Symbolic-Numeric Approaches for Intersection Problems in Computer Aided Geometric Design

CAGD@UC: The Computer Aided Geometric Design (CAGD) Group at the Universidad de Cantabria
Current members are: Emmanuel Briand (Universidad de Sevilla), Jorge Caravantes, Fernando Carreras, Gema Diaz-Toca (Universidad de Murcia), Fernando Etayo, Ignacio Fernandez-Rua, Mario Fioravanti (Presenter), Laureano Gonzalez-Vega (Coordinator), Michael Kettner, Esmeralda Mainar, Ioana Necula, Jaime Puig-Pey, Tomas Recio, Luis Felipe Tabera and Claudiu Tanasescu

Computing the intersection curve between two surfaces is a key problem in
many arraas such as the CADCAM treatment of complicated shapes, computer
 surface-t-s-suraciae intersection problem is to develop robust, accurate and
algorithms solving such a p pooblem, needing the least user interenenion.

 curves or suracases presented implicity, or by reducing the considered problem
The concrate problems, whose solution is to be presented, are: computing the
intersection curve between two surfaces (when presented parametricaly or ppicitity, when intersecting tangentially, when one of them is a ruled, revolution Ir canal surface, when they are quacratic or Bezier tringular patches of
general $q u a d r i c s$, , when secioning ofsests, when they are elipsoids
 plane eurves swen presented darar
parametricaly y dependent. .., etc.
These alogithms have been implemented in Maple. The accompilished
implementation invowes the simultaneous use of symbolic and numeical
 techniques. Thus, when neded, implicitization is done symbolicaly, topology
deitermination involves both symbolic and numerical methods, and final determination invoves both symboicicand numerical methods, and
computations, onceming the searched output, are pertomed

Objectives

Thent through algorithm design and software development

The Surface-to-Surface Intersection Problem in CAGD: Suraces in CAGD are usualy precention poramemem in CAGD: their impicite equation can be very happut in order to sovve in a much mor
efficient and accurate way the suffaceeto-surface intersection problem. General (and highy simplified) scheme for determining the intersection
curve between wwo surfaces J and L parametricaly p pesented:

\%. To compute the implicit equation of $: \mathrm{H}(\mathrm{H}, \mathrm{y}, \mathrm{z}=0$.

Questions considered and analyzed:

Foast computation of implicite equations with good num
*. To solve accurately the equation $\mathrm{R}(\mathrm{s}, \mathrm{t})=0$ in high degres.
**To use symmolic teachniqueses to derive closed formulae of interest in CAGD:
genericiinmpicititaion, conics sand quaviriss inerference, etc.

* To provide a probilem solving environment where to test symbolic and
numerical techniques in CAGD .

INTERNATIONAL CONGRESS OF MATHEMATICIANS, MADRID SPAAN,AUGUST 2006

