. Preliminaries

2.1. Discrepancy and exponential sums. For an integer M ≥ 2,
define the following sequence Γ of N points

(2) (γn,1, . . . , γn,s) ∈ [0, 1)s, γn,i = yn,i/M, n = 0, . . . , N − 1,

where yn,1, . . . , yn,s are integers between 0 and M − 1. It is natural to
measure the level of its statistical uniformity in terms of the discrepancy
DN(Γ). More precisely,

DN(Γ) = sup
B⊆[0,1)s

∣∣∣∣TΓ(B)

N
− |B|

∣∣∣∣ ,
where TΓ(B) is the number of points of Γ inside the box

B = [α1, β1)× . . .× [αs, βs) ⊆ [0, 1)s

of volume |B| = (β1−α1) . . . (βs−αs) and the supremum is taken over
all such boxes, see [2].

We study the discrepancy of the sequence in the m-dimensional unit
interval,

(3)
1

p
un =

(
un,1
p
, . . . ,

un,m
p

)
, n = 0, . . . , N − 1,

where {un} is defined by (1).
We recall that the discrepancy is a widely accepted quantitative mea-

sure of uniformity of distribution of sequences, and thus good pseudo-
random sequences should (after an appropriate scaling) have a small
discrepancy, see [5, 6].
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Typically the bounds on the discrepancy of a sequence are derived
from bounds of exponential sums with elements of this sequence. The
relation is made explicit in the celebrated Koksma–Szüsz inequality ,
see [6, Corollary 3.11], which we present in the following form.

Lemma 1. Suppose that for the sequence (2) there is a real number B
such that ∣∣∣∣∣

N−1∑
n=0

exp

(
2πi

s∑
j=1

ajγn,j

)∣∣∣∣∣ ≤ B,

o for any nonzero vector (a1, . . . , as) ∈ Zs with −M/2 < aj ≤ M/2,
j = 1, . . . , s. Then, the discrepancy DN(Γ) of the sequence (2) satisfies

DN(Γ)� 1

M
+
B(logM)s

N
,

where the implied constant depends only on s.

2.2. Exponential sums and congruences. For a positive integer r
we denote

er(z) = exp(2πiz/r), z ∈ Z.
Notice that for a prime r = p, the function ep(z) is an additive character
of Fp.

Lemma 1 shows the relationship between bounds on exponential
sums and bounds on the discrepancy.

We derive bounds of exponential sums with elements of the se-
quence (3), which imply good distribution properties. Thus, quite
naturally, one of our main tools is the following version of the Weil
bound from [4]:

Lemma 2. Let F/G be a non-constant univariate rational function
over Fp and let v be the number of distinct roots of the polynomial G
in the algebraic closure of Fp. Then∣∣∣∣∣∣

∑
x∈Fp

∗
ep

(
F (x)

G(x)

)∣∣∣∣∣∣ ≤ (max(degF, degG) + v∗ − 2) p1/2 + ρ,

where Σ∗ indicates that the poles of F/G are excluded from the sum-
mation, v∗ = v and ρ = 1 if degF ≤ degG, otherwise v∗ = v + 1 and
ρ = 0.

We also need the following technical result [3, Lemma 2]:

Lemma 3. Let h and q be positive integers with h ≥ qδ, for some fixed
δ > 0. Then for any set K ⊆ Z∗q there exists r ∈ Z∗q, such that

#{(x, y) : rx ≡ y (mod q), x ∈ K, 0 ≤ y ≤ h− 1} � #Kh/q.
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2.3. Exponential sums along the trajectories. We see from Sec-
tion 2.1 that in order to study the distribution of elements in orbits
it is natural to consider the following exponential sums. For a set
I ⊆ {1, . . . ,m} of cardinality s and a vector a = (ai)i∈I ∈ Fsp we
introduce the exponential sum

(4) SI(a;N) =
N−1∑
n=0

ep

(∑
i∈I

aiun,i

)
.

