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bDepartamento de Matemáticas, Universidad de San Andrés, Argentina and
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Abstract

A robust cluster procedure for functional data is introduced. It is based on the notion
of impartial trimming. Existence and consistency results are obtained. Furthermore,
a feasible algorithm is proposed and implemented in a real data example, where
patterns of electrical power consumers are observed.
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1 Introduction

Resistant methods for cluster analysis, based on the concept of “impartial
trimming” are proposed. The framework under consideration will include high
dimensional problems and the case of functional data (also called longitudinal
data in health and social sciences) which arise nowadays in a number of in-
creasing scientific fields, associated with continuous-time monitoring processes
that provides samples of functions.

The impartial trimming (where those data to be trimmed are self–determined
by the whole data set) was introduced in [7] as a robust alternative tech-
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nique for the multi-dimensional location problem. Notice that the usual one-
dimensional trimming methods fail in the multi–dimensional case because
there is no more a natural zone (a neighborhood of ∞) where the observations
to be trimmed should be chosen. The idea of impartial trimming have been
particularly useful for cluster analysis in finite dimensional spaces.

For cluster analysis, impartial trimming techniques offer a resistant alternative
to k-means, one of the most widely used cluster methods. A quick description
of k-means is the following:

• For a fixed value of k the method search for the centers of the k groups into
which the data will be classified.

• The criteria for this search is to minimize the dispersion within groups.
• Once the centers are founded, each data point is assigned to the group of

its nearest center.

However, if k > 1, k-means is very sensitive to the effect of a small group
of atypical observations (outliers). Effectively, as pointed in [3], a single data
point far away from the data cloud, will produce an artificial group center and
the estimate will breakdown in this sense. In order to avoid this problem, the
notion of impartial trimmed k–means (ITkM in what follows) was introduced
in [3]. Roughly speaking, the method drops out a small proportion of the data
before starting the search of the centers of the groups (see a more precise
description of the procedure in Section 2). The deletion step is impartial in
the sense that the deleted points are self-determined by the sample.

In order to apply the ITkM method, it is necessary to provide an effective
algorithm to find the ITkM centers for a given data set, a problem which has
shown to be very involved. This is particularly important for high dimensional
problems, which will be the case where will be focused this work. In [2] an
approximate algorithm was proposed to handle this problem in the case k = 1.
We extend the same idea to approximate the ITkM centers, which, broadly
speaking, restrict the search for the ITkM centers to the points in the sam-
ple. An important computational advantage of this algorithm is that it only
requires to calculate the matrix of distances between the points in the sample.
Another property of this estimate is that the selected centers are already data
points in the sample and not averages of data points. This allows to measure
additional variables which were missed in a first analysis for the centers which
can be thought as typical representatives of their cluster group.

The paper is organized as follows. In Section 2 we state the ITkM problem
in a general setting; we introduce the estimates and extend the algorithm
proposed in [2] in order to calculate them. In Section 3 we show the existence
of ITkM and present some asymptotic results. The proofs are rather technical
and combine techniques developed in [2] and [3]. A sketch of the proofs is given
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in the Appendix. In Section 4 patterns of electricity consumers are analyzed
by the ITkM technique. This is a real data set with a large amount of outliers
(atypical data), where the method seems to do well its job.

In this paper we will consider the data in a quite general setting, the feature
space (see, for instance, [10]) in order to include the case of functional data, or
more general data structures. This objective will be tackled by considering the
case where we have a sample of random elements taken from a random process
taking values in an abstract Banach space E. We chose this framework because
sometimes a Hilbert space setting could be very restrictive in the context of
Functional Data. For instance, even if our data are real functions in L2, quite
often we are interested in considering the L1 distance, or the L∞ distance.
Other times we are interested in the curve and its derivative. In this case, we
consider a norm that takes both aspects into consideration falling in a Sobolev
space context. Other simple examples arise when considering functional linear
models.

Unless otherwise is stated (E, ‖−‖) will stand for a uniformly convex Banach
space, β will denote the associated Borel σ-algebra and we will assume that
all the random elements are E-valued and defined on the same rich enough
probability space (Ω, σ, µ).

