
Analysis and improvement of Valiant routing in
low-diameter networks

Mariano Benito∗†, Pablo Fuentes∗, Enrique Vallejo∗ and Ramón Beivide∗
∗University of Cantabria, Spain

Email: {mariano.benito, pablo.fuentes, enrique.vallejo, ramon.beivide}@unican.es
†Recore Systems BV, Enschede, The Netherlands

This is an earlier accepted version; the final version of this work will be published in the Proceedings of the 4th IEEE International
Workshop of High-Perfomance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB’18). Copyright belongs to IEEE.

Abstract—Valiant routing randomizes network traffic to avoid
pathological congestion issues by diverting traffic to a random
intermediate switch. It has received significant attention in
recently proposed high-radix, low-diameter topologies, which are
prone to congestion issues. It has been implemented obliviously,
or as the basis of some non-minimal adaptive routing algorithms.

An analysis of the original mechanism identifies two poten-
tial improvements regarding the selection of the intermediate
switch. First, when traffic is local the randomization introduced
by Valiant results in unnecessarily long paths. Instead, the
introduced Restricted Valiant routing randomizes traffic within
a local partition, avoiding congestion and generating shorter
paths. Second, in certain cases the path to the selected random
intermediate node can be blocked; a version with recomputation
selects a new random intermediate node as long as the associated
path remains stalled.

The proposals are evaluated by simulation in a state-of-the-
art Dragonfly network with different traffic patterns. Results
show that Restricted Valiant is highly effective in cases of local
traffic, with a small improvement under global patterns. Valiant
with recomputation increases injection, further reducing average
latency and increasing throughput. However, the higher injection
increases congestion effects in some cases. Such problem is
emphasized when more injection buffers are added, because of
the increased pressure on the interconnect. Overall, the results
are very relevant for routing in high-radix networks and might
constitute the basis for other adaptive routing algorithms.

Index Terms—Valiant, routing, randomization.

I. INTRODUCTION

Datacenter interconnection networks traditionally rely on
some form of tree or Folded-Clos topology. The implementa-
tion cost and energy consumption restrictions (highly demand-
ing for Exascale proposals) suggest the use of scalable topolo-
gies with low-diameter based on high-radix switches [1], such
as Flattened Butterflies [2], Dragonflies [3] or Slim Flies [4].
Compared to the traditional Folded-Clos, these low-diameter
topologies present low average distance between nodes in
order to reduce latency. They also employ a lower number
of switches and links for a given network size, what leads to
a lower power consumption and lower installation costs while
achieving high scalability for the given diameter [5].

This work has been supported by the Spanish Ministry of Econ-
omy, Industry and Competitiveness under contract TIN2016-76635-C2-2-R
(AEI/FEDER, UE), the European HiPEAC Network of Excellence and The
Mont-Blanc project, which has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
671697.

Multiple oblivious routing protocols have been designed
for these networks. Minimal routing achieves optimal latency
under a uniform traffic pattern because the length of the path
is equal to or lower than the network diameter. However, these
topologies have low diversity of minimal paths, which are
heavily congestion-prone under adversarial traffic patterns that
gather all the traffic in only a fraction of the available links
on the network. Non-minimal oblivious routing mechanisms
avoid network congestion and improve performance under
adversarial traffic patterns by making use of longer non-
minimal routes: Valiant routing [6] randomizes the traffic
sending packets first to a randomly selected intermediate
switch, and then minimally to the actual destination. This
balances the use of the network links, but doubles the longest
path in the network.

This work analyzes some limitations of Valiant routing
and proposes improvements. First, selecting the intermediate
switch among all nodes of the network generates long paths;
for local traffic (this is, depending on the destination of
each packet), the set of allowed intermediate switches can
be restricted without sacrificing randomness or performance.
Another issue of Valiant routing is that, after an intermediate
switch is assigned to a packet, the output port towards the
intermediate switch may be temporarily unavailable due to
stalled packets. In this paper, we propose the idea of recalculat-
ing the intermediate switch when the output port towards it is
unavailable, enabling a faster dispatch of the packet. This helps
frames to avoid temporarily congested areas of the network
and improve the performance.

In brief, the main contributions of this paper are the follow-
ing:

• A modified version of Valiant routing denoted Restricted
Valiant (RVAL), which shortens the path of packets sent
between nodes in the same network partition without
compromising randomization.