The most common choices of I are I = {1} (when only the first
component of the vector un is studied) and I = {1, . . . ,m} (when
the whole vector is studied). Furthermore, in [11, 13, 14] the case
I = {1, . . . ,m− 1} has been studied as well.

2.4. Automorphisms. We recall that a system of m rational func-
tions A = {A1, . . . , Am} in m variables is called a rational automor-
phism in Fp(X1, . . . , Xm) if there exists a system of rational func-
tions A−1 = {A−1

1 , . . . , A−1
m } such that for their composition we have

A−1 ◦ A = {X1, . . . , Xm}. If all functions involved in A and A−1 are
polynomials we say that A is a polynomial automorphism. Notice that
a polynomial automorphism defines a bijection from Fmp into itself.

As usual, we say that a monomial Xe1
1 · · ·Xem

m is lexicographic higher

than Xf1
1 · · ·Xfm

m if for some r we have ei = fi, i = 1, . . . , r − 1 and
er > fr. For i = 1, . . . ,m, let

(5) ji = min{j : fi,j 6= 0, j = 1, . . . ,m},

where X
fi,1
1 . . . X

fi,m
m is the lexicographically highest monomial of Ai.

The set I ⊆ {1, . . . ,m} with ji < m for i ∈ I is called the support
of A. We say that the automorphism A has degree separation if the
pairs (fi,ji , ji)i∈I , are pairwise distinct.

As an example, we introduce the Henón map and its inverse (see [1]),

(6) H = {X2 + 1− aX2
1 , bX1}, H−1 = {b−1X2, X1 + ab−2X2

2 − 1},
where b 6= 0. Following the equation (5), we have that the support of
H is I = {1, 2} and

(fi,ji , ji)i∈I = (2, 1), (1, 1)

so this system has degree separation. For H−1, we have the support
I = {2} and

(fi,ji , ji)i∈I = (1, 1)

so H−1 also has degree separation.
It is easy to check that if we define G as,

G = {X1, X2 −X1}, G−1 = {X1, X2 +X1},
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then neither G nor G−1 has degree separation.

3. Algebraic Dynamical Systems with Slow Degree
Growth

3.1. Previous results. One of our basic building blocks is the follow-
ing construction from [13, 16]:

F1(X1, . . . , Xm) = X
e1,1
1 G1(X2, . . . , Xm) +H1(X2, . . . , Xm),

F2(X1, . . . , Xm) = X
e2,2
2 G2(X3, . . . , Xm) +H2(X3, . . . , Xm),

. . .

Fm(X1, . . . , Xm) = gmX
em,m
m + hm,

(7)

with e1,1, . . . , em,m ∈ {−1, 1}, Gi, Hi ∈ Fp[Xi+1, . . . , Xm], for all i =
1, . . . ,m− 1, and gm, hm ∈ Fp, gm 6= 0.

Furthermore, we always assume that a system (7) satisfies the fol-
lowing conditions for Fi for any i = 1, . . . ,m:

• if ei,i = 1, as in [13, 14], we assume that the polynomial Gi has
a unique leading monomial X

ei,i+1

i+1 . . . X
ei,m
m , that is

Gi = giX
ei,i+1

i+1 . . . Xei,m
m + G̃i,

where gi ∈ F∗p and G̃i ∈ Fp[Xi+1, . . . , Xm] with

(8) degXj G̃i, degXj Hi < ei,j, j = i+ 1, . . . ,m;

• if ei,i = −1, we assume that the polynomial Hi has a unique
leading monomial X

ei,i+1

i+1 . . . X
ei,m
m , that is

Hi = hiX
ei,i+1

i+1 . . . Xei,m
m + H̃i,

where hi ∈ F∗p, H̃i ∈ Fp[Xi+1, . . . , Xm] and

(9) degXj H̃i < ei,j, degXj Gi < 2ei,j, j = i+ 1, . . . ,m.

