
Synthetic Traffic Model of the Graph500
Communications

Pablo Fuentes1, Enrique Vallejo1, José Luis Bosque1, Ramón Beivide1, Andreea
Anghel2, Germán Rodŕıguez3, Mitch Gusat2, and Cyriel Minkenberg3 ?

1 University of Cantabria
{fuentesp, vallejoe, bosquejl, beividej}@unican.es

2 IBM Zurich Research Laboratory
{aan, mig}@zurich.ibm.com

3 Rockley Photonics
german.rodriguez.herrera@gmail.com,

cyriel.minkenberg@rockleyphotonics.com

This is the authors version of the paper. The final publication is available at
Springer via http://dx.doi.org/10.1007/978-3-319-49583-5 52.

Abstract. As BigData applications have gained momentum over the
last years, the Graph500 benchmark has appeared in an attempt to steer
the design of HPC systems to maximize the performance under memory-
constricted application workloads. A realistic simulation of such bench-
marks for architectural research is challenging due to size and detail
limitations, and synthetic traffic workloads constitute one of the least
resource-consuming methods to evaluate the performance. In this work,
we propose a synthetic traffic model that emulates the behavior of the
Graph500 communications. Our model is empirically obtained through
a characterization of several executions of the benchmark with different
input parameters. We verify the validity of our model against a character-
ization of the execution of the benchmark with different parameters. Our
model is well-suited for implementation in an architectural simulator.

1 Introduction

BigData applications have become ubiquitous and gather the interest of
system architects and designers. The Graph500 benchmark [1] appeared
in 2010 with the aim of influencing the design of new systems, so they
better adjust to the memory- and IO-bounded requirements of data in-
tensive applications. Based on the execution of a BFS within a graph,
it is currently one of the most known BigData-focused benchmarks [3].

? The authors would like to thank the European HiPEAC Network of Excellence for
partially funding this work through a Collaboration Grant, as well as Cristóbal Ca-
marero for his help. This work has been supported by the Spanish Ministry of Edu-
cation, FPU grant FPU13/00337, the Spanish Science and Technology Commission
(CICYT) under contract TIN2013-46957-C2-2-P, and by the Mont-Blanc project.
The Mont-Blanc project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 671697.

http://dx.doi.org/10.1007/978-3-319-49583-5_52


Therefore, it is strongly useful for the evaluation and design of parallel
computers, specially their memory and network subsystems.
Network simulators constitute a useful tool for network architects in
the design and evaluation of new systems. Synthetic traffic models have
smaller computational and memory requirements than full system and
trace-driven simulation alternatives while retaining the core character-
istics of the workload they represent. However, synthetic traffic models
have traditionally consisted of permutations to determine the destination
or set of destinations for the messages from a given node, which isn’t a
fitting scheme for the behavior of BigData applications.
The objective of this work is to establish a network traffic model of the
Graph500 benchmark workload. Our model replicates the staged struc-
ture of the benchmark with large batches of uniformly distributed mes-
sages ending in a collective allreduce operation. Total amount of messages
per stage is defined as a function of message aggregation and the number
of explored edges, obtained empirically from a characterization of several
benchmark executions with different input parameters. A similar proce-
dure can be followed to adapt our model to emulate a BFS execution
upon graphs of a different nature. This model can be handily integrated
in a network simulator to forecast the network impact on system perfor-
mance upon the Graph500 benchmark workload. It achieves good scal-
ability both in size of the simulated network and maximum graph size
explored in the benchmark, without requiring intensive computation.

2 Analysis of the Benchmark Communications

In [10] Suzumura et al. offer a thorough description of the different im-
plementations of the Graph500 benchmark, and works from Anghel et
al. [2] and Fuentes et al. [6] provide a more thorough characterization of
the communications in the simple implementation of the benchmark.
Communications along the benchmark execution are structured into mul-
tiple batches of point-to-point messages succeeded by a point-to-point
notification to all other processes which signals the end of a tree level.
These batches are separated by a phase of synchronization through an
all-reduce comprising a reduction and a broadcast, and correspond to
the levels of the tree obtained from the BFS execution. The amount of
messages is close to evenly distributed across each stage but varies sig-
nificantly between tree levels, with two big levels typically representing
∼ 80% of the total. The impact of the point-to-point messages which sig-
nal the end of a tree level is negligible. The likewise sporadic all-reduce is
only important because it synchronizes the generation of new messages.
Therefore, from a network usage perspective the major communications
are the point-to-point exchanges during each tree level. These commu-
nications are highly homogeneous spatially due to the even distribution
of the graph across processes. Graph500 exploits message aggregation to
reduce network traffic, with every message grouping multiple queries up
to a value named coalescing size.
Graphs in the benchmark are generated through a Kronecker matrix
product similar to the Recursive MATrix (R-MAT) scale-free graph gen-
eration algorithm [4]. Graphs generated by R-MAT emulate the behavior



