
Solving Ordinary Differential equations

Our starting point is the following ODE:

y ′(t) = f (t , y(t)), a ≤ t ≤ b
y(a) = η.

}
(1)

Why do we need numerical methods for solving such an
“innocuous” differential equation? Because problems of this
form are often difficult, if not impossible, to solve analitically.
This is specially the case when the equation is nonlinear.



Solving Ordinary Differential equations

Although we will concentrate on first-order scalar equations, the
numerical methods are easily extended to cover first-order
systems of equations. Furthermore, it is easy to convert higher
order scalar initial value problems to first-order systems.
Therefore, we are not restricted to first order equations. In fact,
the methods can be used as part of numerical algorithms to
find solutions of evolutionary partial differential equations.
Additionally, we will consider also methods for solving
Boundary Value Problems.



Solving Ordinary Differential equations

Outline of Study of ODE’s:

1 Single-Step Methods for I.V. Problems

a. Euler.
b. Trapezoidal.
c. Taylor methods.
d. General Runge-Kutta
e. Adaptive step-size control.

2 Stiff ODEs

3 Multi-Step Methods for I.V. Problems.

4 Boundary Value Problems

1. Shooting Method
2. Finite Difference Method
3. Finite element Method



Single-Step Methods for I.V. Problems

Discretisation
The central idea behind numerical methods is that of discretisation.
That is we partition the continuous interval [a, b] by a discrete set of
N + 1 points:

a = t0 < t1 < t2 < ... < tN−1 < tN = b.

The parameters

hn = tn+1 − tn , n = 0, 1, ..., N − 1 (2)

are called the step-sizes. We will be often be interested in using an
equally spaced partition where

hn = h =
(b − a)

N
, n = 0, 1, ..., N − 1.



Single-Step Methods for I.V. Problems

We will let yn denote the numerical approximation to the exact
solution y(tn). A numerical solution of (1) consists of a set of discrete
approximations {yn}N

n=0. A numerical method is a difference equation
involving a number of consecutive approximations

yj , j = 0, 1, ..., k

from which we sequentially compute the sequence

yk+n, n = 1, 2, ..., N.



Single-Step Methods for I.V. Problems

The derivation of a number of numerical methods begins by
integrating (1) between tn and tn+1. This gives∫ tn+1

tn

dy
dt

dt =

∫ tn+1

tn
f (t , y) dt

⇒ y(tn+1)− y(tn) =

∫ tn+1

tn
f (t , y) dt .

Now, if we make the approximation

f (t , y) ≈ f (tn, y(tn)), t ∈ (tn, tn+1)

then

y(tn+1)− y(tn) ≈
∫ tn+1

tn
f (tn, y(tn)) dt = (tn+1 − tn)f (tn, y(tn)).

Therefore

y(tn+1) ≈ y(tn) + (tn+1 − tn)f (tn, y(tn)).



Single-Step Methods for I.V. Problems

This suggest the numerical method

yn+1 = yn + (tn+1 − tn)f (tn, y(tn)), n = 0, 1, ..., N − 1 (3)

which is called the forward or explicit Euler method. Note that from
the initial condition y0 = η we can explicitly calculate y1 by applying
(3). This in turn allows us to calculate y2 and then y3 and so on.
A geometrical interpretation of the forward Euler method is that
instead of following the possibly curved solution trajectory passing
through (tn, yn), the method actually follows a straight line trajectory
which has slope f (tn, yn).
The forward Euler method is, of course, an approximate method
which will only be exact in the trivial case of a linear solution in t . But
we hope that the method will be closer to the exact solution as the
step-size h is taken smaller. This is a neccesary condition for any
reasonable numerical method.



Single-Step Methods for I.V. Problems

Definition
We will say that a numerical method is convergent when for all IVP (1)
with solution sufficiently differentiable, the following condition applies

lim
h→0

(
max

1≤n≤N
||yn − y(tn)||

)
= 0.

being y0 = y(t0).
We will say that the order of convergence of the method is p, if as h is
taken smaller (ie, with N large enough), then(

max
1≤n≤N

||yn − y(tn)||
)

= O(hp) , Nh = constante

ie, if there ∃C ≥ 0 such that max1≤n≤N ||yn − y(tn)|| ≤ C|h|p for N
large enough.



Single-Step Methods for I.V. Problems

Theorem
For all IVP (1) with f continuous and satisfying a Lipschitz condition
on D, the forward Euler method is convergent and its order of
convergence is 1. The error of the Euler method can be bound as
follows

||y(tn)− yn|| ≤
C
2L

(e(tn−a)L − 1)h , 0 ≤ n ≤ N

being y0 = y(t0), C = maxx∈[a,b] ||y ′′(x)|| and L a Lipschitz constant.



Single-Step Methods for I.V. Problems

An obvious question is whether we can easily improve upon the
forward Euler method. Remembering that Euler method replaces
f (t , y(t)) by the slope f (tn, yn), it seems likely that an improved
approximation would be the average of the slopes at tn and tn+1. That
is

y(tn+1)− y(tn) ≈ (tn+1 − tn)
1
2

(f (tn, y(tn)) + f (tn+1, y(tn+1))) .

This suggest the following numerical method:

yn+1 = yn +
hn

2
(f (tn, yn) + f (tn+1, yn+1)) . (4)

This method is called the trapezoidal method and differs from the
forward Euler method in an important way:



Single-Step Methods for I.V. Problems

At the (n + 1)st step we have to solve the (generally no linear)
equation

g(yn+1) ≡ yn+1 − yn −
hn

2
(f (tn, yn) + f (tn+1, yn+1)) = 0 (5)

to determine yn+1. Therefore yn+1 is defined implicitly and for that
reason the trapezoidal method is an example of an implicit method.
The forward Euler method, on the other hand, is an example of an
explicit method.



Single-Step Methods for I.V. Problems

For the trapezoidal method, the following convergence theorem
can be stablished

Theorem
For all IVP (1) satisfying a Lipschitz condition, the trapezoidal
method is convergent and for hL < 2 (being L a Lipschitz
constant) the error can be bound by

|en| ≤
Ch2

L
exp

L(tn − a)

1− hL
2

 ,

where |y ′′′| < C.
Therefore, the trapezoidal method is convergent with order 2.