As in [13], we can describe explicitly the iterations of the rational
functions Fi as follows. We define

G
(`)
i (Xi+1, . . . , Xm) = Gi

(
F

(`−1)
i+1 , . . . , F (`−1)

m

)
,

H
(`)
i (Xi+1, . . . , Xm) = Hi

(
F

(`−1)
i+1 , . . . , F (`−1)

m

)
.

Lemma 4. Let F be defined by (7) and satisfying the conditions (8)
and (9) and such that ej,j+1 6= 0, j = 1, . . . ,m − 1. Then the degrees
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of the iterations of F1, . . . , Fm grow as follows

degF
(k)
i =

1

(m− i)!
km−iei,i+1 . . . em−1,m + ψi(k), i = 1, . . . ,m− 1,

degF (k)
m = 1,

where ψi(T ) is a polynomial of degree degψi < m − i with rational
coefficients.

Notice that the Henón map defined in (6) is similar to this class of
systems, however, the algebraic entropy for the Henón map is positive.

3.2. New constructions from automorphisms. It is conceivable
that the triangular shape and linearity of Fi in Xi of the systems (7)
can be a weakness from the cryptographic point of view. We now
suggest a way to overcome this potential weakness which is based on
using rational automorphisms.

Let A = {A1, . . . , Am} be an arbitrary rational automorphism in
Fp(X1, . . . , Xm).

We consider systems of the form

(10) R = {R1, . . . , Rm} = A ◦ F ◦ A−1,

where F is defined by (7). In particular, we note that

Ri = (A ◦ F ◦ A−1)i = Ai(F ◦ A−1), i = 1, . . . ,m.

It is easy to see that for every k = 1, 2, . . . we have

R
(k)
i = (A ◦ F (k) ◦ A−1)i = Ai(F (k) ◦ A−1), i = 1, . . . ,m.

In order to find bounds for the exponential sums with the elements
of the sequence (3) we need to study the degree growth (which is im-
mediate) and also the linear independence of iterations of R.

We note that if the sequence {un} is entirely generated by iterations
of the system R of the form (10) (that is, the convention 0−1 = 0 has
never been applied) then we have

(11) un = A(vn),

where {vn} is a sequence generated by the iterations of F , that is,

(12) vn+1 = F(vn),

starting with initial vector u0 = A(v0). In fact in this case A does
not have to be an automorphism. However, keeping in mind potential
cryptographic scenarios, where the systems F and the automorphism
A may not be immediately available or found from R, we consider and
study the sequence {un} as generated by iterations of R. We men-
tion that most of the proofs can be adjusted (and slightly simplified)
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to study the distribution of sequences (11). Also, to generate that se-
quence, repeated applications of A−1 are not necessary, which reduces
the time to generate the sequence.

Lemma 5. Let A = {A1, . . . , Am} be an arbitrary polynomial auto-
morphism in Fp(X1, . . . , Xm) and let F be defined by (7), satisfying
the conditions (8) and (9), such that ej,j+1 6= 0, j = 1, . . . ,m − 1. If

X
fi,1
1 . . . X

fi,m
m is the lexicographically highest monomial of Ai, then

deg
(
Ai ◦ F (k)

)
=

m∑
j=1

fi,j

(
1

(m− j)!
ej,j+1 . . . em−1,mk

m−j +O(km−1−j)

)
,

for i = 1, . . . ,m.

Proof. Let X l1
1 . . . X lm

m be another monomial in Ai, that is,

fi,1 = l1, . . . , fi,r−1 = lr−1 and fi,r > lr

for some r ≤ m. Then, applying Lemma 4, we obtain

m∑
j=1

fi,j degF
(k)
j −

m∑
j=1

lj degF
(k)
j =

m∑
j=r

(fi,j − lj) degF
(k)
j

≥ degF (k)
r +O(km−1−r)

=
1

(m− r)!
km−rer,r+1 . . . em−1,m +O(km−1−r) > 0,

provided that k is large enough. Thus degAi(F (k)) is equal to the
degree that appears in its lexicographically highest monomial after the
substitution of X1, . . . , Xm with F (k). �

Lemma 5 shows that the system defined in (10) has algebraic entropy
0 and this is independent of A. Also, it satisfies [1, Conjecture 1].
Using this fact, we prove the following bound on the discrepancy of the
sequences we generate.