of small-world phenomena, where a small fraction of the nodes (or ver-
tices) have a significantly large number of direct connections (or edges)
with other nodes, and a large proportion of the vertices have a low num-
ber of edges (or vertex degree). Previous works such as [4] and [8] charac-
terize the distribution of the vertex degree in such graphs as power-law
or lognormal. Groër et al. [7] provide a more accurate model as a series
expansion from normal distributions, and Seshadhri et al. [9] simplify it
as a combination of a lognormal and an exponential tail distribution.
In our model we consider a lognormal distribution of the vertex degree to
make it simpler to implement yet sufficiently accurate. This distribution
is used to select the degree of the root vertex, and can be readily replaced
by the series expansion of Groër [7] or the formula of Seshadhri [9] should
a more precise distribution be needed.

3 Graph500 Network Traffic Model

Our model consists of a traffic generator structured in multiple stages:
for each stage, a given number of messages is dispatched from every
process. Once a process has sent all its messages, it sends one message
to every other process (representing the end-of-phase notification) and
it enters into a collective all-reduce operation. This operation consists of
a reduce operation (where all the process send to the same destination)
and a broadcast (in which the destination spreads the result from the
data gathering). Within each stage, the traffic consists of point-to-point
messages uniformly distributed temporally and spatially.
Message generation rate depends fundamentally on the node capabilities
of the system, and we introduce it as an input parameter to the model
that is constant across any execution. Message destination is randomly
selected among all the other processes in the application. Each process
sends in every level a fixed amount of messages defined through a set of
equations before entering the all-reduce operation. These equations have
been obtained through a statistical analysis of the average from a set of
executions of the benchmark for different input parameters.
This analysis has been conducted by establishing a linear combination
that fits the observed values through a model fitting tool based on the
function described by Chambers in [5]. The coefficients of said linear
combinations have then been generalized to follow the variations with the
input parameters. The measurements are oblivious to the infrastructure
employed, so they can be extrapolated to any other system. In each stage
the amount of messages delivered per process is expressed as a function of
the number of edges explored per tree level and the amount of message
aggregation that is being performed, represented by a coalescing size
parameter that is by default constant in the benchmark implementation.
Table 1 presents a summary of the abbreviations employed in the model
equations, with a brief description of each parameter. The number of
messages sent in the point-to-point communications is determined by
Eq. 1, considering the coalescing size as a parameter of the model.

mproc =
1

cs
· El

p
· p− 1

p
(1)



Table 1: List of abbreviations employed in the equations.
Abbr. Parameter Description
mproc Messages per process Number of messages sent from each process.

cs Coalescing size Amount of explored edges aggregated per message.
p Number of processes Number of processes employed in the benchmark execution.
El Edges per tree level Total number of edges explored within each stage of the BFS.
dr Degree of the root Number of edges connected to the root vertex.
s Scale Base 2 log of the number of vertices in the graph.
fe Edgefactor Half of the average vertex degree.
l Tree level Stage of the tree in the BFS execution, starting at 0.

(a) Aggregated for all possible dr.

Number of explored edges at third tree level

F
re

qu
en

cy

0e+00 1e+06 2e+06 3e+06

0
20

00
0

40
00

0

(b) Roots with dr = 1.

Number of explored edges at third tree level

F
re

qu
en

cy
0

20
00

0
40

00
0

0e+00 1e+06 2e+06 3e+06

(c) Roots with 10 ≤ dr ≤ 20.

Number of explored edges at third tree level

F
re

qu
en

cy
0

10
00

0
25

00
0

0e+00 1e+06 2e+06 3e+06

(d) Roots with dr ≥ 104.

Number of explored edges at third tree level

F
re

qu
en

cy
0

20
40

60
80

0e+00 1e+06 2e+06 3e+06

Fig. 1: Histogram of the number of explored edges in the third tree level, with
different root degree dr. Graph with scale s = 17 and edgefactor fe = 16.

3.1 Relation between Number of Edges per Tree Level
and Root Vertex Degree

The total number of explored edges across the whole BFS execution is
almost constant for a pair of given scale and edgefactor parameter values,
but its distribution between tree levels varies heavily. Simply averaging
multiple executions with the same input parameters masks the actual
behavior, as occurs in the histogram in Fig. 1a which does not seem to
follow any clear distribution. This histogram corresponds to the number
of new edges traversed in a graph during the third tree level, obtained
by running a BFS for every possible root in the graph.