• Valiant with recomputation of the intermediate switch,
which mitigates Head-of-Line Blocking (HoLB) by se-
lecting a new random intermediate switch when the path
to the previous one is blocked.

• An evaluation of the proposed variations under different
traffic patterns in a dragonfly network. Results show
that under local traffic patterns, RVAL reduces latency
up to 69.9% and maximizes throughput; similarly, the
recomputation variant further reduces latency up to 11.4%

and increases throughput up to 5.9%. The evaluation
identifies that using a greater number of injection buffers
increases network congestion and reduces throughput,
except for a hot-region pattern which suffers from HoLB
at injection.

The remainder of this paper is organized as follows.
Section II describes the background. Section III introduces
our proposed variants of the Valiant mechanism. Section IV
describes the infrastructure employed in our evaluation, and
Section V presents the results from our evaluation. Section VI
explores related works. Finally, Section VII remarks the main
conclusions from our work and presents future lines of re-
search.

II. BACKGROUND

This section first presents the idea of Valiant routing. The
paper evaluates different modifications to Valiant routing in
a Dragonfly topology. Therefore, the Dragonfly topology and
Valiant routing applied to the Dragonfly are introduced next.

A. Valiant routing

The original randomization-based Valiant routing mecha-
nism [6], [7] obtains O(logN) packet delivery time for a given
permutation of traffic in a network of N processors arranged
as a hypercube. It is based on two phases: Phase A sends each
packet to a randomly selected network switch, whereas Phase
B sends the packet from this intermediate switch to the final
destination. The original implementation of Phase A in [6]
follows a dimension-order process in which the (only) link
in each dimension of the hypercube in each current switch
is traversed or not randomly with the same probability; this
is completely equivalent to selecting a random intermediate
destination at injection time, but requires less bookkeeping
since the intermediate destination is not recorded in the packet
header. The mechanism is extended to square mesh, d-way
shuffle and shuffle-exchange graphs [8], obtaining the same
O(logN) bound for the delivery of all packets.

Valiant routing is completely oblivious: the path for each
packet is selected randomly, but it does not depend on the
status of the network (congestion) or the destinations of the
packets sent by the rest of the nodes (traffic pattern).

Valiant routing has also been proposed for other high-radix
topologies to avoid pathological congestion issues, such as the
Flattened Butterfly [2], the HyperX [9], the Dragonfly [3], the
Slim Fly [4] or the Projective networks [10]. It is also the basis
of multiple non-minimal adaptive routing algorithms, which
select between minimal and Valiant paths (such as UGAL [11],
PiggyBack [12], Progressive Adaptive Routing [12] or On-the-
Fly Adaptive Routing [13]). The application to the Dragonfly
topology is described next.

B. Dragonfly topology

The Dragonfly [3] is a low-diameter topology based on
high-radix switches deployed following a hierarchical direct
layout. The first level comprises fully connected groups of
switches conforming a virtual high-radix switch. These groups

can be connected using different second level interconnection
patterns. For this work we assume a canonical dragonfly which
uses a complete graph for this second level.

This topology can be described using the following param-
eters:

• p: number of nodes connected on each switch
• a: number of switches on each group
• h: number of global links on each switch
The best and worst traffic patterns for this topology are

identified in [3]. Uniform random traffic (UN) sends all packets
to a random destination among the whole network. Adversarial
traffic (ADV) in this network occurs when all the nodes
in one group send traffic to nodes in the following group;
under minimal routing described next, traffic is concentrated
in a single global link which joins both groups, generating
congestion.

Multiple routing protocols have been designed for Dragonfly
topology. A baseline minimal routing requires at most as
much hops as the diameter of the network. Packets are sent
first to the destination group, and then to the destination
switch. This routing protocol is suitable for UN traffic pattern
which distributes destinations uniformly. Indeed, this routing
is optimal under the mentioned traffic pattern. However, as
described before, it concentrates most of the traffic in a
few links under Adversarial traffic patterns, leading to high
congestion and poor performance.

Valiant routing avoids in-network congestion caused by
adversarial patterns by randomizing traffic: packets are sent
first minimally to a random intermediate switch and then min-
imally again to the final destination. Valiant makes the traffic
uniform and balances it over the network links. However, this
doubles the longest network path, what penalizes latency and
maximum throughput in absence of congestion.