Theorem 6. Let the sequence {un} be defined by (1) with the poly-
nomial system (10), where F is defined by (7) and satisfies the condi-
tions (8) and (9). Let A be a rational automorphism with the degree
separation property and support I of cardinality s = #I. If N ≤ T
where T is the trajectory length of the sequence {un}, then, for any
ν = 1, 2 . . ., the discrepancy DN((un,i/p)i∈I) satisfies

DN((un,i/p)i∈I) = O
(
pαm,νN−βm,ν (log p)s

)
,
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where

αm,ν =
m

2ν
− 1

4(m+ ν − 1)
and βm,ν =

1

2ν

and the implied constant depends only on m, ν and the degrees of F
and A.

Proof. The initial part of the argument is essentially a repetition with
some minor modification of the standard approach, see [7, 10, 13], so
we suppress some details.

We consider the sum SI(a;N) defined by (4) and for a sufficiently
large integer K ≥ 1, we have

(13) SI(a;N)� WK−1 +K,

where

W =
N−1∑
n=0

∣∣∣∣∣
2K∑
k=K

ep

(∑
i∈I

aiun+k,i

)∣∣∣∣∣ .
We use the Hölder inequality to obtain

W 2ν ≤ N2ν−1

N−1∑
n=0

∣∣∣∣∣
2K∑
k=K

ep

(∑
i∈I

aiun+k,i

)∣∣∣∣∣
2ν

≤N2ν−1
∑
x∈Fmp

∗

∣∣∣∣∣
2K∑
k=K

ep

(∑
i∈I

aiR
(k)
i (x)

)∣∣∣∣∣
2ν

+O(K2ν+1N2ν−1pm−1),

since for N ≤ T all vectors un, n = 0, . . . , N − 1, are pairwise distinct
(note that the term O(K2ν+1N2ν−1pm−1) comes from at most sKpm−1

values of n for which at least one of the vectors un+k, K ≤ k ≤ 2K, has
been generated via an application of the ‘special’ convention 0−1 = 0,
thus they have at least one zero component).

We now remark that

W 2ν ≤ N2ν−1

2K∑
k1,`1,...,kν ,`ν=K∑

x∈Fmp

∗
ep

(∑
i∈I

ai

ν∑
j=1

(
R

(kj)
i (x)−R(`j)

i (x)
))

+O(K2ν+1N2ν−1pm−1).

(14)
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Clearly A induces a permutation of Fmp . Hence

∑
x∈Fmp

∗
ep

(∑
i∈I

ai

ν∑
j=1

(
R

(kj)
i (x)−R(`j)

i (x)
))

=
∑
x∈Fmp

∗
ep

(∑
i∈I

ai

ν∑
j=1

(
Ai
(
F (kj)

(
A−1(x)

))
− Ai

(
F (`j)

(
A−1(x)

))))

=
∑
x∈Fmp

∗
ep

(∑
i∈I

ai

ν∑
j=1

(
Ai
(
F (kj) (x)

)
− Ai

(
F (`j) (x)

)))
.

We now study how often the rational function

Qa,k1,`1,...,kν ,`ν =
∑
i∈I

ai

ν∑
j=1

(
Ai ◦ F (kj) − Ai ◦ F (`j)

)
in the exponential sum is constant.

Assume that the components of the vectors

(k1 . . . , kν) and (`1 . . . , `ν)

are not permutations of each other. After making trivial cancellations,
without loss of generality we may assume that these two vectors have no
common components. Then, Lemma 5 implies that if a = (ai)i∈I ∈ Fsp
is a nonzero vector, thenQa,k1,`1,...,kν ,`ν is a nontrivial linear combination
of terms of degrees

deg
ν∑
j=1

(
Ai ◦ F (kj) − Ai ◦ F (`j)

)
= fi,ji

1

(m− ji)!
eji,ji+1 . . . em−1,mk

m−ji +O(km−1−ji),

where ji is defined by (5) and

k = max{k1, `1, . . . , kν , `ν}.

