Linear Multistep Methods for I.V. Problems

The linear multistep methods can be written in the general form

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j} \tag{1}
\end{equation*}
$$

where k is called the step number and without loss of generality we let $\alpha_{k}=1$. Explicit methods are characterised by $\beta_{k}=0$ and implicit methods have $\beta_{k} \neq 0$.

Linear Multistep Methods for I.V. Problems

The Adams Family

This familiy of methods is derived from the identity

$$
\begin{equation*}
y\left(t_{n+1}\right)-y\left(t_{n}\right)=\int_{t_{n}}^{t_{n+1}} f(t, y(t)) d t \tag{2}
\end{equation*}
$$

With a view to using previously computed values of y_{n}, we replace $f(t, y)$ by the polynomial of degree $k-1$ passing through the k points

$$
\left(t_{n-k+1}, f_{n-k+1}\right), \ldots,\left(t_{n-1}, f_{n-1}\right),\left(t_{n}, f_{n}\right)
$$

Using a constant step size, this polynomial can be written (in the Newton backward difference form) as follows

$$
P_{k-1}(r)=f_{n}+r \nabla f_{n}+\frac{r(r+1)}{2!} \nabla^{2} f_{n}+\ldots+\frac{r(r+1) \ldots(r+k-2)}{(k-1)!} \nabla^{k-1} f_{n} .
$$

donde $t=t_{n}+r h, r \in[-(k-1), 0]$.

Linear Multistep Methods for I.V. Problems

Then, the Adams-Bashforth method of k steps has the form

$$
y_{n+1}-y_{n}=\int_{t_{n}}^{t_{n+1}} P_{k-1}(t) d t
$$

and by integrating the polynomial

$$
\begin{equation*}
y_{n+1}-y_{n}=\int_{0}^{1} P_{k-1}(r) h d r=h \sum_{i=0}^{k-1} \gamma_{i} \nabla^{i} f_{n}=\sum_{i=0}^{k-1} \gamma_{i} \Delta^{i} f_{n-i} \tag{3}
\end{equation*}
$$

where $\gamma_{i}=(-1)^{i} \int_{0}^{1}\binom{-r}{i} d r$

$$
\begin{gathered}
\gamma_{0}=\int_{0}^{1} d r=1, \quad \gamma_{1}=\int_{0}^{1} r d r=\frac{1}{2}, \gamma_{2}=\int_{0}^{1} \frac{r(r+1)}{2} d r=\frac{5}{2}, \\
\gamma_{3}=\int_{0}^{1} \frac{r(r+1)(r+2)}{6} d r=\frac{3}{8}, \ldots
\end{gathered}
$$

Linear Multistep Methods for I.V. Problems

The first Adams-Bashforth methods are then:

$$
\begin{align*}
& y_{n+1}=y_{n}+h f_{n} \\
& y_{n+1}=y_{n}+\frac{h}{2}\left(3 f_{n}-f_{n-1}\right) \tag{AB2}\\
& y_{n+1}=y_{n}+\frac{h}{12}\left(23 f_{n}-16 f_{n-1}+5 f_{n-2}\right) \tag{AB3}\\
& y_{n+1}=y_{n}+\frac{h}{24}\left(55 f_{n}-59 f_{n-1}+37 f_{n-2}-9 f_{n-3}\right) \tag{4}
\end{align*}
$$

(AB1), Euler Method
(AB4)
and so on.

Linear Multistep Methods for I.V. Problems

The Adams-Bashforth methods are explicit methods. Implicit Adams methods are derived by integrating the order k polynomial passing through the points

$$
\left(t_{n+1}, f_{n+1}\right),\left(t_{n}, f_{n}\right),\left(t_{n-1}, f_{n-1}\right) \ldots,\left(t_{n-k+1}, f_{n-k+1}\right)
$$

Note that we are considering the additional data point $\left(t_{n+1}, f_{n+1}\right)$. The corresponding polynomial is
$P_{k}(r)=f_{n+1}+r \nabla f_{n+1}+\frac{r(r+1)}{2!} \nabla^{2} f_{n+1}+\ldots+\frac{r(r+1) \ldots(r+k-1)}{k!} \nabla^{k} f_{n+1}$.
where $t=t_{n+1}+r h, r \in[-(k-1), 0]$.

