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Abstract. In this paper we extend the notion of impartial trimming to a
functional data framework, and we obtain resistant estimates of the center
of a functional distribution. We give mild conditions for the existence and
uniqueness of the functional trimmed means. We show the continuity of the
population parameter with respect to the weak convergence of probability
measures. As a consequence we obtain consistency and qualitative resistance
of the data based estimates. A simplified approximate computational method
is also given. Some real data examples are finally analyzed.

1. Introduction

Real time monitoring of many processes are available for applications and mod-
eling in different fields such as medicine, neuroscience, chemometrics, signal trans-
mission, stock markets, meteorology and TV audience ratings. In this context the
individual observed responses are rather curves than finite dimensional vectors, and
may be modeled as sampling paths X(t, ω), ω ∈ Ω, of independent realizations of
a stochastic process centered at a function µ(t), i.e., functional data.

In practice, the use of functional data is often preferable to that of large finite
dimensional vectors obtained by discrete approximations of the functions (see for
instance the books by Ramsay and Silverman [38, 39]). In [13, 36, 1, 24, 10, 4,
20, 37, 40, 26, 25, 6, 15, 16, 30, 2, 19, 12], and the references therein, we have
several case–studies and/or theoretical developments for functional data.

Robustness has been an almost not explored area in this context of functional
data, never the less there is no reason why we should not expect the presence
of outliers in there. For one dimensional data, the simplest robust estimates of
a location parameter are the well known trimmed-mean estimates, a family that
goes from the sample mean to the sample median as increasing the trimming level.
However, there is not a standard way to extend it to higher dimensions. The
concept of trimmed-means and medians has been a topic of active research in the
last decade, even for two dimensional data.

Usually, trimming is associated to ranks, but in more than one dimension, the
concepts of order statistics and ranks are more involved and several definitions have
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been proposed for the finite dimensional case. See, for instance, [31, 43, 5, 34,
27, 28, 41, 22, 42, 14, 29, 18] and the book by Mosler [33]. All of them are
based on different notions of depth concepts, a device introduced to measure the
centrality of a vector within a given data cloud.

A different approach to trimming, which is not based on ranks, is the “impar-
tial trimming” (self–determined by the data) which was introduced by Gordaliza
in [22] for the multivariate location model and will be described in detail later on.
Roughly speaking, impartial–trimming means that the trimming is not necessar-
ily symmetric, and the data which are to be trimmed are self–determined by the
estimate based on the whole data cloud. Moreover, even in the one-dimensional
case, has the main advantage over the usual trimming that it is not required to
fix a special zone or direction in advance in which the data will be trimmed. This
property has shown to be important when dealing with asymmetric contamination.

For a related problem, Cuesta–Albertos, Gordaliza and Matrán [8, 9] intro-
duced a class of procedures based on “impartial trimming” to robustify k-means
for clustering methods in the finite dimensional case. See also [32, 11].

We will employ this approach to define trimmed means for functional data, and
study their asymptotic properties under mild conditions.

A robust estimate of the center of a functional distribution has been proposed by
Fraiman and Muniz in [19]. They define trimmed means for functional data based
on a functional depth concept, which is defined as an integral of the univariate
depths at each single point t. It is useful to point here that two main differences
with the present work, besides the different approach to the problem, can be stated:

(a) the approach introduced here can be extended to the case of trimmed
k-means in a similar way as in [8, 9] where they generalize the work [22].

(b) here the results are obtained under mild assumptions on the underlying
stochastic process. This is not the case in [19] where strong regularity
conditions are required on the trajectories of the process.

From here on we proceed as follow. In Section 2 we borrow the definition
of qualitative robustness given in [3] and adapt it to the case of functional data
considering a new distance between trajectories. In Section 3 we define a robust
estimate based on the concept of impartial trimming. We show the existence of an
optimal trimming, and, based on this optimal trimming, we define our estimate.
We prove the strong consistency and robustness of the estimate.

In Section 4 we give conditions for the uniqueness of the parameter to be esti-
mated. We introduce the concept of symmetric unimodality for stochastic processes
which turns out to be a sufficient condition for the uniqueness of the impartial
trimmed–mean parameter. The interest of the uniqueness of the target parameter
relies on the fact that uniqueness is required in order to obtain robustness. (This
is also the case for one dimensional distributions. For instance, the median is not
qualitative robust if the underlying distribution of the random variable X satis-
fies P [X = −1] = P [X = 1] = 0.5.) Sharp conditions for the uniqueness of the
impartial trimmed mean parameter, even in a finite dimensional setup, remains
still an open problem. In this Section we provide an example of a symmetrical,
strictly unimodal two-dimensional distribution with strictly positive differentiable
density function for which not only the uniqueness fails but the parameter is not
the symmetry center. Moreover, at this time we are only aware of the existence of
two uniqueness results. The first one, in [22], is for one dimensional distributions
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and requires that the distribution be unimodal, with a differentiable and strictly
positive density function. The second one, in [21], applies to elliptical, unimodal,
differentiable and strictly positive densities.

Computational problems are studied in Section 5 where we introduce a sim-
pler consistent alternative estimate, which can be also used as a starting point for
an algorithm searching for the proposed estimate. In Section 6 we analyze some
real data examples from TV ratings. Most of the proofs and technical results are
deferred to the Appendix.

In what follows we restrict to consider L2[0, 1]-valued random elements. How-
ever, most of the present results can be extended in a straightforward way to the
case of random elements (r.e.’s) with values in an uniformly convex Banach space.

2. Qualitative Robustness

Hampel, in [23], introduced the concept of qualitative robustness for a sequence
of estimates of a finite dimensional parameter in the case of independent and iden-
tically distributed (i.i.d.) observations. His definition stated that a sequence of
estimates Tn is robust at a given distribution µ if for any other distribution µ̃ close
to µ in the Prohorov metric, the distribution of Tn under µ and under µ̃ are close
in the Prohorov metric, uniformly in the sample size.

The use of the Prohorov distance reflects the intuitive meaning of robustness as
insensitivity of the estimate to round-off errors, and to a small fraction of outliers.

Boente, Fraiman and Yohai in [3] extended these notions to the case of sto-
chastic processes with dependent variables, and introduced a new definition of ro-
bustness based on the concept of resistance (see also [35, 7]). In a functional data
setup robustness should reflect insensitivity of the estimate to two kinds of different
contamination. Firstly, following Hampel, the notion of robustness should take care
of:

(a) small errors in all the realizations of the process (e.g. round-off errors).
(b) a small fraction of far away curves (outliers).

However, it may also happen that in a functional data framework, a much
wilder kind of contamination be present: each curve can be “out of control” during
a small fraction of time. Thus, the second notion of robustness should also take
into consideration that:

(c) each curve may be disturbed in a small time interval.