Note that, by Lemma 5, for a sufficiently large k these degrees are
pairwise distinct (sinceA has a separation property) and positive (since
I is the support of A). Thus, we conclude that for a 6= 0, the function
Qa,k1,`1,...,kν ,`ν is a non-constant rational function with respect to at
least one variable. We now use Lemma 2 with respect to this variable
to estimate the inner sums as O(Km−1pm−1/2) for O(K2ν) choices of
k1, `1, . . . , kν , `ν and otherwise trivially as O(pm) for O(Kν) choices of
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k1, `1, . . . , kν , `ν . Noticing that the term O(K2ν+1N2ν−1pm−1) in (14)
never dominates, we derive

W 2ν � N2ν−1
(
K2ν+m−1pm−1/2 +Kνpm

)
.

Inserting this bound in (13) and choosing K =
⌈
p1/2(m+ν−1)

⌉
we

obtain

SI(a;N)� pαm,νN1−βm,ν .

Recalling Lemma 1 we conclude the proof. �

It is easy to see that for any fixed ε and a sufficiently large ν, the
bound of Theorem 6 is nontrivial provided that T ≥ N ≥ pm−1/2+ε.

It is easy to see that the proof of Theorem 6 also works for the
sequence {un} defined by (11) and (12). In fact it even shortens a
little as some transformations become redundant.

In the case when the system F = {F1, . . . , Fm} induces a permuta-
tion of Fmp we can obtain rather strong estimates of the discrepancy “on
average” over the initial values. First we need the following estimate
(which is also a simple unification of several previously known results,
see [8, 11, 14]).

Given a system of rational functions R = {R1, . . . , Rm} as in the
equation (10), for a vector a = (a1, . . . , am) ∈ Fmp and integers c,M,N
with M ≥ 1 and N ≥ 1, we introduce the sums

VI,a,c(M,N) =
∑

v1,...,vm∈Fp

∣∣∣∣∣
N−1∑
n=0

ep

(∑
i∈I

aiR
(n)
i (v1, . . . , vm)

)
eM(cn)

∣∣∣∣∣
2

,

where I is the support of the automorphism A in the definition (10).

Lemma 7. Assume that F is defined by (7), satisfies the conditions (8)
and (9) and also induces a permutation of Fmp . Let A be an auto-
morphism with the degree separation property and with support I of
cardinality s = #I. Then, for the polynomial system (10), we have

VI,a,c(M,N)� A(N, p),

where

A(N, p) =

{
Npm if N ≤ p1/2m,

N2pm−1/2m if N > p1/2m,

and the implied constant depends only on m and the degree of A.
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Proof. We have

VI,a,c(M,K) =
K−1∑
k,`=0

eM(c(k − `))
∑
v∈Fmp

ep

(∑
i∈I

ai

(
R

(k)
i (v)−R(`)

i (v)
))

≤
K−1∑
k,`=0

∣∣∣∣∣∣
∑
v∈Fmp

ep

(∑
i∈I

ai

(
R

(k)
i (v)−R(`)

i (v)
))∣∣∣∣∣∣ .

Thus as in the proof of Theorem 6, using that A induces a permu-
tation of Fmp , we obtain

VI,a,c(M,K) ≤
K−1∑
k,`=0

∣∣∣∣∣∣
∑
v∈Fmp

ep

(∑
i∈I

(
Ai
(
F (k)(v)

)
− Ai

(
F (`)(v)

)))∣∣∣∣∣∣ .
We now use the trivial bound pm on the inner sum if k = ` or if
max{k, `} is not large enough to make the degree argument used in the
proof of Theorem 6 work. For the other pairs (k, `) we use Lemma 2.
This leads to the bound

(15) VI,a,c(M,K)� Kpm +Km+1pm−1/2.