Linear Multistep Methods for I.V. Problems

Then, for the implicit methods we will have

$$
y_{n+1}-y_{n}=\int_{-1}^{0} P_{k}(r) h d r=h \sum_{i=0}^{k} \gamma_{i}^{\prime} \nabla^{i} f_{n+1}=h \sum_{i=0}^{k} \gamma_{i}^{\prime} \Delta^{i} f_{n+1-i},
$$

where

$$
\begin{gathered}
\gamma_{0}^{\prime}=\int_{-1}^{0} d r=1, \quad \gamma_{1}^{\prime}=\int_{-1}^{0} r d r=-\frac{1}{2}, \quad \gamma_{2}^{\prime}=\int_{-1}^{0} \frac{r(r+1)}{2} d r=-\frac{1}{12}, \\
\gamma_{3}^{\prime}=\int_{-1}^{0} \frac{r(r+1)(r+2)}{6} d r=-\frac{1}{24}, \ldots
\end{gathered}
$$

Linear Multistep Methods for I.V. Problems

The implicit Adams methods are called Adams-Moulton methods (AM). The first AM methods are:

$$
\begin{align*}
& y_{n+1}=y_{n}+h f_{n+1}=y_{n}+h f\left(t_{n+1} y_{n+1}\right) \\
& y_{n+1}=y_{n}+\frac{h}{2}\left(f_{n+1}+f_{n}\right) \\
& y_{n+1}=y_{n}+\frac{h}{12}\left(5 f_{n+1}+8 f_{n}-f_{n-1}\right) \tag{AM2}\\
& y_{n+1}=y_{n}+\frac{h}{24}\left(9 f_{n+1}-19 f_{n}-5 f_{n-1}+f_{n-2}\right) \tag{5}
\end{align*}
$$

(AMO), implicit Euler method (AM1), trapezoidal method
(AM3)
Note that, as typical for any implicit method, we have to solve a nonlinear equation.

Predictor-Corrector Methods for I.V. Problems

Consider an Adams-Moulton scheme with 2 steps (AM2), order 3. We start from the initial values y_{0}, y_{1} (the value of y_{1} can be obtained, for instance, by using a Taylor method of order 4) and we have to compute y_{2}. In order to compute this value we have to solve the, in general, nonlinear equation

$$
y_{2}=y_{1}+\frac{h}{12}\left(5 f\left(t_{2}, y_{2}\right)+8 f\left(t_{1}, y_{1}\right)-f\left(t_{0}, y_{0}\right)\right)
$$

So far we have solved this kind of equations by using, for instance, a fixed point method. As we already know, the fixed point method is a good choice if the initial value is near enough to the solution of the equation and h is small enough.

Predictor-Corrector Methods for I.V. Problems

In general, at each step $n+1$ we have to solve the nonlinear equation

$$
y_{n+1}=G\left(y_{n+1}\right)=y_{n}-h \Phi\left(y_{n+1}\right) .
$$

In order to apply a fixed point method, a first estimation of the root of the equation would be very convenient. This estimation can be obtained by using, for instance, an Adams-Bashforth method.

Predictor-Corrector Methods for I.V. Problems

In this way, we will have the following predictor-corrector scheme: Starting form h and the initial values (y_{0}, \ldots, y_{k-1}), the following scheme is repeated at each step n (the values $f_{n}, f_{n-1}, \ldots, f_{n-k+1}$ are obtained in previous iterations):

P: Predict by using AB. For instance, by using AB2 and using the known values f_{n}, f_{n-1},

$$
y_{n+1}^{(0)}=y_{n}+\frac{h}{2}\left(3 f_{n}-f_{n-1}\right)
$$

E: Evaluate $f\left(t_{n+1}, y_{n+1}^{(0)}\right)$
C: Correct by using the AM formula. For example, for AM2 we have:

$$
y_{n+1}=y_{n}+\frac{h}{12}\left(5 f\left(t_{n+1}, y_{n+1}^{(0)}\right)+8 f_{n}-f_{n-1}\right)
$$

E: Evaluate $f_{n+1}=f\left(t_{n+1}, y_{n+1}\right)$ in order to be apply in subsequent steps.