This last type of contamination is much wilder than the first one, since it allows,
in principle, all the data to be contaminated, each curve at a different small interval
of time. If the data have sharp peaks at different intervals a robust procedure should
mainly ignore (or, in some way, delete) those peaks. However, if we have some kind
of data such that, most of it, presents a sharp spike in the same interval, then the
method should not delete it. This effect can be seen in the following example.

In [17] the behavior of electric power consumers at Buenos Aires, Argentina,
is analyzed. For every individual (household) in the sample, measurements were
taken at each of the 96 intervals of 15 minutes in every weekday (Monday to Friday)
during January 2001. Monthly averages over days for each individual were analyzed.
The main conclusion, was that with respect to the peaks, two typical consumer’s
behavior were found. One with only a peak around 9:00 pm, while another group
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Figure 1. Electrical power typical consumers at Buenos Aires,
Argentina. Curves represent the mean along week days in January
2001 of instantaneous consume, measured every 15 minutes along
the day. Right: Three typical members of the group with only a
peak at night. Left: Three typical members of the group with a
second peak around noon.

had also a peak around noon. In Figure 1 we plot the curves corresponding to some
of the typical consumers in each group.

In this work, the important feature of the data was precisely the hours at
which maximum consume was attained. On the other hand, if we use a naive
robust estimate that starts by a simple “cut-off” of sharp peaks, we could loose this
characteristic.

In this paper, we propose here an estimate which is able to handle the more
classical contamination models that takes care of (a) and (b). Another type of
estimates are necessary to deal with contamination of type (c). At this time we
have some idea on how to handle this contamination and it is the subject of some
research in progress.

To finalize this section, we present some definitions which should be fulfilled by
estimates robust against those kind of contaminations. Let E = L2[0, 1], and, for
x, y ∈ L2[0, 1] we will denote,

d(x, y) = ‖x− y‖ =
(∫ 1

0

|x(t)− y(t)|2dt

)1/2

.

In order to define robustness we borrow the ideas in [3]. First, we introduce a
metric dn and a pseudo-metric dn,c, that will be used for the two different robustness
definitions. Let xn := (x1, x2, ..., xn) and yn := (y1, y2, ..., yn) with xi, yi ∈ E, i ≥ 1,
and define

dn(xn, yn) = inf{ε : (#{i : d(xi, yi) ≥ ε})/n ≤ ε},
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where #A denotes the cardinal of the set A. If each yi, i = 1, ..., n is obtained
contaminating the corresponding xi, i = 1, ..., n with contamination of type (a) or
(b), this definition makes xn and yn be close.

On the other hand, if we define

dn,c(xn, yn) = inf{ε : (#{i : dc,ε(xi, yi) ≥ ε})/n ≤ ε}

with

dc,ε(xi, yi) = inf
{A⊂[0,1]}

(∫
{[0,1]−A}

|xi(t)− yi(t)|2dt

)1/2

, i = 1, ..., n,

where λ(A) < ε and λ(.) stands for the Lebesgue measure, we obtain a distance
which makes xnand yn to be close also under contamination of type (c).

Let (F,D) be a metric space and Tn : En → F be a sequence of estimates
taking values in F . Let x = (xn : n ≥ 1) ∈ E∞, and Πn(x) = (x1, x2, ..., xn) ∈ En

be the canonical projection on the first n coordinates. Define

∆n(δ,Πn(x)) = sup{D[Tn(yn), Tn(Πn(x))] : yn ∈ B(Πn(x), δ, dn)},

where B(Πn(x), δ, dn) stands for the open ball in En centered at Πn(x) and radius
δ with respect to the metric dn.

Definition 2.1. Let x ∈ E∞. Tn is resistant at x if, given ε > 0, there exist
δ > 0, n0 ∈ IN such that ∆n(δ,Πn(x)) ≤ ε, fore very n ≥ n0.

Definition 2.2. Tn is robust at µ, where µ is a probability measure on E∞, if

µ ({x ∈ E∞ : Tn is resistant at x}) = 1.

Changing dn by dn,c in the previous definitions we get a notion of robustness,
that also deals with (c)–type contamination.

3. Definition and properties.

In this paper we will be concerned only with L2[0, 1]-valued r.e.’s which, unless
otherwise stated, will be defined on the same rich enough probability space (Ω, σ, µ).
P will be a fixed probability distribution on the Borel σ algebra on E.

Our robust estimate is based on the idea of impartial trimming introduced in
[22] which can be extended to the infinite dimensional case in the following way.

Let α ∈ (0, 1). We will say that a measurable function τ : E → [0, 1] is a trim
at level α for P if ∫

τ(y)dP (y) ≥ 1− α.

The function τ tells us which part of every point must be trimmed taking into
account that a maximum trim of α is allowed.

Let us denote by Pα the family of all trims at level α for P .
We divide this section in three subsections. In the first one we prove the exis-

tence of an optimal trimming in the sense of (3.1) below. In the second one we prove
the continuity of the trimmed mean population parameter (see definition below)
with respect to the convergence in distribution. In the third one, we introduce the
estimate and, as a consequence of the results in previous subsection, we obtain the
strong consistency and qualitative robustness of the sequence of empirical trimmed
mean estimates.
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3.1. Definition of population parameter and existence of an optimal
trimming. Given α ∈ (0, 1), we will show that there exist a point mP ∈ E and
τP ∈ Pα, which are optimal in the following sense

(3.1) Iα(P ) := inf
m∈E,τ∈Pα

∫
||y −m||2τ(y)dP (y) =

∫
||y −mP ||2τP (y)dP (y).

We will call α-trimmed mean or, simply, trimmed mean, to every mP such that
there exists a trimming function τP ∈ Pα which satisfy (3.1). τP will be called
optimal trimming function. If we apply equation (3.1) to the empirical probability
measure Pn, we obtain the empirical α-trimmed mean estimate.

It is possible to extend the previous definition to obtain (Φ, α)-trimmed means
(and estimates), as in [22], introducing a continuous and non decreasing weight
function Φ such that

lim
t→∞

Φ(t) > Φ(x) for every x ∈ R+,

replacing equation (3.1) by

Iα,Φ(P ) := inf
m∈E,τ∈Pα

∫
Φ [||y −m||] τ(y)dP (y) =

∫
Φ [||y −mP ||] τP (y)dP (y).

This family extends the so-called Z-estimates (see, for instance, [44]). However,
for the sake of notation, we will assume throughout that Φ(t) = t2.

We start with some previous results. The following lemma states a very well
known property of the mean and justifies the name of trimmed mean we have given
to mP .

