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MATLAB Capabilities

GAUSS ELIMINATION

gauss (A,b) 

backslash operator \

Usage:       x = gauss (A,b)

Description:  Solve linear algebraic system, Ax = b, using Gauss elimination. 

Inputs:
A = m by n coefficient matrix 

b = m by 1 right-hand side vector

Outputs:   x = n by 1 solution vector

 Note:  A must be of full rank.  If m m > n, then the minimum least-squares solution of Ax(= b is computed: so that: x = A’A\A’b

LU FACTORIZATION

[L,U] = LU(X) stores a upper triangular matrix in U and a "psychologically lower triangular matrix" (i.e. a product of lower triangular and permutation matrices) in L, so that X = L*U.  X must be square.

[L,U,P] = LU(X) returns lower triangular matrix L, upper triangular matrix U, and permutation matrix P so that P*X = L*U. Uses LINPACK'S ZGEFA routine.

LU(X,THRESH) controls pivoting in sparse matrices, where THRESH is a pivot threshold in [0,1].  Pivoting occurs when the diagonal entry in a column has magnitude less than THRESH times the magnitude of any sub-diagonal entry in that column.  THRESH = 0 forces diagonal pivoting.  THRESH = 1 is the default.

INTERPOLATION
SPLINE Cubic spline (See also Spline Toolbox)

YI = SPLINE(X,Y,XI) uses cubic spline interpolation to find a vector YI corresponding to XI.  X and Y are the     given data vectors and XI is the new abscissa vector XI.

PP = SPLINE(X,Y) returns the pp-form of the cubic spline instead, for later use with  ppval, etc.  Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa:

      x = 0:10;  y = sin(x);     xi = 0:.25:10;     yi = spline(x,y,xi);     plot(x,y,'o',xi,yi)

PPVAL  Evaluate piecewise polynomial.

V = PPVAL(PP,XX) returns the value of the piecewise polynomial PP at the points XX.  Piecewise polynomial form (pp-form) is returned by SPLINE.

INTERP1 1-D interpolation (table lookup)

YI = INTERP1(X,Y,XI) interpolates to find YI, the values of the underlying function Y at the points in the vector XI. The vector X specifies points at which the data Y is given.  

YI = INTERP1(X,Y,XI,'method') specifies alternate methods. The default is linear interpolation.  Available methods are: 'nearest' - nearest neighbor interpolation   'linear'  - linear interpolation   'spline'  - cubic spline interpolation   'cubic'   - cubic interpolation

All the interpolation methods require that X be monotonic. X can be non-uniformly spaced.  For faster interpolation when X is equally spaced and monotonic, use the methods '*linear', '*cubic', '*nearest', or '*spline'.

Least Squares POLYFIT Fit polynomial

POLYFIT(X,Y,N) finds polynomial coefficients P(X) of degree N that fits data, P(X(I))~=Y(I), in least-squares sense.

[P,S] = POLYFIT(X,Y,N) returns polynomial coefficients P and a structure S for use with POLYVAL to obtain error estimates on predictions.  If the errors in data, Y, are independent normal with constant variance, POLYVAL will produce error bounds which contain at least 50% of the predictions.

POLYVAL evaluates polynomial

Y = POLYVAL(P,X), when P is a vector of length N+1 whose elements are the coefficients of a polynomial, is the value of the polynomial evaluated at X.    Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1).  If X is a matrix or vector, the polynomial is evaluated at all points in X.  

NUMERICAL QUADRATURE

QUAD Numerically evaluate integral, low order

Q = QUAD('F',A,B,TOL) approximates integral of F(X) from A to B to within a relative error of 1e-3 using an adaptive recursive Simpson's rule.  'F' is a string containing the name of the function.  Function F must return a vector of output values if given a vector of input values.  Q = Inf is returned if an excessive recursion level is reached, indicating a possibly singular integral. Use a two element tolerance, TOL = [rel_tol abs_tol], to specify a combination of relative and absolute error.