For N > p1/2m, since R is also permutation polynomial system on Fmp ,
for any integer L we obtain∑

v∈Fmp

∣∣∣∣∣
L+K−1∑
n=L

ep

(∑
i∈I

aiR
(n)
i (v)

)
eM(cn)

∣∣∣∣∣
2

=
∑
v∈Fmp

∣∣∣∣∣
K−1∑
n=0

ep

(∑
i∈I

aiR
(n)
i

(
R

(L)
1 (v), . . . , R(L)

m (v)
))

eM(cn)

∣∣∣∣∣
2

=
∑
v∈Fmp

∣∣∣∣∣
K−1∑
n=0

ep

(∑
i∈I

aiR
(n)
j (v)

)
eM(cn)

∣∣∣∣∣
2

= VI,a,c(M,K).

Therefore, for any positive integer K ≤ N , separating the inner sum
into at most N/K + 1 ≤ 2N/K subsums of length at most K, and
using (15), we derive

VI,a,c(M,N)� (Kpm +Km+1pm−1/2)N2K−2

= N2pm(K−1 +Km−1p−1/2).

Thus, selecting K = min{N,
⌊
p1/2m

⌋
} and taking into account that

N−1pm ≥ Nm−1pm−1/2 for N ≤ p1/2m, we obtain the desired result. �

Combining Lemmas 1 and 7, we derive exactly as in [8, 11]:
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Theorem 8. Let 0 < ε < 1. Assume that F is defined by (7), satisfies
the conditions (8) and (9) and also induces a permutation of Fmp . Let
A be an automorphism with the degree separation property and with the
support I of cardinality s = #I. Then for all initial values u0 ∈ Fmp
except at most O(εpm) of them, and any positive integer N ≤ pm, the
discrepancy DN((un,i/p)i∈I) satisfies

DN((un,i/p)i∈I)� ε−1B(N, p),

where

B(N, p) =

{
N−1/2(logN)m log p if N ≤ p1/2m,

p−1/4m(logN)m log p if N > p1/2m.

and the implied constant depends only on m, ν and the degrees of F
and A.

As after Theorem 6 we remark that Theorem 8 also applies to the
sequence {un} defined by (11) and (12).

4. Multivariate Generalisations of the Power Generator

Let F = {F1, . . . , Fm} be the polynomial system

(16) Fi = (Xi − hi)eiGi + hi, i = 1, . . . ,m.

where for i = 1, . . . ,m we have

(17) ei ∈ N Gi ∈ Fp[Xi+1, . . . , Xm] hi ∈ Fp,
and for some polynomials Gi that have no zeros over Fp:
(18) Gi(xi+1, . . . , xm) 6= 0, xi+1, . . . , xm ∈ Fp,
(in particular Gm = gm ∈ F∗p is a nonzero constant). Polynomial
systems of the form (16) have been introduced and studied in [15].

Here we consider more general systems of polynomials

R = {R1, . . . , Rm} ∈ Fp[X1, . . . , Xm],

defined by

(19) R = L ◦ F ◦ L−1,

where F is defined by (16) and

(20) L(X) = AX,

with A ∈ GLm(Fp) and X = (X1, . . . , Xm). In particular, we note that

Ri = Li(F ◦ L−1),

where Li is a linear function corresponding to the ith row of A in (20).
We recall the following result given in [15, Lemma 4], which can

easily be shown by induction on k:
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Lemma 9. Let F1, . . . , Fm ∈ Fp[X1, . . . , Xm] be defined by (16). Then,
we have

F
(k)
i = (Xi − hi)e

k
iGi,k + hi

where, for i = 1, . . . ,m and k = 1, 2, . . ., we define

Gi,k = G
ek−1
i
i

(
G

(2)
i

)ek−2
i · · ·G(k)

i ,

with

G
(k)
i = Gi

(
F

(k−1)
i+1 , . . . , F (k−1)

m

)
.