Lemma 3.1. Let α > 0 and let τ ∈ Pα. If we define

xτ :=
∫

yτ(y)dP (y)∫
τ(y)dP (y)

,

then ∫
||y − xτ ||2τ(y)dP (y) ≤

∫
||y − x||2τ(y)dP (y), for every x ∈ E.

We introduce now some additional notation. Given m ∈ E and r > 0, let
B(m, r) (resp. B(m, r)) denotes the open (resp. closed) ball centered at m with
radius r. S(m, r) will stand for the associated sphere. Let us also define

rα(m) := inf{r > 0 : P [B(m, r)] ≥ 1− α}.

It follows that if r < rα(m) then P [B(m, r)] < 1− α and

P [B(m, rα(m))] ≤ 1− α ≤ P [B(m, rα(m))].

Proposition 3.2. Let α > 0, m ∈ E and let τm ∈ Pα be such that

(3.2)
∫

τm(y)dP (y) = 1− α and IB(m,rα(m)) ≤ τm ≤ IB(m,rα(m)).

Then, we have that for every τ ∈ Pα,

(3.3)
∫
||y −m||2τm(y)dP (y) ≤

∫
||y −m||2τ(y)dP (y).
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Proof. Let τ ∈ Pα. We have that∫
||y −m||2τ(y)dP (y)−

∫
||y −m||2τm(y)dP (y)

=
∫

B(m,rα(m))

||y −m||2(τ(y)− 1)dP (y) +
∫

B
c
(m,rα(m))

||y −m||2τ(y)dP (y)

+
∫

S(m,rα(m))

||y −m||2(τ(y)− τm(y))dP (y)

≥ r2
α(m)

(∫
B(m,rα(m))

(τ(y)− 1)dP (y) +
∫

B
c
(m,rα(m))

τ(y)dP (y)

+
∫

S(m,rα(m))

(τ(y)− τm(y))dP (y)

)
≥ 0,

where the first inequality follows from the fact that τ ∈ [0, 1] and the second one
from the definition of Pα and (3.2). �

From equation (3.3), if we denote

(3.4) Dα(m,P ) :=
∫
||y −m||2τm(y)dP (y),

we obtain easily the following corollary.

Corollary 3.3. Let α > 0 and let P be a probability measure. Then, mP ∈ E
is a trimmed mean parameter of P if and only if

Dα(mP , P ) ≤ Dα(m,P ), for every m ∈ E.

Remark 3.4. Equality in (3.3) is only possible if τ satisfies (3.2). Therefore,
according to Proposition 3.2, if an optimal trimming function, τP , does exist, its
support is a ball with center at the trimmed mean mP . Its radius is rα(mP ). If the
trimmed mean is unique, we will often denote it rα(P ) and we will call it trimming
radius. In what follows, in order to simplify the notation, we will often suppress
the symbol α in the subindices, since it is fixed.

Remark 3.5. If we fix m, the value∫
||y −m||2τ(y)dP (y)

does not depend on τ as long as τ satisfies (3.2). This justify the notation introduced
in (3.4) and allows us to represent by τm to every trim at level α for P which satisfies
(3.2).

Now we are able to establish the existence result. The proof is given in the
Appendix.

Theorem 3.6. (Existence of optimal trimming) Let α ∈ (0, 1) and let P be a
probability measure on E. Then there exists mP ∈ E such that

Iα(P ) = Dα(mP , P ).

Obviously, uniqueness of of mP is not guaranteed by this result.
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3.2. Continuity. In order to prove consistency and qualitative robustness,
we will show the continuity of the trimmed mean parameter with respect to the
convergence in distribution. The proof relies in a technique introduced in [10], and
is given in the Appendix.

Theorem 3.7. (Continuity) Let {Pn} be a sequence of probability measures
which converges in distribution to the probability measure P . Let α ∈ (0, 1) and let
us assume that the trimmed mean of P is unique.

Let {mn} be a sequence of trimmed means of {Pn} and denote by {rn} the
sequence of the associated trimming radius. Then

lim ||mn −mP || = 0 and lim rn = r(P ).

Remark 3.8. Without the uniqueness assumption in Theorem 3.7, it can be
still proved, with the same proof, that the sequence {mn} is sequentially compact
in norm and that every accumulation point is an α-trimmed mean of P .

From this remark and Theorem 3.7 we can obtain the following corollary. Its
proof (which is deferred to the Appendix) does not require the uniqueness assump-
tion.

Corollary 3.9. Let {Pn} be a sequence of probability measures which con-
verges in distribution to the probability measure P . If α ∈ (0, 1), then

lim Iα(Pn) = Iα(P ).

3.3. Estimates. Consistency and robustness. Let {Xn} be a sequence of
i.i.d. r.e.’s with distribution P . For every n ∈ IN , we will consider the empirical
probability measure Pn defined by

Pn :=
1
n

∑
i≤n

δXi(ω), ω ∈ Ω,

where δx denotes for Dirac’s delta measure on x.
Given α ∈ (0, 1), we will denote by mω

n any empirical trimmed mean and by τω
n

the associated empirical trimming function. The radius of the empirical trimming
function will be denote by rω

n .
We estimate mP by the sequence {mω

n} and r(P ) by {rω
n}. The consistency

result is the following.

Theorem 3.10. (Strong Consistency) Let α ∈ (0, 1) and let us assume that
the probability P has a unique trimmed mean parameter. Let {Xn} be a sequence
of i.i.d. r.e.’s with distribution P . Then, every sequence of the empirical trimmed
means and empirical trimming radius satisfy that

lim ||mω
n −mP || = 0 and lim rω

n = r(P ), for µ-a.e. ω ∈ Ω.

Proof. This result is, in fact, a corollary of the extension to Banach spaces of
Glivenko-Cantelli’s Theorem and Theorem 3.7. �

The resistance of our procedure can be deduced from the results in [3] although,
we include an independent proof in the Appendix.
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Theorem 3.11. (Robustness) Let us assume that the probability P satisfies
that its trimmed mean is unique. Let {Xn} be a sequence of i.i.d. r.e.’s with
distribution P . Then any sequence of empirical trimming means is robust at P∞.

4. Uniqueness of the trimmed mean parameter. Unimodality

In this section we will give a sufficient condition (given in (4.1) below) for
the uniqueness of the trimmed mean parameter of a distribution. In the finite
dimensional case it is closely related to symmetry and unimodality.

Definition 4.1. Let X be an E-valued r.e. We will say that its distribution
is symmetrical and unimodal with mode at m0 if the distribution of X satisfies

(4.1) P [B(m0, r)] > P [B(m, r)], for every m ∈ E and r > 0.

In the one dimensional case, it is easy to see that if X is symmetrical around m
and unimodal, then (4.1) holds; moreover, if P satisfies (4.1), then it can be shown
that P is continuous, symmetrical around m0 and has a unique mode at m0 in the
sense that, for every m > m0 and δ > 0 it follows that

P [m,m + δ] > P [m + δ,m + 2δ].