Predictor-Corrector Methods for I.V. Problems

This algorithm is denoted simbolically by PECE. Another possibilities are: PECECE (2 fixed point iterations) or PE(CE) ${ }^{m}$ (m fixed point iterations).

Example

Consider the Forward Euler method as predictor and the AM of 2nd order as corrector.
The corresponding PECE algorithm reads: $y_{n} \rightarrow y_{n+1}^{(0)} \rightarrow y_{n+1}$, where

$$
\begin{aligned}
& \text { Predictor: } y_{n+1}^{(0)}=y_{n}+h f\left(t_{n}, y_{n}\right) \\
& \text { Corrector: } y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{(0)}\right)\right]
\end{aligned}
$$

This is a RK Method of 2nd order!

Predictor-Corrector Methods for I.V. Problems

Example

Consider the ODE

$$
y^{\prime}(x)=-y(x)+2 \cos x, \quad y(0)=1
$$

(1) Give the 2nd order Adams-Moulton iteration formula.
(2) Consider the Forward Euler Method as predictor and the Adams-Moulton scheme of 2nd order as corrector. Give the corresponding iteration formula.
(3) Use the previous algorithm to evaluate y_{1} for $h=0.1$.

Predictor-Corrector Methods for I.V. Problems

Sol:

- The 2nd order Adams-Moulton scheme reads

$$
\begin{aligned}
y_{k+1} & =y_{k}+\frac{h}{2}\left[f\left(x_{k}, y_{k}\right)+f\left(x_{k+1}, y_{k+1}\right)\right] \\
& =y_{k}+\frac{h}{2}\left[2 \cos x_{k}-y_{k}+2 \cos x_{k+1}-y_{k+1}\right]
\end{aligned}
$$

with $y_{0}=y(0)=1$. Therefore, the iteration formula is:

$$
\begin{gathered}
y_{k+1}=\frac{1-h / 2}{1+h / 2} y_{k}+\frac{h}{1+h / 2}\left[\cos x_{k}+\cos \left(x_{k}+h\right)\right] \\
k=0,1,2, \ldots
\end{gathered}
$$

Predictor-Corrector Methods for I.V. Problems

Sol (Cont.):

- The Predictor-Corrector formulas are

$$
\begin{aligned}
& y_{k+1}^{(0)}=y_{k}+f\left(x_{k}, y_{k}\right) h, \\
& y_{k+1}=y_{k}+\frac{h}{2}\left[f\left(x_{k}, y_{k}\right)+f\left(x_{k+1}, y_{k+1}^{(0)}\right)\right] .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
y_{k+1}= & y_{k}+\frac{h}{2}\left[2 \cos x_{k}-y_{k}+\right. \\
& \left.2 \cos x_{k+1}-h\left(2 \cos x_{k}-y_{k}\right)-y_{k}\right] \\
= & {\left[1-h+\frac{h^{2}}{2}\right] y_{k}+} \\
& h\left(\cos x_{k}+\cos \left(x_{k}+h\right)\right)-h^{2} \cos x_{k} .
\end{aligned}
$$

Predictor-Corrector Methods for I.V. Problems

Sol (Cont.):

- By using the previous formulas, we obtain

$$
y_{1} \approx 1.0945
$$

Th exact solution at the point $x=x_{1}$ is
$y\left(x_{1}\right)=\left.\left(\cos x_{1}+\sin x_{1}\right)\right|_{x=0.01} \approx 1.0948$. The approximate solution x_{1} by using the Adams-Moulton method is $\left.y_{1}\right|_{A M} \approx 1.0948$. Then, in this case, $\left.y_{1}\right|_{A M}$ is more accurate than the corresponding solution of the PC scheme; however, the PC approximation is better than the approximation obtained with a single use of a predictor method.

Boundary Value Problems

Prototype example:
Solve

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \text { en } a \leq t \leq b
$$

with the boundary conditions

$$
y(a)=\alpha, y(b)=\beta .
$$

Boundary conditions on the derivatives of the solution or mixed boundary conditions can be also considered $y(a)+\gamma y^{\prime}(a)=\alpha, \ldots$