We note that the method of [15, Theorem 2], which works for m = 1,
does not seem to apply to the more general systems (19) with m ≥ 2.
Hence, the proof of [15, Theorem 8], that applies to the systems (16)
is based on different arguments. This same approach also works for
the more general systems (19). However, here we use an alternative
method to study the distribution of the corresponding sequences. This
new method produces nontrivial results only for more restrictive sets
of exponents e1, . . . , em, compared to that used in the proof of [15,
Theorem 8], but typically leads to stronger bounds.

We note that the proof uses the fact that m ≥ 2 in a substantial way
(allowing us some extra flexibility in the choice of parameters), so the
result is not analogous to those known for m = 1, see [15, Theorem 2].

For relatively prime integers e and t ≥ 1 we use ordte to denote the
multiplicative order of e modulo t. We are now ready to prove the main
result of this section.

Theorem 10. Let the sequence {un} be defined by (1) with the polyno-
mial system (19) with m ≥ 2 and satisfying (16), (17) and (18). Then,
for any a = (a1, . . . , am) ∈ Zm with

gcd(a1, . . . , am, p) = 1, i = 1, . . . ,m,

for N ≤ T , where T is the trajectory length of the sequence {un}, we
have the estimate

|Sa(N)| � N1/2pm/2+1/8τ−1/4,

where
τ = min{ordp−1ei : i = 1, . . . ,m}

and the implied constant depends only on m.

Proof. Select any a = (a1, . . . , am) satisfying the conditions of the the-
orem. It is obvious that for any k ≥ 0, we have∣∣∣∣∣Sa(N)−

N−1∑
n=0

ep

(
m∑
j=1

ajun+k,j

)∣∣∣∣∣ ≤ 2k.
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For any set of non-negative integers K,

(21) #K|Sa(N)| ≤ W + #Kmax
k∈K

k,

where

W =
N−1∑
n=0

∣∣∣∣∣∑
k∈K

ep

(
m∑
j=1

ajun+k,j

)∣∣∣∣∣ .
We use the Cauchy inequality, as in the proof of Theorem 6 (except
that since ei ∈ N, i = 1, . . . ,m, the ‘special’ convention 0−1 = 0 is
never applied in this case). Hence, we obtain

W 2 ≤ N

N−1∑
n=0

∣∣∣∣∣∑
k∈K

ep

(
m∑
j=1

ajun+k,j

)∣∣∣∣∣
2

≤ N
∑
k,`∈K

∑
x∈Fmp

ep

(
m∑
i=1

ai

(
R

(k)
i (x)−R(`)

i (x)
))

= N
∑
k,`∈K

∑
x∈Fmp

ep

(
m∑
i=1

ai
(
Li
(
F (k)(L−1(x))

)
− Li

(
F (`)(L−1(x))

)))

= N
∑
k,`∈K

∑
x∈Fmp

ep

(
m∑
i=1

ai
(
Li
(
F (k)(x)

)
− Li

(
F (`)(x)

)))
.

Since L ∈ GLm(Fp), we see from Lemma 9 that

m∑
i=1

ai
(
Li
(
F (k) (x)

)
− Li

(
F (`) (x)

))
=

m∑
i=1

ci

(
F

(k)
i (x)− F (`)

i (x)
)

=
m∑
i=1

ci

(
(xi − hi)e

k
iGi,k(x)− (xi − hi)e

`
iGi,`(x)

)
for some nonzero vector c = (c1, . . . , cm) ∈ Fmp .

For each vector x ∈ Fmp we change xi − hi to xi, i = 1, . . . ,m, in the
inner sum and derive

W 2 ≤ N
∑
k,`∈K

∣∣∣∣∣∣
∑
x∈Fmp

ep

(
m∑
i=1

ci

(
x
eki
i Gi,k(x)− xe

`
i
i Gi,`(x)

))∣∣∣∣∣∣ .
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Let j be the smallest subscript with cj 6= 0. Then

(22) W 2 ≤ N
∑
k,`∈K

∑
y∈Fm−1

p

∣∣∣∣∣∣
∑
x∈Fp

ep

(
c
(
xe

k

Hk(y)− xe`H`(y)
))∣∣∣∣∣∣ ,

where c = cj, e = ej and Hn = Gj,n.
Finally, let

t = ordp−1ej = ordp−1e.