On the other hand, condition (4.1) holds for every finite-dimensional distribu-
tion which admits a representation similar to the one given in Theorem 4.4 below.
However, we want to remark that unimodality plus symmetry are not enough to
guarantee the uniqueness of the trimmed mean as shown in the following example.

Example 4.2. Let us consider the two dimensional and bounded set

A := B(0, 100)
⋂[(

[−10, 10]× [−1, 1]
)⋃{

(x1, x2) : |x1| ≤ 10|x2|
}]

,

where 0 = (0, 0). Let PA be the uniform distribution on A, m0 = (20, 0) and let us
assume we want to compute the α-trimmed mean of PA with α = 1−PA[B(m0, 5)].
Obviously

(4.2) Dα(0, PA) > Dα(m0, PA).

Given λ > 0, let Pλ be the probability distribution supported on A with density
function given by

fλ(x) := K[1 + λ(100− ||x||)IA(x)],
where the constant K is chosen in order that fλ be a density function. Therefore,
the level curves of Pλ are the intersection of spheres with A, and the parameter λ
describes how step is fλ. Moreover, fλ is strictly unimodal, for every x ∈ IR2:

fλ(x) = fλ(−x)

and the function t :→ fλ(tx), t ∈ IR, is strictly decreasing on {t > 0 : tx ∈ A}. We
also have that

lim
λ→0+

Pλ = PA and lim
λ→0+

Dα(z, Pλ) = Dα(z, PA), z = 0,m0.

Thus, by (4.2) there exists λ0 such that Dα(0, Pλ0) > Dα(m0, Pλ0) and 0 is not
the trimmed mean of Pλ0 and, by the symmetry of this distribution, the trimmed
mean is not unique.

Notice that a slight modification of this example allows to choose Pλ0 supported
by IR2 and fλ0 satisfying any desired regularity condition.
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Theorem 4.3. Let P be a probability measure such that there exists m0 ∈ E
which satisfies (4.1).

Then, for every α ∈ (0, 1), the trimmed mean of P is unique and coincides with
m0.

Proof. Let α > 0. Given m ∈ E and τm a trim at level α for P which satisfies
(3.2), the function

r → Qm(r) :=
1

1− α

∫
B(m,r)

τm(y)dP (y), r ≥ 0,

is a distribution function and satisfies that

Dα(m,P ) = (1− α)
∫

r2dQm(r).

Moreover, (4.1) implies that the distribution Qm0 is strictly stochastically
smaller than Qm and, in consequence,

Dα(m0, P ) < Dα(m,P ).

�

The next theorem and corollary state that the class of symmetrical and uni-
modal distributions is rich enough in the infinite dimensional case. The proof is
given in the Appendix

Theorem 4.4. Let {e1, e2, ...} be a fixed orthonormal basis of E. Let X be an
E-valued r.e. with distribution P which admits the representation

X =
∑

n

Xnen,

where the random variables {X1, X2, ...} are independent with continuous density
functions {f1, f2, ...} with respect to the Lebesgue measure. Assume also that, for
every n ∈ IN , fn is symmetric with respect to 0 and strictly decreasing on [0,∞).

Then, the distribution of X satisfy (4.1) with m0 = 0.

Corollary 4.5. The assumptions of Theorem 4.4 include all Gaussian Pro-
cesses with zero mean.

Proof. It is easy to verify that we can obtain any covariance linear operator
from a stochastic process satisfying the assumptions of Theorem 4.4. �

5. Computational problems

Given a sample {X1, ..., Xn}, let Pn stands for the empirical probability mea-
sure. The search for the point mω

n which minimizes (3.1) is, in general, compu-
tationally too expensive. By this reason we propose an alternative much simpler
consistent estimate, that we denote m̂ω

kn
. This estimate just consists on the result-

ing value if we restrict the search of the minimum in (3.1) to the support of Pn.
In other words, using the equivalence in Corollary 3.3,we can see that the estimate
m̂ω

kn
, is determined by the relationship

m̂ω
kn
∈ {X1(ω), ..., Xn(ω)} and Dα(m̂ω

kn
, P ) = inf

i=1,...n
Dα(Xi(ω), Pn).

It is clear that m̂ω
kn

is much easier to compute because in this task it is only
required to compute and handle the set of distances
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{||Xi −Xj || : i, j = 1, 2, ..., n} .

An algorithm to compute m̂ω
kn

is the following. Let m stands for n(1 − α), if
n(1−α) is an integer number, or for to the integer part of n(1−α) + 1, otherwise.
The algorithm consist of the following steps:

(1) Compute D(i, j) = ‖Xi(ω)−Xj(ω)‖2, i, j = 1, ..., n
(2) Set Obj = ∞
(3) Repeat for i = 1 : n

DD = sort(D(i, :))
DDD = DD(1 : m, :)
If ‖DDD‖2 < Obj, then set Obj = ‖DDD‖2 and m̂ω

kn
= Xi(ω)

Let Ĩα(Pn) := Dα(m̂ω
kn

, Pn). Theorem 5.1 states that the sequence {m̂ω
kn
} is

consistent if the value mP belongs to the support of P . The proof is given in the
Appendix.

Theorem 5.1. Let us assume that the hypotheses in Theorem 3.10 hold. Let
us also assume that mP belongs to the support of P . Then

lim ||m̂ω
kn
−mP || = 0, for µ-a.e. ω ∈ Ω.

The estimate mω
n is a mean of some curves in the sample and, in consequence,

this curve does not exist in the sample. However, the estimate m̂ω
kn

is one of
the curves in the sample, which allows to answer some additional questions. For
instance, let us assume that you are interested into select a representative company
of those in Wall Street shares market. The data consists of the curves representing
the value of every share in the market. If you select the representative employing
this procedure, once the company has been selected, you can analyze it to figure out
the characteristics of “the typical company in Wall Street” (size, business sector,...).

On the other hand, even in the case that one is interested in computing the
estimate mω

n , it may worth to use the value m̂ω
kn

as an starting point for an iterative
algorithm.

6. Some real data example from TV ratings

In this section we apply our method to some real-data examples. Their paths
are all sampled at the same time points. If this were not the case we suggest to use
a linear interpolation or any smoothing procedure to fill in the possible gaps.

Let us assume that we are trying to start a television advertisement campaign.
With some simplification, we can say that the price we have to pay for it is pro-
portional to the sum of the numbers of individuals watching each individual spot.
Moreover, as an additional simplification, let us assume that we have decided to
insert our spots during the broadcasting of a program whose length is 30 minutes,
and that we are allowed to choose the exact time in which our spots are going to
appear.