III. RESTRICTED VALIANT AND VALIANT WITH
RECOMPUTATION

In this section we introduce two modifications to the original
Valiant routing: Restricted Valiant, which restricts the selection
of the intermediate switch, and Valiant with recomputation,
which determines an alternative intermediate switch when
traffic cannot be injected.

A. Restricted Valiant (RVAL)

The original definition of Valiant routing [7] randomizes
perfectly the paths of the packets in a hypercube network,
balancing the use of the resources regardless of the traffic
pattern. However, selecting a random destination among all
the switches of the network may lead to unnecessary packet
diverting and increased path length for certain topologies. For
example, this may occur when the network is hierarchical
(such as the Dragonfly or multilevel fat-tree) or consists of
multiple orthogonal dimensions (such as a HyperX network),
and both the source and destination are confined to the same
partition of the hierarchy (group, pod) or the same subset of
dimensions. In such cases, selecting a random destination out-
side the partition implies leaving and returning to the original

partition, what increases the path length without contributing
to congestion avoidance.

Restricted Valiant limits the selection of the intermediate
node to the local partition when the source and destination
nodes are in the same partition. If source and destination
are in different partitions, Restricted Valiant behaves as the
original Valiant routing. The definition of a network partition
is topology-dependent.

Considering a Dragonfly network, Restricted Valiant can
be applied to packets with source and destination in the
same group, this is, traffic which is internal to a group.
Pathological congestion effects may occur with such local
traffic, for example when all computing nodes attached to
a switch communicate with nodes in the next switch; such
problem has been observed with stencil workloads in [14]. In
such case, Valiant routing avoids the congestion, but selecting
an intermediate switch in a remote group implies leaving the
source group (and destination) and then returning to it. By
contrast, our implementation of Restricted Valiant only selects
an intermediate switch within the local group, which generates
shorter paths and still avoids the congestion problem.

Yébenes et al. identified a similar issue with Valiant routing
in the Slim Fly topology, and denoted it the turn-around
problem [15]. They defined this problem as the case in which
packets visit the same switch twice, turning around and going
back through the same route. In such cases, the portion of
the path between the two visits of the same switch can be
omitted without reducing the beneficial effect of randomiza-
tion. However, in the general case the problem is slightly
different, because the paths A and B may not overlap, but still
be unnecessarily long. Fig. 1 depicts this issue in a Dragonfly
network with global trunking, this is, more than one global
link connecting pairs of groups, and in a 4 × 4 Flattened-
Butterfly (HyperX). In the Dragonfly under Valiant routing
(VAL) the selected random intermediate switch is in a remote
group, and no switch is traversed twice because the two paths
to the intermediate switch and to the destination are disjoint.
However, the resultant path is unnecessarily long: restricting
the selection of the intermediate switch to the local group
(RVAL) avoids the congestion issue (in the minimal link) while
providing a shorter path. A similar case occurs in the Flattened
Butterfly, where RVAL avoids changing the row when both
source and destination are in the same row; the same applies
when both source and destination are in the same column, or
in general, in a given subset of dimensions.

B. Valiant with recomputation (VAL-Recomp)

While Valiant routing randomizes the intermediate destina-
tions, transient congestion can occur and generate Head-of-
Line Blocking (HoLB), delaying injection.

Valiant with recomputation recomputes a new random inter-
mediate destination whenever the required destination port is
blocked. As in the original mechanism, a random intermediate
destination is selected for each packet at the source router.
When a packet is at the head of its injection buffer and
the required destination port is blocked, the intermediate

I

II

S

D

MIN

VAL

S I D

MIN

VAL

(a) Dragonfly

I

II

S

D

MIN

VAL

S I D

MIN

VAL

(b) Flattened-Butterfly

Fig. 1: Example of Minimal (MIN), Valiant (VAL) and Restricted
Valiant (RVAL) between source (S) and destination (D) nodes in
the Dragonfly and Flattened-Butterfly topologies. The intermediate
node Valiant paths is represented as I. In both cases, the Valiant
path shows an example of turn-around problem without traversing
the same switch twice. The Restricted Valiant path is shorter than
VAL and avoids pathological congestion within. MIN is obviously
the shortest path in every case.