Given h ∈ E and r > 0, B(h, r) (respectively B(h, r)) will denote the open
(resp. closed) ball with center at h and radius r.

We will need to handle convergence of sets which is defined as follows. Given
k ≥ 1 and a sequence of subsets of E with cardinal k, Hn = {hn

1 , ..., h
n
k} we will

say that the sequence {Hn}n converges (weakly) to the set H = {h1, ..., hm}
with m ≤ k if there exists a labeling such that if we denote Hn = {hn

i1
, ..., hn

ik
},

then, for every j = 1, ...,m, we have that limn hn
ij

= hj (weakly) and, if j > m
then limn ‖hn

ij
‖ = ∞.

2 Trimmed k-M-parameters and estimates.

The underlying model assumes that we are handling a population which is split
into k clusters although this is not explicitly stated. The goal is to estimate
the centers of those clusters. We also allow to the sample to be contaminated
with a proportion less or equal than α of points which belong to none of the
clusters.
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2.1 k-M-parameters and estimates.

We start defining the population k-M-mean parameter (or k-M-cluster cen-
ters) whose trimmed version we want to estimate. Here, letter M refers to
the fact that 1-M -estimates (see Subsection 2.2) are, in fact, M -estimates
which are based on the same methodology. Given a continuous and strictly
increasing score function Φ : IR+ → IR+, an E-valued random element X with
distribution P and k ∈ IN , let us denote

Ik
Φ(P ) := Ik

Φ(X) := inf
h1,...,hk∈E

∫
Φ

[
inf

i=1,...,k
‖x− hi‖

]
P (dx). (1)

Hk
P,Φ will stand for any set with k elements {hP

1 , ..., hP
k } ⊂ E for which equality

in (1) is reached.

When Φ(t) = t2 and E is the p-dimensional euclidean space, Hk
P,Φ coincides

with the usual k-means parameter of P . If we take Φ as the identity function
and k = 1 we have the median for E = IR and the spatial median in general.
Moreover, if P is symmetrical and unimodal, then H1

P,Φ coincides with the
symmetry center of P .

If we allow Φ to denote a general penalty function, then the set Hk
P,Φ is a

so-called k-Φ-mean of the distribution P or, simply, a k-mean if no confusion
is possible. The k-Φ-means were introduced in [11] and [1] for euclidean spaces
and in [12] and [4] in more general spaces and, obviously, can be considered
as a generalization of usual k-means.

In order to estimate the parameters, let us assume that we have a sample
{Xn} of random elements with the same distribution as X. For n ∈ IN , let Pn

be the empirical probability distribution, i.e., given A ∈ β

Pn[A] =
1

n

n∑
i=1

IA[Xi],

where IA denotes the indicator of the set A.

Natural plug–in estimates of the set Hk
P,Φ and the value Ik

Φ(P ) are Hk
Pn,Φ (which

will be called a k-M -estimate) and Ik
Φ(Pn).

2.2 Impartial trimmed k-M-estimates.

As stated in the introduction, it is well known that, for any score function
Φ, if we replace a single point in the sample by another point X0 which is
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located far away from the data cloud, and k > 1, then X0 ∈ Hk
Pn,Φ. Taking

into account that this point may be located as far as desired, we have that,
if the sample size is n, the replacement of a proportion of n−1 points in the
sample could lead to that at least one of the elements in Hk

Pn,Φ goes to infinity,
and we can say that the breakdown point of the k-M -estimate is n−1.

To get more robust estimates, if E = IRp, p ≥ 1, in [3] (see also [7] for the
case k = 1 and [2] for k = 1 and E = L2[0, 1]) the impartial trimmed k-means
were introduced. The idea of ITkM is to choose an (usually small) number
α ∈ (0, 1), and then change a little the function to be minimized, in order to
allow a proportion α of the data points in the sample to be dropped away.

To be precise, let Pα,n be the family of all measurable functions τ : E → [0, 1]
such that

∫
τ(x)Pn(dx) ≥ 1 − α. Thus, if τ ∈ Pα,n, then τ trims at most a

proportion α of points in the sample. However, τ does not necessarily trim
complete points (giving weight 0 or 1 to all data points), but may give them
a weight in (0, 1). This is required to obtain an exact α trimming level and,
then, to show the existence of optimal trimmings functions exactly in the same
way as randomized tests are required to obtain uniformly more powerful tests
in the Neyman-Pearson theory.

