Error propagation: condition and stability

The condition of a function $f(x)$ measures the sensitivity of $f(x)$ to small changes in the variable x :

$$
C=\left|\frac{E_{r e l}(f(x))}{E_{r e l}(x)}\right|
$$

where $E_{r e l}(f(x))$ is the relative error of $f(x)$ for a relative error of $E_{\text {rel }}(x)$ in the variable x.

Error propagation: condition and stability

Then, ${ }^{1}$

$$
f\left(x_{T}\right)-f\left(x_{A}\right) \simeq f^{\prime}\left(x_{t}\right)\left(x_{T}-x_{A}\right) \rightarrow E_{r e l}(f(x)) \simeq \frac{f^{\prime}\left(x_{T}\right)}{f\left(x_{T}\right)}\left(x_{T}-x_{A}\right) .
$$

Therefore

$$
\begin{equation*}
C \simeq\left|x_{T} \frac{f^{\prime}\left(x_{T}\right)}{f\left(x_{T}\right)}\right| \tag{1}
\end{equation*}
$$

${ }^{1}$ Apply the following theorem: if $g(x)$ continuous in $[a, b]$ and differentiable in (a, b) then $\exists c \in(a, b): f(b)-f(a)=f^{\prime}(c)(b-a)$

Error propagation: condition and stability

We will use the expression given in (1) as the definition of condition for functions of real variable. We will define the condition numbers as

$$
C(x)=\left|x \frac{f^{\prime}(x)}{f(x)}\right|
$$

Given x, if $0<C(x)<1$ the problem will be well conditioned; if $C(x)>1$ the problem will be ill conditioned. If $C(x)=1$, the relative error is maintained.

Error propagation: condition and stability

Example

$$
\begin{aligned}
& f(x)=\sqrt{x} \text { is well conditioned: } C(x)=1 / 2 \\
& f(x)=x^{2}-1 \text { is ill-conditioned for } x \simeq 1: \\
& C(x)=\left|\frac{2 x^{2}}{x^{2}-1}\right|
\end{aligned}
$$

The concept of condition can be extended to more general situations. Consider, for instance, a classical problem which is the study of the condition of recurrence relations:
The Bessel functions $J_{n}(x)$ satisfy the recurrence relation $J_{n+1}(x)=-J_{n-1}(x)+\frac{2 n}{x} J_{n}(x)$. The computation of J_{n} from J_{0} and J_{1}, is ill-conditioned (an small perturbation in the initial data has catastrophic consecuences on the final value J_{n}).

Error propagation: condition and stability

CONDITION and STABILITY are related concepts but not equal.
Condition does not depends on round-off errors; the stability of an algorithm depends on the condition of the function to be computed.

Error propagation: condition and stability

Example

Given the function $f(x)=\sqrt{x+1}-\sqrt{x}$, the condition number is:

$$
C(x)=\left|x \frac{f^{\prime}(x)}{f(x)}\right|=\frac{x}{2 \sqrt{x} \sqrt{x+1}}
$$

and we see that $C(x)<1 / 2$ for $x>0$; then, the function is well conditioned.
However, the following algorithm
(1) Input: x
(2) $y=x+1$
(3) $f_{1}=\sqrt{x+1}$
(4) $f_{2}=\sqrt{x}$
(5) $f=f_{1}-f_{2}$
is unstable for x large (see step 5).

Error propagation: condition and stability

Example

We can get a stable algorithm by considering:

$$
f(x)=\frac{1}{\sqrt{x+1}+\sqrt{x}}
$$