QUAD8 Numerically evaluate integral,higher order

 
Q = QUAD8('F',A,B,TOL) approximates integral of F(X) from A to B to within a relative error of 1e-3 using an adaptive recursive using Newton Cotes 8 panel rule.  

DBLQUAD Numerically evaluate double integral RESULT = DBLQUAD('FUN', INMIN, INMAX, OUTMIN, OUTMAX,TOL,METHOD) evaluates double integral FUN(INNER,OUTER) using METHOD, where INNER is the inner variable ranging from INMIN to INMAX, and OUTER is the outer variable ranging from OUTMIN to OUTMAX. The first argument 'FUN' is a string, or inline object, representing integrand function.  This function must be a function of two variables of form FOUT=FUN(INNER,OUTER). The function must take a vector INNER and a scalar OUTER and return a vector FOUT that is the function evaluated at OUTER and each value of INNER. 

Valid values for METHOD are  'quad' and 'quad8', or user-defined quadrature method.

ORDINARY DIFFERENTIAL EQUATIONS

ODE23  Solve non-stiff differential eqns, low order method 

[T,Y] = ODE23('F',TSPAN,Y0) with TSPAN = [T0 TFINAL] ODE23 is an implementation of explicit Runge-Kutta (2,3) pair of Bogacki & Shampine called BS23. Uses "free" interpolant of order 3

ODE45 Solve non-stiff differential equations, low order method. Implementation of the explicit Runge-Kutta (4,5) pair of Dormand and Prince called variously RK5(4)7FM, DOPRI5, DP(4,5), DP54

[T,Y] = ODE45('F',TSPAN,Y0) with TSPAN = [T0 TFINAL] integrates the system of differential equations y' = F(t,y) from T0 to TFINAL with initial conditions Y0.  'F' is string containing the name of an ODE file.  Function F(T,Y) must return a column vector.  Each row in solution array Y corresponds to time returned in column vector T.   To obtain solutions at specific times T0, T1, ..., TFINAL  (all increasing or all decreasing), use TSPAN = [T0 T1 ... TFINAL].  

[T,Y] = ODE45('F',TSPAN,Y0,OPTIONS) solves as above with default integration parameters replaced by values in OPTIONS, an argument created with the ODESET function.  Commonly used options are scalar relative error tolerance 'RelTol' (1e-3 by default) and vector of absolute error tolerances 'AbsTol'  (all components 1e-6 by default). 

As an example, options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);     ODE45('rigidode',[0 12],[0 1 1],options);  solve the system y' = rigidode(t,y).  

 
When called with no output arguments, ODE45 calls the default output function ODEPLOT to plot solution
ODE113 Solve non-stiff differential eqns, variable order method 

[T,Y] = ODE113('F',TSPAN,Y0,OPTIONS)  A fully variable step size, PECE implementation in terms of modified divided differences of Adams-Bashforth-Moulton family of formulas of orders 1-12.  The natural "free" interpolants are used.

ODE23S Solve stiff differential eqns, low order method 

[T,Y] = ODE23S('F',TSPAN,Y0) with TSPAN = [T0 TFINAL] An implementation of new modified Rosenbrock (2,3) pair with a "free" interpolant. Local extrapolation is not done. 

ODE15S Solve stiff differential eqns, variable order method 

[T,Y] = ODE15S('F',TSPAN,Y0) with TSPAN = [T0 TFINAL] A quasi-constant step size implementation in terms of backward differences of the Klopfenstein-Shampine family of Numerical Differentiation Formulas of orders 1-5. Natural "free" interpolants are used. Local extrapolation is not done. By default, Jacobians are generated numerically.

For additional details of MATLAB ODE solvers see the m-files themselves or: The MATLAB ODE Suite, L. F. Shampine and M. W. Reichelt, SIAM Journal on Scientific Computing, 18‑1, 1997.

PARTIAL DIFFERENTIAL EQUATIONS

Type pdetool to access the PDE Toolbox.  See separate documentation of that toolbox.