Our approach is to determine the number of explored edges per tree level
as a function of the degree of the root vertex, which heavily influences the
distribution. Figs. 1b-1d display the average distribution of the number
of explored edges during the third tree level for the same graph in Fig. 1a,
with three different ranges of root degree: roots with only one neighbour



(Fig. 1b), roots with 10 to 20 neighbors (Fig. 1c) and roots with a high
root degree of 10,000 neighbors or more (Fig. 1d). It can be observed that
for each range of the root degree there is only one predominant peak,
as opposed to the histogram for all roots in the graph shown in Fig. 1a
where there were multiple peaks of similar impact.
This heavy dependence on the root degree occurs because roots with low
vertex degree will originate a low amount of communications at first tree
levels, shifting the biggest part of the graph traversal to higher levels,
whereas roots with high degree will rapidly explore the majority of the
graph and present low (or non-existent) communication at higher levels.
Our model characterizes the mean amount of visited edges per tree level
as a function of the root degree and the graph parameters (scale and
edgefactor). This method has the benefit of adjusting reasonably to the
observed behavior while remaining low-demanding computer-wise. The
first tree level is trivially determined as the root degree. The selection
of the root degree will be performed randomly following a lognormal
distribution, as discussed in Section 2.
Fig. 2 depicts the average number of edges upon the root degree, bro-
ken down per tree level. X-axis is displayed in logarithmic scale. Results
correspond to the same data used for the histograms in Fig. 1. The
three blocks circled in red correspond with the average number of ex-
plored edges in the third tree level whose distribution was presented in
Figs. 1b-1d. Some values in Fig. 2 are interpolated, as not all the ver-
tex degrees are present in a graph. Note that Y-axis in Fig.2b is also in
logarithmic scale. The aggregated amount of edges remains almost con-
stant, since the size of the graph is independent of the vertex selected as
root (and consequently the amount of edges to traverse during the BFS
will be similar). However, the distribution of those edges among the tree
levels varies significantly, further confirming our motivation to relate the
communications to the vertex degree at the tree root. In the following
subsection we will present an equation linking the number of edges per
tree level to the root degree.

3.2 Number of Explored Edges per Tree Level

Our model approximates the evolution of the average number of explored
edges per vertex for each tree level (as shown in Fig.2b) through a poly-
nomial of degree 2 as the one described in Eq. 2 (in the next page), where
dr is the root degree, and the A, B and C factors depend on the scale,
edgefactor and tree level. The first tree level is an exception to this, with
the number of explored edges being defined directly as the degree of the
root vertex (and originating messages only at one process, the one host-
ing the root). We consider a notation for the tree level l that spans from
l = 0.
We have approximated A, B and C in each tree level to fit the observed
values for several combinations of scales s = 16, 17, 18, 19, 20, 23, 25 and
edgefactors fe = 16, 20, 32, 45, 64. For each explored combination, we
have run a BFS for every vertex in the graph, and measured the average
number of explored edges per level for each root vertex degree. Then
we have obtained an expression that fits the evolution of each of the



(a) Stacked values.

1 10 100 1000 10000

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
Average Total New Edges (Breakdown per tree level)

Number of edges in first tree level

Tree level

0
1
2
3
4
5
6
7
8

(b) Curves.

1 10 100 1000 10000

1e
+
00

1e
+
02

1e
+
04

1e
+
06

Average Total New Edges Per Tree Level

Number of edges in first tree level

Fig. 2: Number of explored edges per root degree, broken down per tree level.

parameters in Eq. 2 with the scale and edgefactor parameters as well as
the tree level, presented in Eqs. 3 - 5. Additionally, we know that the
maximum number of edges that can be traversed is twice the number of
edges in the graph, because each edge is traversed in both ways. We limit
the total number of edges traversed across all tree levels below that limit;
when none the processes can send any more messages, the execution of
the model is ended.

ln
(
Ēl

)
≈ A · ln2 (dr) + B · ln (dr) + C, l ≥ 1 (2)

A = −0.133 + 0.0046 · s + el+0.01257·fe−0.1829·s−3.6554 (3)

B = 2− l · (0.91 + 0.002 · fe − 0.012 · s) (4)

C = e1+(1+0.004·fe)·e
−(0.0011·s2−0.0451·s+2.09)·l·(4.5+0.078·s−l) (5)

4 Model Validation

To validate our model, we have employed measured values from a set
of Graph500 executions with parameters different than those employed
to obtain the model. Since the impact of message aggregation is clearly
defined by Eq. 1, we focus the validation in a crosscheck between the
prediction from our model and the values obtained through the measure-
ment of an actual run of the benchmark. Figure 3 displays the average
number of explored edges Ēl for all possible root vertices in a graph of
scale s = 22 and edgefactor fe = 16. Points correspond to the measured
values, whereas lines are the fittings obtained through our model. The
fitting curves approximate clearly the observed behavior, following the
same trends as the measurements for every stage of the execution. The