In this setup, we have to pay in advance a price which is proportional to an
estimation of the total number of individuals watching this program at the exact
time in which the spots will appear. The problem is to make this estimation as
accurate as possible.

In practice, quite often, the data to carry out this estimation are obtained from
every broadcasting of the program along an earlier month and, essentially, consist
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Figure 2. Curves showing the rate of individuals watching Big
Brother II at prime time at Montevideo, Uruguay. Each curve
corresponds to a day of the 20 first days of emission of the game.
Rates were measured every minute during the 30 minutes of broad-
casting.

of the number of people watching the program every minute. Those measurements
are the so-called rates of audience and the curves which they form in every emission
are the audience rating curves.

As an example, we have chosen the first month of the emission at prime time of
Big Brother II at Montevideo, Uruguay. Figure 2 is a plot of the minute by minute
audience rating curves during the 20 broadcastings in this month.

The usual estimate consists of, simply, the mean of the audience rating curves
during the selected month.

A problem with this method is that if, during the month under consideration,
there are some days in which the audience of the selected program is atypical, with
higher or lower ratings, the estimate will be far from the future real data and we
will pay more (or less) than we should. We will illustrate with two examples that
this problem can be avoided if we use impartial trimmed means instead of regular
ones.

We have computed the 0.15 trimmed mean curve of the data in Figure 2 (which
means that we are allowed to trim exactly three curves). In Figure 3 we give a plot
of the mean curve and the trimmed mean curve. The trimmed mean is about 2
rating points above the mean, which is around 15 percent more. Therefore, if we
assume that the trimmed days are really anomalous days, we can conclude that the
audience we can expect in standard days is 2 rating points higher than this given
by the usual mean.

As a second example that goes in the opposite direction, let us consider the
last 16 days of Big Brother I in the prime time emission also at Montevideo. Take
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Figure 3. Mean and 15 % Trimmed Mean of the curves shown in
Figure 2

.

Figure 4. Mean and trimmed mean of the 16 curves containing
the rates of the individuals watching Big Brother I at Montev-
ideo, Uruguay, during the last 16 days of the game. The trimming
proportion was 3/16.

α = 3/16 (in order to trim exactly three curves) and let us see the difference between
the mean and the α trimmed mean. Those curves appear in Figure 4. This time,
the average curve is about 2 points above the trimmed mean.

Now, the question is: Did something unusual happened on the trimmed days?
The answer for the second example is rather obvious. The three trimmed curves
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Figure 5. Mean and trimmed mean of the 16 curves containing
the rates of individuals watching Big Brother I at Montevideo,
Uruguay, during the last 16 days of the game plotted jointly with
the curves corresponding to the last three days which were, pre-
cisely, the trimmed curves. The trimming proportion was 3/16.

correspond to the last three emissions, in which the winner of the game was selected
by the audience, and the ratings have increased considerably. Figure 5 is a plot
the three trimmed curves with the mean curve and the trimmed mean curve for
comparison.

Concerning the three trimmed curves for the first example, once we looked
carefully at the data, we found that two of them correspond to days where there were
special programs at a sports cable program (soccer games) that got a considerable
rating, quite above its average. Figure 6 is a plot of the ratings curves of those
events. On a regular day, the ratings for that sports cable channel are below 2
rating points. The last trimmed curve is from a Monday of a long week end holiday.
It seems obvious that the trimmed days can not be considered as standard ones
and that on those days the audience of the selected program is below than usual.

Finally, we want to remark that, in spite of the fact that a careful designer
of the experiment would have deleted from the sample those anomalous days (for
instance, if you know the mechanics of Big Brother you will never choose the last
week as a typical week or, if you know something about the interest on soccer in
Uruguay, you will never choose a day in which the Uruguayan team plays), the
interest of the proposed estimate is that it did his job automatically in the right
way and discovered those final days in the second example and those days in which
the Uruguayan soccer team was in screen1.

1By the way, it was hard, but with those results the Uruguayan soccer team qualified for the
World Championship. Regrettably, once there, it was eliminated in the first round
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Figure 6. Curves showing the rate of individuals watching Ten-
field channel at Montevideo, Uruguay, on the 14/08/2001 and the
23/08/2001 during the time at which Big Brother II was on the
screen.

7. Appendix

The first lemma is a property of uniformly convex Banach spaces and it is
stated here for further reference.

Lemma 7.1. Let {xn} ⊂ E be a sequence which converges weakly to x0. Then
(P.1) lim inf ||xn|| ≥ ||x0||.
(P.2) If lim ||xn − x0|| 6= 0, then lim inf ||xn|| > ||x0||.

Proposition 7.2. Let α ∈ (0, 1) and let P be a probability measure on E. Let
{xn, n = 0, 1, ...} ⊂ E be such that

lim ||xn − x0|| = 0 and lim rα(xn) = rα(x0).
Then

lim
∫
||y − xn||2τxn(y)dP (y) =

∫
||y − x0||2τx0(y)dP (y).

Proof. To simplify, let us denote τn = τxn . It follows easily that

lim τn(y) =

{
1 if y ∈ B(x0, rα(x0))

0 if y /∈ B(x0, rα(x0)).
On the other hand

1− α = lim
∫

τn(y)dP (y)

= lim
∫ (

IB(x0,rα(x0)) + IB
c
(x0,rα(x0))

+ IS(x0,rα(x0))

)
τn(y)dP (y),
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and, the bounded convergence theorem implies that

(7.1) γ := 1− α− P [B(x0, rα(x0)] = lim
∫

S(x0,rα(x0))

τn(y)dP (y).

Now, since

||y − xn||2
(
IB(x0,rα(x0))(y) + IB

c
(x0,rα(x0)

(y)
)

τn(y) → ||y − x0||2IB(x0,rα(x0))(y),

again the bounded convergence theorem implies that

lim
[∫

||y − xn||2τn(y)dP (y)−
∫
||y − x0||2τ0(y)dP (y)

]
= lim

∫
S(x0,rα(x0))

(
||y − xn||2τn(y)− ||y − x0||2τ0(y)

)
dP (y)

= r2
α(x0) lim

∫
S(x0,rα(x0))

(τn(y)− τ0(y)) dP (y) = 0

by (7.1). �

Proof of Theorem 3.6.

Proof. Let {xn} ⊂ E be a sequence such that

(7.2) Dα(xn, P ) → Iα(P ).