Valiant destination is recomputed, overwriting the previous
destination. Such recomputation may occur several times, until
the packet is injected; once the packet is in-transit, the Valiant
destination does not change. If this mechanism is combined
with the restricted mechanism introduced in Section III-A, the
recomputation occurs among the allowed nodes.

The original Valiant routing is oblivious, because the in-
termediate destination for each packet is independent of the
rest of the packets. This is no longer true when applying
recomputation, because this destination is modified depending
on the status of the network. According to the taxonomy
in [16], Valiant with recomputation is adaptive but congestion-
oblivious, because it routes based on the availability of output
ports, and not on an estimation of the network congestion.

IV. SIMULATION INFRASTRUCTURE

We employ the in-house designed FOGSim network sim-
ulator [17] to perform our experiments. The cycle-accurate
simulator models input-output-buffered switches employing
multiple virtual channels to avoid deadlocks. We consider a
power-efficient Dragonfly network with p = 6 terminals per
switch, a = 12 switches per group and h = 6 global links per
switch, leading to 5256 terminals, which is representative of

TABLE I: Simulation parameters.

Parameter Value

Topology Dragonfly
Total end terminals 5,256 hosts
Groups 73 groups
Switches per group 12 switches
Switch degree 23 ports
Link speed 40 Gbps
Packet size 1,000 bytes
Switch frequency 1 GHz
Internal crossbar speedup 2×
Switch latency 200 ns
Local/Global link latency 40/400 ns (8/80 m)
Injection buffers 1
Injection queue size 200 KBytes
Transit queue size 100 KBytes
Virtual Channels 2/1 (MIN)
(local/global ports) 4/2 (Valiant)

realistic HPC systems. Table I shows the parameters employed.
Queue size is different for injection buffers, in ports connected
to endpoints, and for transit buffers, in those ports connected to
other switches. Using this configuration, we have run a battery
of simulations with several synthetic traffic patterns.

A. Traffic patterns

We feed the network with synthetic traffic. Each node
injects frames according to a Bernoulli process with a variable
load, similarly to other network simulation experiments [18].
Different traffic patterns have been considered:

• Uniform (UN), in which the destination of a frame is any
other randomly selected network node.

• Adversarial (ADV), in which the destination of a frame
is selected randomly from all nodes in the consecutive
group. With minimal routing, ADV concentrates the
traffic on a single global link between two groups, so non-
minimal routing is required to obtain a good performance.

• Adversarial local (ADV-Local), in which the destination
of a frame is selected randomly from all nodes in the
consecutive switch within the same group, following a
modulo sequence. With minimal routing, all the traffic
from each switch gathers in a single local link, which be-
comes a bottleneck and hinders performance as observed
in real-world evaluations [14].

• Hotregion (HOT), in which 25% of the traffic generated
by each node is sent to the first 12.5% endpoints, and
the remaining is distributed as Uniform (including the
first 12.5% endpoints). This is the only considered traffic
pattern which generates endpoint congestion.

• Random Permutation (PERM), in which each endpoint
is assigned a random destination endpoint at the start of
the simulation. Each endpoint is assigned to exactly one
source and vice-versa. The permutation obtained remains
constant for the length of the simulation, but differs in
each simulation. The same set of permutations has been
used for all routing mechanisms.

B. Routing mechanisms

Minimal routing (MIN) is included as a reference; it sends
the packets minimally to the destination group, and then to
the destination switch.

Valiant (VAL) selects a random intermediate switch among
all switches in the network. Traffic is sent minimally to this
switch, and then minimally to the destination.

The Restricted version of Valiant (RVAL) selects an inter-
mediate switch randomly within all switches in the local group
when both source and destination nodes belong to the same
group; otherwise, it behaves as VAL.

Valiant with recomputation (VAL-Recomp) selects one in-
termediate switch like Valiant; When the minimal output in
blocked at injection, it recalculates the intermediate switch and
tries to inject the packet in the next allocation phase. A similar
Restricted version (RVAL-Recomp) limits the candidates for
intra-group traffic like RVAL.

C. Injection buffers

In the default network configuration employed in our eval-
uation, switches have one single injection buffer for each
endpoint. However, additional injection buffers can be em-
ployed to mitigate Head-of-Line Blocking (HoLB), which
should improve performance. In such case, a selection policy
is needed to select between the multiple injection buffers to
store each frame that arrives from an endpoint to the switch.