1 100 10000

1e
+

00
1e

+
02

1e
+

04
1e

+
06

1e
+

08

Average Total New Edges (Breakdown per tree level)

Number of edges in first tree level

Tree level

0
1
2
3
4
5
6
7
8

Fig. 3: Validation of the model. Points correspond to measured average values
from a real execution, lines correspond to the fittings from the model.

model reproduces the staged behavior and replicates the dependence on
the root degree, observing a similar proportion between the impact of
each stage in the total amount of explored edges. From the third level
l = 2 we observe that the model result is truncated for large root degrees
when the maximum number of edges given by the scale and edgefactor
are explored.
The dynamic range of the observed values is very large due to its log-
arithmic nature; this implies that any deviation in the prediction will
incur in a very large absolute error. Still, the relative error of our model
for this second tree level is lower than 18% in more than 90% of the cases.
For the third tree level, which amounts the largest amount of commu-
nications for most root degrees, the model is still able to reproduce the
same behavior with an average relative error of 12.5%. The total number
of explored edges across the graph presents a relative error below 12%,
which is corrected when the maximum value is reached and the edges in
the last levels are truncated. A similar analysis has been conducted upon
graphs of scale s = 18 and edgefactor fe = 40, with analogous results.

5 Conclusions

Current evaluations of BigData workloads consist mostly of full-system
simulations of the real applications, or rely on the use of traces. Both
options limit severely the size and detail of the network that can be inves-
tigated via simulation - which confers observability otherwise unattain-
able. Here we have introduced a novel computationally non-intensive syn-
thetic traffic model of the most scalable implementation of the Graph500
benchmark. We have analyzed the distribution of the benchmark com-
munications in stages and its relation with the number of explored edges



per tree level. Furthermore, we have identified a strong connection to the
degree of the vertex selected as root of the tree.
We have modeled the benchmark behavior as a set of stages of point-to-
point messages separated by all-reduce collective operations. The number
of messages is defined as a linear model of the benchmark parameters
(scale, edgefactor) for each stage within the BFS computation (tree level).
Using an empirical characterization of actual benchmark executions for
different graph parameters, we have defined a set of equations to compute
the average number of edges per tree level for any given tree root degree;
the degree of the root vertex is decided randomly following a lognormal
distribution.
As next steps, we intend to expand our model using a distribution for
the characterization, and to implement it in a network simulator.

References

1. Graph500 benchmark (May 2016), http://www.graph500.org/
2. Anghel, A., Rodriguez, G., Prisacari, B.: The importance and char-

acteristics of communication in high performance data analytics. In:
Workload Characterization (IISWC), 2014 IEEE International Sym-
posium on. pp. 80–81. IEEE (2014)

3. Beamer, S., Asanovic, K., Patterson, D.: Locality exists in graph
processing: Workload characterization on an ivy bridge server. In:
Workload Characterization (IISWC), 2015 IEEE International Sym-
posium on. pp. 56–65 (Oct 2015)

4. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: A recursive model
for graph mining. In: Proceedings of the 2004 SIAM International
Conference on Data Mining. pp. 442–446

5. Chambers, J., Hastie, T.: Statistical Models in S. Wadsworth &
Brooks/Cole (1992)

6. Fuentes, P., Bosque, J.L., Beivide, R., Valero, M., Minkenberg,
C.: Characterizing the communication demands of the graph500
benchmark on a commodity cluster. In: Proceedings of the 2014
IEEE/ACM Int. Symposium on Big Data Computing. pp. 83–89

7. Groër, C., Sullivan, B.D., Poole, S.: A mathematical analysis of the
r-mat random graph generator. Networks 58(3), 159–170 (2011)

8. Kim, M., Leskovec, J.: Multiplicative attribute graph model of real-
world networks. In: Algorithms and Models for the Web-Graph, pp.
62–73. Springer (2010)

9. Seshadhri, C., Pinar, A., Kolda, T.G.: An in-depth study of stochas-
tic kronecker graphs. In: Data Mining (ICDM), 2011 IEEE 11th In-
ternational Conference on. pp. 587–596. IEEE (2011)

10. Suzumura, T., Ueno, K., Sato, H., Fujisawa, K., Matsuoka, S.: Per-
formance characteristics of Graph500 on large-scale distributed en-
vironment. In: Workload Characterization (IISWC), 2011 IEEE In-
ternational Symposium on. pp. 149–158. IEEE (2011)

http://www.graph500.org/

	Synthetic Traffic Model of the Graph500 Communications