Taking S = {eu (mod p− 1) : u = 0, . . . , t− 1} ⊆ Zp−1 and for

h =
⌈
p3/4t−1/2

⌉
≥ p1/4

we select r as in Lemma 3. Thus K is the set of s ∈ S such that rs ≡ y
(mod p− 1) for some nonnegative integer y ≤ h− 1 of cardinality

(23) #K � th/p.

We now make the change of variables x→ xr in the inner sum in (22)
and derive∑

k,`∈K

∑
y∈Fm−1

p

∣∣∣∣∣∣
∑
x∈Fp

ep

(
c
(
xe

k

Hk(y)− xe`H`(y)
))∣∣∣∣∣∣

=
∑
k,`∈K

∑
y∈Fm−1

p

∣∣∣∣∣∣
∑
x∈Fp

ep
(
c
(
xhkHk(y)− xh`H`(y)

))∣∣∣∣∣∣ ,
with some positive integers hk, h` ≤ h such that hk 6= h` if k 6= `,
k, ` ∈ K.

For O(#K) pairs (k, `) with k = `, we estimate the inner sum in (22)
trivially by pm. For the other O(#K2) cases, we recall that

Hk(y)H`(y) = Gj,k(y)Gj,`,(y) 6= 0

and apply Lemma 2. So we obtain:

W 2 = O
(
N#Kpm +Nh(#K)2pm−1/2

)
,

which, together with (21) and (23), implies

|Sa(N)| � N1/2
(
(#K)−1/2pm/2 + h1/2pm/2−1/4

)
+ t

� N1/2
(
(th)−1/2p(m+1)/2 + h1/2pm/2−1/4

)
+ t.

Recalling the choice of h we derive

(24) |Sa(N)| � N1/2pm/2+1/8t−1/4 + t.
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Clearly the bound is trivial if N ≤ pm+1/4t−1/2. On the other hand, for
N > pm+1/4t−1/2 we have

N1/2pm/2+1/8t−1/4 ≥ pm+1/4t−1/2 ≥ pm−1/4 ≥ p ≥ t

for m ≥ 2. So the second term can be omitted in (24). Since t ≥ τ ,
the result now follows. �

Using Theorem 10 and Lemma 1, we obtain:

Corollary 11. The discrepancy DN(un/p) of the sequence (3), defined
by (1) with the polynomial system (19) satisfying (16), (17) and (18)
for N ≤ T , where T is the trajectory length of the sequence {un},
satisfies

DN(un)� N−1/2pm/2+1/8τ−1/4(log p)m,

where

τ = min{ordp−1ei : i = 1, . . . ,m}
and the implied constant depends only on m.

We note that in the most favourable case, when N = pm+o(1) and
τ = p1+o(1) the bound of Corollary 11 takes the form O(p−1/8+o(1)) while
the bound of [15, Corollary 9] gives only O(p−3/184+o(1)). However,
Corollary 11 is nontrivial only for τ > p1/2+δ for some fixed δ > 0
which [15, Corollary 9] yields a meaningful estimate for a much wider
class of the exponents e1, . . . , em.
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20 DOMINGO GÓMEZ-PÉREZ, ALINA OSTAFE, AND IGOR SHPARLINSKI

Department of Mathematics, University of Cantabria, Santander
39005, Spain

E-mail address: domingo.gomez@unican.es

Department of Computing, Macquarie University, Sydney NSW 2109,
Australia

E-mail address: alina.ostafe@mq.edu.au

Department of Computing, Macquarie University, Sydney NSW 2109,
Australia

E-mail address: igor.shparlinski@mq.edu.au