In our evaluations we have considered two different policies:
• Random policy (RANDOM): each frame can be assigned

to any injection buffer with available space.
• Per-destination policy (DEST): all the network endpoints

are split in as many sections as injection buffers, and all
frames targeting an endpoint in a given section are always
stored in the same injection buffer.

RANDOM ensures all injection buffers are used in a
balanced fashion, whereas DEST tries to mitigate HoLB
(particularly under MIN routing) since frames in the same
buffer are more likely to follow the same path.

V. RESULTS

This section presents the results from our evaluations of the
different Valiant routing variants described, using a Dragonfly
network with the parameters described in Table I. The results
are organized as follows: first, we analyze the impact of
our Restricted-Valiant routing mechanism against the original
proposal of Valiant routing. Then, the impact of recomputing
the intermediate switch is evaluated. Finally, the behavior
when multiple injection buffers are employed is observed.

A. Valiant in the Dragonfly

Figure 2 shows the latency (upper graphs) and throughput
(lower graphs) under four different traffic patterns: UN, ADV-
Local, HOT and PERM. ADV-Local only presents intra-group
traffic so the impact of RVAL over VAL is significant. It is
used in this evaluation instead of ADV because there is no
intra-group traffic in ADV, so VAL and RVAL behave exactly
the same under such traffic.

MIN VAL RVAL

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

 0
 25
 50
 75

 100

 20 40 60 80 100

(a) UN traffic.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(b) ADV-Local traffic.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(c) HOT traffic.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(d) PERM traffic.

Fig. 2: Latency (up) and throughput (down) of minimal, Valiant, and Restricted-Valiant routing under different traffic patterns.

Under UN, HOT and PERM the difference between VAL
and RVAL is negligible. RVAL latency is slightly lower
because a small proportion of the traffic takes advantage of
the shorter path generated by restricted Valiant. Similarly,
RVAL throughput is slightly higher. The base latency of MIN
is lower than the latency of VAL and RVAL for the three
aforementioned traffic patterns due to the its shorter paths.

Under hot region traffic (HOT) 25% of the traffic is sent
to 12.5% of the network endpoints, and the other 75% of the
traffic is UN. Using MIN routing, this implies that the links in
the hot region receive 25% of the traffic plus their proportion
of the UN traffic sent, limiting throughput to 12.5

25+0.125·75 =
36.36%. Fig. 2c shows that MIN throughput is close to
this value. With VAL routing, the hot region additionally
receives the proportional part of the traffic sent non-minimally
(which is 12.5%, since the selection of the intermediate switch
is done randomly), further reducing maximum throughput
to 12.5

12.5+25+0.125·75 = 26.6%. Additionally, Valiant routing
widens any congestion trees with a root in the hot region,
reducing observed throughput after the saturation point. RVAL
barely changes this upper bound, since the majority of the
traffic going to the hot region is inter-group.

Under PERM traffic (Fig. 2d) both Valiant variants present
congestion after the saturation point, with an 8% throughput
drop. However, they achieve better performance than MIN
between 25% and 50% traffic loads, due to unfairness present
with MIN routing. This unfairness is inherent to the spatial
distribution of the traffic, since certain minimal links will
suffer more contention than others; using non-minimal routes
as in Valiant removes this effect.

Under adversarial local traffic, the difference between VAL
and RVAL is particularly significant. Using minimal routing,
the local link connecting pairs of neighbour switches becomes
a bottleneck, and only 1

p = 16.6% of the traffic can be deliv-
ered using the minimal routes. The default Valiant implemen-

tation raises the saturation point compared to MIN. However,
latency below the saturation point increases significantly, due
to the extra cost of the two additional global hops to and
from a remote intermediate group, and throughput is limited
below 50%. RVAL achieves almost 100% accepted load, since
it avoids the turn-around problem and generates short paths as
depicted in Fig. 1. Furthermore, the latency is significantly
lower than the one achieved by VAL routing, with a 69.9%
reduction for a 30% load.

In conclusion, RVAL performs equal or better than VAL
under the evaluated traffic patterns. For this reason, the results
in the next subsections only evaluate RVAL.