Let us denote, to simplify, τn = τxn . We start proving that both sequences
{xn} and {rα(xn)} are bounded. Take H > 0 such that

P [B(0,H)] > α,

and let δ = P [B(0,H)]− α. Thus,
∫

B(0,H)
τn(y)dP (y) ≥ δ for every n ∈ IN . If the

sequence is not bounded, there exists a subsequence {xnk
} such that ||xnk

|| → ∞,
and we have that

lim Dα(xnk
, P ) = lim

∫
||y − xnk

||2τnk
(y)dP (y)

≥ lim
∫

B(0,H)

||y − xnk
||2τnk

(y)dP (y)

≥ lim(||xnk
|| −H)2δ = ∞,

which contradicts (7.2).
Boundness of {rα(xn)} follows from the boundness of {xn} and the fact that if

H∗ satisfies that P [B(0,H∗)] > 1− α, thus, rα(xn) ≤ supk ||xk||+ H∗, since

B(0,H∗) ⊂ B(xn, ||xn||+ H∗).

In consequence, without loss of generality, we can assume that there exists x0 ∈
E and r0 such that the sequence {xn} converges weakly to x0 and lim rα(xn) = r0.
Notice that rα(x0) ≤ r0. Effectively, if we denote A = lim supB(xn, rα(xn)), we
have

1− α ≤ lim supP [B(xn, rα(xn))] ≤ P (A).
On the other hand, if y ∈ A, there exists a subsequence {xnk

} such that
y ∈ B[xnk

, rα(xnk
)] for every k and therefore

r0 ≥ lim sup ||y − xnk
|| ≥ ||y − x0||,
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where last inequality follows from (P.1) in Lemma 7.1. Thus, A is contained in the
closed ball B(x0, r0) and, in consequence, rα(x0) ≤ r0.

Let us, at first, assume that {||xn − x0||} converges to zero. In this case

(7.3) r0 = rα(x0).

Effectively, otherwise, since

1− α ≥ lim inf P [B(xn, rα(xn)] ≥ P [B(x0, r0)],

the only remaining possibility is that P [B(x0, r0)] = 1− α. Therefore there exists
r < r0 such that P [B(x0, r)] = 1− α and, from the hypothesis, we have that from
an index onward

B(x0, r) ⊂ B(xn, rα(xn)),

being this inclusion strict. Thus, there exists s ∈ (r, rα(xn)) such that

B(x0, r) ⊂ B(xn, s),

from where rα(xn) ≤ s, which is not possible. In consequence, the assumptions of
Proposition 7.2 are satisfied and we have that

Iα(P ) = lim
n

Dα(xn, P ) =
∫
||y − x0||2τx0(y)dP (y),

and the theorem is proved in this case.
The proof will be complete if we show that ||xn − x0|| → 0 as n →∞. Define

for δ > 0 and a natural number n, the sets

Aδ := {y : lim inf ||y − xn||2 > ||y − x0||2 + δ}
An

δ := {y : ||y − xk||2 > ||y − x0||2 + δ, for every k ≥ n}.

It happens that limn P (An
δ ) = P (Aδ) and, from (P.2) in Lemma 7.1, that

limδ→0+ P (Aδ) = 1. Fix δ0 > 0 such that P (Aδ0) = α + η0 with η0 > 0. Let ε > 0.
There exists δ < δ0 such that P (Aδ) > 1− ε. On the other hand, from the fact that
||x0|| < lim inf ||xn||, we have that, for all y ∈ E,

||y − x0||2τn(y) ≤ [2 sup ||xn||+ sup rα(xn)]2 =: R.

Therefore

lim
∫ (

||y − xn||2 − ||y − x0||2
)
τn(y)dP (y)

= lim

[∫
An

δ0

(
||y − xn||2 − ||y − x0||2

)
τn(y)dP (y)

+
∫

“
An

δ0

”c T
An

δ

(
||y − xn||2 − ||y − x0||2

)
τn(y)dP (y)

+
∫
(Aδ0)

c T
(Aδ)c

(
||y − xn||2 − ||y − x0||2

)
τn(y)dP (y)

]
≥ lim

n
[δ0η0 −Rε] ,
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and taking limits on ε , we finally have that

Iα(P ) = lim
∫
||y − xn||2τn(y)dP (y)

≥ δ0η0 + lim
∫
||y − x0||2τn(y)dP (y)

≥ δ0η0 +
∫
||y − x0||2τx0(y)dP (y),

which contradicts the definition of Iα(P ). �

In our proof of Theorem 3.7 we will employ the very well known Skorohod
representation theorem which we state here for the sake of completeness.

Lemma 7.3. Let {Pn} be a sequence of probability measures which converges
in distribution to the probability measure P . Then, there exist a probability space
(X ,S, ν) and a sequence of E-valued random elements {Yn : n = 0, 1, ...} defined
on it such that

(1) The distribution of Y0 is P and for n ≥ 1 the distribution of Yn is Pn.
(2) The sequence {Yn} converges ν-almost surely to Y0.

Proposition 7.4. Let α ∈ (0, 1) and let {Pn} be a sequence of probability
measures which converges in distribution to the probability measure P . Then it is
satisfied that

lim sup Iα(Pn) ≤ Iα(P ).

Proof. Given r > 0, the function

y :→ ||y −mP ||2IB(mP ,r)(y)

is bounded and, if P [S(mP , r)] = 0 it is also P -a.e. continuous.
Let us assume that P [B(mP , rα(mP ))] = 1 − α. Therefore, we can take

τmP
= IB(mP ,rα(mP )). Let r > rα(mP ) be such that P [S(mP , r)] = 0 and that

P [B(mP , r)] > 1− α. We have that

lim sup Iα(Pn) ≤ lim sup
∫

B(mP ,r)

||y −mP ||2dPn(y)

=
∫

B(mP ,r)

||y −mP ||2dP (y),

and, if we take limits on r, we obtain that

lim sup Iα(Pn) ≤ Iα(P ).

Now, let us assume that P [B(mP , rα(mP ))] > 1− α. By definition of rα(mP ),
if s < rα(mP ), then P [B(mP , s)] < 1− α.

Let s < rα(mP ) < r be such that P [S(mP , s)] = P [S(mP , r)] = 0. Therefore,
there exists n0 ∈ IN such that if n ≥ n0, then

Pn[B(mP , s)] < 1− α < Pn[B(mP , r)].

From an index onward, there exists τn
r,s a trim at level α for Pn such that

IB(mP ,s) ≤ τn
r,s ≤ IB(mP ,r).
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We have that

lim sup Iα(Pn) ≤ lim sup
∫
||y −mP ||2τn

r,s(y)dP (y)

≤ lim
∫

B(mp,s)

||y −mP ||2τn
r,s(y)dPn(y)

+r2
(
1− α− Pn[B(mp, s)]

)
=

∫
B(mp,s)

||y −mP ||2dP (y) + r2
(
1− α− P [B(mp, s)]

)
.