B. Valiant with recomputation

Fig. 3 presents average latency and throughput results for
the different traffic patterns employing RVAL routing, with and
without recomputing the intermediate Valiant destination. Re-
sults with minimal routing are provided as a reference. Latency
results are presented in the load region before saturation. In
all cases, latency is improved by recomputing the intermediate
destination. This is expected, since the recomputation of the
Valiant destination occurs when packets cannot be injected
because of congestion in the originally selected path; the
recomputation selects another path, and injects traffic earlier.
In the case of ADV traffic (which typically requires Valiant
routing) with a load of 40%, average latency is reduced by
11.4% when using recomputation.

Throughput results after the saturation point differ for each
traffic pattern. Both UN and ADV present a similar trend, with
the original Valiant mechanism presenting high variability and
slightly reduced throughput. The reference with MIN routing
is significantly different, with higher throughput under UN due
to a lower usage of the global links, and very poor throughput
under ADV because only one global link is used to carry
all the traffic from every group, limiting the accepted load
to 1

a·p = 1.38%. Valiant with recomputation injects packets

MIN RVAL RVAL-Recomp

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 20 30 40 50
Offered load (%)

340

380

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

 0
 25
 50
 75

 100

 20 40 60 80 100

(a) UN traffic.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(b) ADV traffic.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(c) HOT traffic.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(d) PERM traffic.

Fig. 3: Latency (up) and throughput (down) of Valiant routing under different traffic patterns.

earlier, which leads to higher throughput, with an increase
between 4.3% and 5.9%.

The saturation throughput for Hotregion traffic (HOT) in
Fig. 3c is lower, because the nodes in the hot region cannot
accept all the received traffic. However, both Valiant routing
mechanisms present the same pattern as the previous cases,
with the recomputation variant presenting a flat response with
higher accepted throughput.

Finally, the case of the random permutations (PERM) in
Fig. 3d is particular. The use of recomputation provides a
flat response with less variation, but suffering from high
congestion, observed by the drop of accepted throughput after
the saturation point. The oblivious version of Valiant suffers
less severely from such congestion, but presents high vari-
ability. We hypothesize that the increase in congestion derives
from the higher accepted load when using recomputation; a
congestion control mechanism, which is not considered in our
simulations, should be applied to avoid such issues.

C. Recomputation with multiple injection buffers

This section presents throughput results using multiple
buffers for injection. As mentioned in section IV-C, we con-
sider two policies to select the injection buffer for a given
packet, DEST (Figure 4) and RANDOM (Figure 5). Latency
results are omitted, since the impact of the number of injection
buffers on average latency before saturation is negligible.

In general, the use of multiple injection buffers is detrimen-
tal to the achieved throughput. This decrease in the maximum
throughput likely corresponds to an increase in congestion:
using a single injection buffer can indirectly throttle injection
due to HoLB, which is mitigated with the addition of more
injection buffers. Using recomputation helps to alleviate the
performance degradation when the congestion is not com-
pletely uniform, leveraging the less congested links to dispatch
packets faster, and presents a lower overall impact from the

use of multiple injection buffers than the RVAL without
recomputation variant.

The impact of the number of injection buffers with Valiant
with recomputation is lower under ADV traffic (Figs. 4b
and 5b). Under this traffic pattern, all the frames from a given
source group target nodes in the same destination group, which
makes them likely to select the same injection buffer. A similar
case can be seen under PERM traffic with the DEST policy
(Fig. 4d), because all the nodes always send their frames to
the same destination along the whole simulation, and therefore
only 1 VC is effectively used. With the RANDOM policy
(Fig. 5d), congestion with RVAL without recomputation in-
creases significantly, achieving lower throughput than RVAL-
Recomp at high loads.

Results under hot region traffic with the DEST policy
(Fig. 4c) present a pathological behavior: with more injec-
tion buffers, throughput increases after the saturation point,
even surpassing the theoretical limit of 26.6% described in
Section V-A. This occurs because frames going to the hot
region are placed in different injection buffers from those
going somewhere else in the network. This mitigates HoLB
between the two traffic flows and allows nodes to inject traffic
outside the hot region at a higher rate, effectively changing
the proportion of the traffic that goes to the hot region and
increasing the overall throughput. This effect is easier to
observe with recomputation because the increase in throughput
is higher than without recomputation.

VI. RELATED WORK

Several mechanisms have proposed restricted variants of
Valiant, in which the intermediate switch selection is not
performed among all the switches in the network. The original
proposal for Valiant in the Dragonfly by Kim et al. in [3]
selects a random intermediate group, rather than a switch.
This reduces the length of the path (and the amount of virtual
channels) but has shown to introduce pathological performance

RVAL - 1 Inj. buffer(s)
RVAL - 2 Inj. buffer(s)

RVAL - 3 Inj. buffer(s)
RVAL - 4 Inj. buffer(s)

RVAL-Recomp - 1 Inj. buffer(s)
RVAL-Recomp - 2 Inj. buffer(s)

RVAL-Recomp - 3 Inj. buffer(s)
RVAL-Recomp - 4 Inj. buffer(s)

 25

 30

 35

 40

 45

 50

 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(a) UN traffic.

 30

 35

 40

 45

 50

 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(b) ADV traffic.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(c) HOT traffic.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(d) PERM traffic.

Fig. 4: Throughput with different number on injection buffers under different traffic patterns, using DEST policy.

RVAL - 1 Inj. buffer(s)
RVAL - 2 Inj. buffer(s)

RVAL - 3 Inj. buffer(s)
RVAL - 4 Inj. buffer(s)

RVAL-Recomp - 1 Inj. buffer(s)
RVAL-Recomp - 2 Inj. buffer(s)

RVAL-Recomp - 3 Inj. buffer(s)
RVAL-Recomp - 4 Inj. buffer(s)

 25

 30

 35

 40

 45

 50

 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(a) UN traffic.

 25

 30

 35

 40

 45

 50

 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(b) ADV traffic.

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(c) HOT traffic.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(d) PERM traffic.

Fig. 5: Throughput with different number on injection buffers under different traffic patterns, using RANDOM policy.

issues under adversarial traffic [13]. Similarly, the dragonfly
implementation in [19] diverts traffic using a single global
hop for the non-minimal path A, which is equivalent to
selecting a random group that is directly connected to the
source switch; in this case, the implementation is constrained
to using commodity Ethernet hardware without bookkeeping
information in the packet headers.

Different proposals implement restricted variants of Valiant
routing in alternative topologies. The proposal for randomized
routing in multidimensional square meshes in [6] does not
randomize all the N dimensions, but only N − 1; congestion
is avoided assuming a single injector per switch, but this
is not typically the case in current and forthcoming parallel
systems. The DAL adaptive routing mechanism in HyperX [9]
follows the idea of RVAL by misrouting only in the dimensions
with offset. Valiant routing in the indirect OFT and MLFM
networks is restricted to switches with connected nodes in [20].
The already-mentioned proposal in [15] identifies the turn-
around problem in Slim Flies, and introduces a modified
version of Valiant routing for Slim Flies which only makes
one non-minimal hop in its phase A.

Regarding the recomputation of intermediate switches based
on network congestion, we are not aware of its application
to the original oblivious Valiant but there are adaptive rout-
ing proposals that somehow resemble it. For example, the
aforementioned DAL adaptive routing in HyperX [9] deroutes
traffic in a given dimension based on the unavailability of
output ports; therefore, it dynamically diverts traffic to an
intermediate destination which is computed dynamically.

VII. CONCLUSIONS AND FUTURE WORK

This work introduces two improvements to Valiant routing,
targeting high-radix networks. Restricted Valiant improves
performance for traffic with locality, selecting the interme-
diate router in the same network partition as the source and
destination. Examples of such partitions have been introduced
for Dragonfly and Flattened Butterfly networks. Valiant with
recomputation avoids Head-of-Line blocking at injection by
selecting an alternative random intermediate router when the
output port is stalled.

Both approaches are evaluated using a Dragonfly network.
RVAL shows significant improvements for intra-group traffic
with up to 69.9% latency reduction. The recomputation variant
improves throughput by increasing injection, although in cer-
tain cases (permutations) this also increases congestion. Using
multiple injection buffers further increase congestion, and the
optimal buffer selection policy depends on the traffic pattern.

In future work, we aim to evaluate the impact of our
proposal when used for the selection of the nonminimal
route in adaptive routing mechanisms, which may mitigate
the observed congestion. Also, Valiant routing is algorithmic,
but most current designs are based on tables; we plan to
evaluate implementations suited for such environment. Finally,
the current paper suggests how to build different partitions
for Dragonflies and Flattened-Butterflies, but it is not proven
that no other traffic pattern introduces pathological congestion
with this routing. Indeed, the locality for these networks is
quite direct, based on groups or dimensions, but how to apply
RVAL to other topologies without suffering congestion under
any traffic pattern is left open.