From here, if we take limits, simultaneously, on s → rα(mP ) and r → rα(mP ),
we have that

lim sup Iα(Pn) ≤
∫

B(mp,rα(mP ))

||y −mP ||2dP (y)

+r2
α(mP ) (1− α− P [B(mP , rα(mP ))])

=
∫
||y −mP ||2τ(y)dP (y),

where, if we take

h =
1− α− P [B(mP , rα(mP ))]

P [B(mP , rα(mP ))]− P [B(mP , rα(mP ))]
the function τ is just

τ(y) =


1 if y ∈ B(mP , rα(mP )),
0 if y /∈ B(mP , rα(mP )),
h if y ∈ S(mP , rα(mP )),

i.e. τ is a trim at level α for P and the proposition is proved. �

Proof of Theorem 3.7.

Proof. Let H > 0 be such that P [B(mP ,H)] > α and that [S(mP ,H)] = 0.
By hypothesis, from an index onward,

Pn[B(mP ,H)] > α.

Thus, taking into account Proposition 7.4, we can apply a similar argument
to the one developed in Theorem 3.6 to show that both sequences {mn} and {rn}
are bounded. Therefore, the theorem will be proved if we show that every weakly
convergent subsequence of {mn} converges in norm and its limit is mP , and that
every convergent subsequence of {rn} converges to rα(mP ).

Our first step is to show that if a subsequence {mnk
} converges weakly to m,

then lim ||mnk
− m|| = 0 is satisfied. To prove this, let us assume that {mnk

} is
a subsequence which does not satisfy this property and let {Yn, n = 0, 1, 2, ...} be
the sequence of r.e.’s obtained applying Lemma 7.3 to {Pn} and P . We would have
that

lim inf ||Ynk
(t)−mnk

|| > ||Y0(t)−m|| = lim ||Ynk
(t)−m||,

for ν-a.e. t ∈ X . Thus, if we consider the sets

Aδ := {y : lim inf ||Ynk
−mnk

|| > lim ||Ynk
−m||+ δ}

Ah
δ := {y : ||Ynk

−mnk
|| > ||Ynk

−m||+ δ, for every k ≥ h}.
we can use a similar argument to the one in Theorem 3.6 to obtain a contradiction.
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Let now {mnk
} be a subsequence which converges in norm to m ∈ E. Take

a subsequence {mn
′
k
} such that there exists r0 = limk→∞ rn

′
k
. With the same

argument as in (7.3) we get that r0 = rα(m). On the other hand, if we take s < r0

and t ∈ X such that Y0(t) ∈ B(m, s), then

||Yn
′
k
(t)−mn

′
k
||2τn

′
k
(Yn

′
k
(t)) → ||Y0(t)−m||2.

Therefore with a similar argument to the one used at the final part of the proof
of Proposition 7.4 we obtain that there exists a trim at level α for P , τ , such that

lim inf Iα(Pn) = lim inf
∫
||y −mn

′
k
||2τn

′
k
(y)dPn(y)

= lim inf
∫
||Yn

′
k
(t)−mn

′
k
||2τn

′
k
(Yn

′
k
(t))dν(t)

=
∫
||Y0(t)−m||2τ(Y0(t))dν(t)

=
∫
||y −m||2τ(y)dP (y)

≥ Iα(P ),(7.4)

where τ is defined as in Proposition 7.4. Therefore, Proposition 7.4 implies that
m = mP and that τ = τP .

It remains to show that lim rn = r(P ). But this has been already proved,
because, in fact, we have shown that the whole sequence {rn} is bounded and that
every convergent subsequence of it converges to rα(mP , P ). �

Proof of Corollary 3.9.

Proof. We will employ the same notation as in Theorem 3.7. Let us consider
a strictly increasing sequence of natural numbers {nk}. According to Remark 3.8,
there exists a subsequence {n′

k} such that the sequence {mn
′
k
} converges in norm

to an α-trimmed mean of P , mP .
Therefore, if we apply (7.4) to this subsequence, we have that

lim inf Iα(Pn
′
k
) ≥ Iα(P ).

By Proposition 7.4, we have that every subsequence of {Iα(Pn)} contains
a further subsequence which converges to Iα(P ). But this is impossible unless
lim Iα(Pn) = Iα(P ). �

Proof of Theorem 3.11.

Proof. Given z = (z1, ..., zn) ∈ En or z = (z1, z2, ...) ∈ E∞, let us denote by
mn(z) the α-trimmed mean of the probability measure P z

n = n−1
∑

i≤n δzi .
Let us suppose that the theorem does not hold. If so, there exists A ⊂ E∞

with P∞(A) > 0 and such that if x ∈ A, then mn is not resistant at x.
According to Theorem 3.10, the set

B := {x ∈ E∞ : mn(x) → mP }

satisfies that P∞(B) = 1. Without loss of generality we can also assume that for
every x ∈ B, the sequence {P x

n} converges in distribution to P .
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Now, let x ∈ A ∩ B. According to the definition, there exists ε > 0 and three
sequences {δk}, {nk} and {ynk

} such that δk > 0 and lim δk = 0; nk ∈ IN and
lim nk = ∞ and dnk

(xnk
, ynk

) < δk and ||mnk
(xnk

)−mnk
(ynk

)|| > ε.
By Lemma 2.1 in [3], we have that if ρ denotes for the Prohorov metric, then

lim
k

ρ(P x
nk

, P
ynk
nk ) = 0,

and in consequence, we have that the sequence of probability measures {P ynk
nk }

converges weakly to P . Thus, according to Theorem 3.7, we have also that

lim
k

mnk
(ynk

) = mP ,

what gives a contradiction with the fact that ||mnk
(xnk

)−mnk
(ynk

)|| > ε for every
k. �

In order to prove Theorem 4.4, we need to introduce some additional notation.
Given A ⊂ E and n ∈ IN , An will be the projection of A on the subspace generated
by {e1, ..., en}, An,1 its projection on the subspace generated by {e2, ..., en}, and
A∞,n the projection on the subspace generated by {en+1, en+2, ...}. −A will be the
symmetrical set of A with respect to 0 and the subspace {e2, e3, ...}; while, given
δ ∈ IR,

Aδ := {x + δe1 : x ∈ A}.

Given x ∈ E we will denote, for instance xn = {x}n and so on. We will abuse
of notation and An,1 will also stand for the coordinates set (in Rn) with respect to
the fixed orthonormal basis of E of the set A.

The proof of Theorem 4.4 will be based on the following two propositions.

Proposition 7.5. Under the hypotheses in Theorem 4.4, if A ⊂ E is a closed
and bounded set such that there exists δ > 0 satisfying that A1 + δ ⊂ IR−, then
P [Aδ] > P [A].

Proof. Notice that the hypothesis implies that A1 ⊂ IR−. Therefore, the
assumptions imply that if a ∈ A1, then f1(a + δ) > f1(a). Moreover, since A is
bounded, we have that A1 is compact and there exists η > 1 such that

inf
a∈A1

f1(a + δ)/f1(a) ≥ η,

which implies that

P [(An)δ] =
∫

An

f1(x1 + δ)f2(x2)...fn(xn)dx1...dxn

≥ η

∫
An

f1(x1)f2(x2)...fn(xn)dx1...dxn = ηP (An).

Having in mind that η depends only on A1 but not on n, we obtain the result
just by taking limits on n. �

Proposition 7.6. Let us assume the hypotheses in Theorem 4.4. Let r > 0.
If m ∈ E satisfies that m1 6= 0, then

(7.5) P [B(m∞,1, r)] > P [B(m1, r)].
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Proof. Let r > 0 and m ∈ E be such that m1 > 0 (the other case is analo-
gous). Let us consider the half-balls

B− = B(m, r) ∩ {x : x1 ≤ m1} and B+ = B(m, r) ∩ {x : x1 > m1}.

The proof consists on performing some transformations (symmetries and trans-
lations) of B− and B+ or some subsets of them. Those transformations depend on
r. Thus, we need to split the proof according to the possible values of r. Let us
assume at first that r ≤ m1/2.

By the symmetry assumption, P [B+] = P [−B+]. Moreover, (−B+)1 + m1 ⊂
IR− and, by Proposition 7.5, we have that

P [(−B+)m1 ] ≥ P [B+].

On the other hand, let us call S(B−) the image of the half-ball B− by the sym-
metry determined by the point m− re1 and the subspace generated by {e2, e3, ...}.
It follows that, (S(B−))1 ⊂ IR+ and P [S(B−)] ≥ P (B−). On the other hand,
S(B−)2r−m1

1 ⊂ IR+ and, by Proposition 7.5, P [S(B−)] ≤ P [S(B−)2r−m1 ].
Therefore (7.5) is shown in this case since

B(m∞, r) = (S(B−))2r−m1 ∪ (−B+)m1 ,

and the sets in the right hand side are disjoint.
The next case to be considered is m1/2 < r ≤ m1. In this case we handle B+

in the same way as in the previous case. The difference is related to B− because
now S(B−)1 ∩ IR− 6= ∅. Thus, let us consider the point

m∗ := m− m1

2
e1,

and let S∗ denote the symmetry determined by m∗ and the subspace generated by
{e2, e3, ...}. Let

C := B− − [B− ∩ S∗(B−)].

Notice that P [S∗(C)] > P [C]. Then the proof is also complete in this case
since now

B(m∞,1, r) = S∗(C) ∪ (B− ∩ S∗(B−)) ∪ (−B+)m1 .

Finally let’s consider the case m1 < r. Here we need to decompose

B− = B−,1 ∪B−,2 := {x ∈ B−x1 ≥ 0} ∪ {x ∈ B−x1 < 0}.

We apply to B−,1 the same transformation as we did to B− in the second case.
i.e. we consider

C1 := B−,1 −B−,1 ∩ S∗(B−,1),

and handle C1 as C in previous case, while B−,1 ∩ S∗(B−,1) remains fixed.
Concerning B+, let us denote C2 = S∗(B−,2). Obviously C2 ⊂ B+. C2 will

also remain fixed. The only remaining part is B+ ∩ (C2)c. Since

P [B+ ∩ (C2)c] < P [−(B+ ∩ (C2)c)m1 ],

the proof follows since in this case, we have the decomposition

B(m∞,1, r) = [(−(B+ ∩ (C2)c))m1 ] ∪ C2 ∪ S∗(C1) ∪ (B−,1 ∩ (C1)c).

�

Proof of Theorem 4.4.
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Proof. Let r > 0 and let m ∈ E, m 6= 0. According to Proposition 7.6, if
mn 6= 0 then

P [B(m∞,n−1, r)] < P [B(m∞,n, r)],
while, if mn = 0, m∞,n−1 = m∞,n.

Thus, we have the inequalities

P [B(m, r)] ≤ P [B(m∞,1, r)] ≤ P [B(m∞,2, r)] ≤ . . .

where at least one of them is strict. On the other hand lim ||m∞,n|| = 0 and we
have that

P [B(m, r)] < lim P [B(m∞,n, r)] ≤ P [lim sup B(m∞,n, r)] = P [B(0, r)].

�

The proof of the Theorem 5.1 will be based on the following proposition.

Proposition 7.7. Let us assume that the hypothesis in Theorem 3.7 hold. Let
{xn} ⊂ E be a sequence such that lim ||xn −mP || = 0. Then

lim supDα(xn, Pn) ≤ Iα(P ).

Proof. Given n ∈ IN , let mn be a trimmed mean of Pn. By Theorem 3.7 we
have that lim ||mn −mP || = 0 and that limn rn = r(P ). Thus lim ||mn − xn|| = 0
and, if we denote R := sup(rn), it follows that

||y −mn||τn(y) ≤ Rτn(y).

Therefore we have that

Dα(xn, Pn) ≤
∫
||y − xn||2τn(y)dP (y)

≤ Dα(mn, Pn) +
[
||mn − xn||2 + 2||mn − xn||R

]
(1− α)

= Iα(Pn) +
[
||mn − xn||2 + 2||mn − xn||R

]
(1− α),

which, together with Corollary 3.9, gives the result. �

Proof of Theorem 5.1.

Proof. By the extension of the Glivenko-Cantelli Theorem there exists a µ-
probability one set Ω0 such that if ω ∈ Ω0, then mP belongs to the closure of the
set {X1(ω), X2(ω), ...} and the sequence {Pn} converges in distribution to P .

Let us fix ω ∈ Ω0. Given n ∈ IN , there exists Xin(ω) ∈ {X1(ω), ..., Xn(ω)}
such that ||Xin(ω)−mP || → 0. Therefore we have that

(7.6) lim sup Iα(Pn) ≤ lim supDα(Xin(ω), Pn) ≤ Iα(P ),

where last inequality is a consequence of Proposition 7.7.
Now (7.6) is a starting point analogous to the conclusion of Proposition 7.4

which, if we make here the same reasoning as in Theorem 3.7, allows to obtain the
desired result. �

ACKNOWLEDGMENTS. This research was started during a visit of the first
author to the Universidad de la República del Uruguay. He wants to thank for
the warm hospitality received there. This stay was supported by a grant from the
Universidad de Cantabria.

The present version have been completed during a visit of the second author
to the Universidad de Cantabria. This stay has been supported by the Instituto



24 JUAN ANTONIO CUESTA-ALBERTOS AND RICARDO FRAIMAN

de Cooperación Iberoamericana, Programa de Cooperación Interuniversitaria AL-E
2003.

We would also want to thank to Mediametŕıa TV, Corporación Combex, for
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