REFERENCES

[1] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Microarchitecture
of a high radix router,” in 32nd International Symposium on Computer
Architecture (ISCA’05), June 2005, pp. 420–431.

[2] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A cost-efficient
topology for high-radix networks,” in International Symposium on
Computer Architecture (ISCA), 2007, pp. 126–137.

[3] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in International Symposium on Computer
Architecture (ISCA), 2008, pp. 77–88.

[4] M. Besta and T. Hoefler, “Slim Fly: A cost effective low-diameter
network topology,” in IEEE/ACM Intl. Conf. on High Performance
Computing, Networking, Storage and Analysis (SC14), 2014.

[5] S. Rumley, M. Glick, S. D. Hammond, A. Rodrigues, and K. Bergman,
“Design methodology for optimizing optical interconnection networks
in high performance systems,” in High Performance Computing, J. M.
Kunkel and T. Ludwig, Eds. Cham: Springer International Publishing,
2015, pp. 454–471.

[6] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel
communication,” in Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, ser. STOC ’81. New
York, NY, USA: ACM, 1981, pp. 263–277. [Online]. Available:
http://doi.acm.org/10.1145/800076.802479

[7] L. Valiant, “A scheme for fast parallel communication,” SIAM journal
on computing, vol. 11, p. 350, 1982.

[8] L. G. Valiant, “Optimality of a two-phase strategy for
routing in interconnection networks,” IEEE Trans. Comput.,
vol. 32, no. 9, pp. 861–863, Sep. 1983. [Online]. Available:
https://doi.org/10.1109/TC.1983.1676335

[9] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-scale
networks,” in Conference on High Performance Computing Networking,
Storage and Analysis (SC ’09), New York, NY, USA, 2009, pp. 41:1–
41:11. [Online]. Available: http://doi.acm.org/10.1145/1654059.1654101

[10] C. Camarero, C. Martinez, E. Vallejo, and R. Beivide, “Projective
networks: Topologies for large parallel computer systems,” IEEE Trans-
actions on Parallel & Distributed Systems, vol. 28, no. 7, pp. 2003–2016,
2017.

[11] A. Singh, “Load-balanced routing in interconnection networks,” Ph.D.
dissertation, Stanford University, 2005.

[12] J. Kim, W. Dally, S. Scott, and D. Abts, “Cost-efficient Dragonfly
topology for large-scale systems,” Micro, IEEE, vol. 29, no. 1, pp. 33–
40, 2009.

[13] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero,
M. Valero, G. Rodrı́guez, J. Labarta, and C. Minkenberg, “On-the-fly
adaptive routing in high-radix hierarchical networks,” in 41st Interna-
tional Conference on Parallel Processing, Sept 2012, pp. 279–288.

[14] D. J. Kerbyson and K. J. Barker, “Analyzing the performance bottlenecks
of the POWER7-IH network,” in International Conference on Cluster
Computing, Sept 2011, pp. 244–252.

[15] P. Yébenes, J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, and
T. Hoefler, “Improving non-minimal and adaptive routing algorithms
in slim fly networks,” in 2017 IEEE 25th Annual Symposium on High-
Performance Interconnects (HOTI), Aug 2017, pp. 1–8.

[16] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion awareness
for load balance in networks-on-chip,” in IEEE International Symposium
on High Performance Computer Architecture, Feb 2008, pp. 203–214.

[17] M. Garcı́a, P. Fuentes, M. Odriozola, M. Benito, E. Vallejo,
and R. Beivide. (2014) FOGSim interconnection network simulator.
[Online]. Available: http://fuentesp.github.io/fogsim/

[18] J. Garcı́a-Haro, R. Marı́n-Sillué, and J. L. Melús-Moreno, ATMSWSIM
An efficient, portable and expandable ATM SWitch SIMulator tool.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 193–212.

[19] M. Benito, E. Vallejo, and R. Beivide, “On the use of commodity Eth-
ernet technology in exascale HPC systems,” in IEEE 22nd International
Conference on High Performance Computing (HiPC), 2015, pp. 254–
263.

[20] G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, and T. Hoe-
fler, “Cost-effective diameter-two topologies: analysis and evaluation,”
in SC15: International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov 2015, pp. 1–11.