Obviously, trimming functions are not necessarily limited to sample distribu-
tions. In general, given a probability distribution P , Pα will denote the family
of all measurable functions τ : E → [0, 1] such that

∫
τ(x)P (dx) ≥ 1− α.

Now, given k ≥ 1, a distribution P on β, τ ∈ Pα, and h1, ..., hk ∈ E, we define

gk(τ, h1, ..., hk, P ) :=
∫

Φ
[

inf
i=1,...,k

‖x− hi‖
]
τ(x)P (dx),

and

Ik
α,Φ(P ) := inf

τ∈Pα

inf
h1,...,hk∈E

gk(τ, h1, ..., hk, P ), (2)

and let Hk
P,Φ,α be any set in which this infimum is reached.

The empirical version is defined in the natural way as follows. Define

Ik
α,Φ(Pn) := inf

τ∈Pα,n

inf
h1,...,hk∈E

gk(τ, h1, ..., hk, Pn), (3)

and let now Hk
Pn,Φ,α be any set in which the infimum in (3) is reached.

Functions in Pα are often called α-trimming functions. We will denote τα,Φ to
any empirical trimming function in which the infimum in (2) is reached and
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we will refer to it as an optimal α-trimming function.

Functions in Pα,n are called empirical α-trimming functions. We will denote
τn,α,Φ to any trimming function in which the infimum in (3) is reached and we
will refer to it as an optimal empirical α-trimming function.

Broadly speaking, we can say that the difference between Hk
P,Φ and Hk

P,Φ,α

is that in the computation of the last quantity we are allowed to get rid of
a proportion α of the points in E. The points to be trimmed are those for
which the value of gk(τ, h1, ..., hk, P ) is as low as possible. But this difference
is more deep than it seems. For instance, even in the case E = IR2, k = 1
and Φ(t) = t2, in [2] appears an example of a symmetrical and unimodal
distribution P such that H1

P,Φ does not contain the symmetry center of P .
However, the same paper also includes a result with an additional sufficient
condition to avoid this striking behavior.

Several properties of the ITkM-estimates are known in the euclidean case, be-
ing, as far as we know, [2] the only paper containing results on the application
of those ideas to the functional framework and even this paper is restricted
to the case E = L2[0, 1] and k = 1. In particular, in the situations above
described it is known that the sets {Hk

Pn,Φ,α}n converge a.s. to the set Hk
P,Φ,α.

A well known problem is that, even in the one-dimensional, non-trimmed, k-
means case, k ≥ 2, the only effective algorithm to compute the set Hk

Pn,Φ needs
to check all possible partitions of the sample obtained with (k−1) hyperplanes;
the situation being even worst if you try to apply trimming because, in this
case, it is also required to check all possible trimmings. To circumvent this,
several procedures have been proposed (see, for instance, [6]) which, in fact,
do not provide the absolute minimum in (3) but a stationary point. Thus, the
consistency of those algorithms is not guaranteed unless the objective function
contains only a stationary point.

Following the idea proposed in [2] for the case k = 1, here we propose to restrict
the search of the centers set Hk

PnΦ,α to the family of all possible subsets of the
sample with cardinal k. Thus, it is only required to make the search in a
family of (n

k) possible candidates independently of the dimension of E. This
idea, in fact, reduces to replace in equation (3) “E” in the second infimum by
{X1, ..., Xn}, i.e. to minimize

Îk
α,Φ(Pn) := inf

τ∈Pα,n

inf
h1,...,hk∈{X1,...,Xn}

gk(τ, h1, ..., hk, Pn). (4)

As it will be stated in the next section (Theorem 3.2), there always exists a
set Ĥk

Pn,Φ,α in which the restricted optimum is reached since essentially, we are
restricting our search to a finite set of candidates (see Proposition 3.1).
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On the other hand, in Theorem 3.4, we show that, if Hk
P is unique, under mild

conditions on the support of P , then Ĥk
Pn,Φ,α is a strongly consistent estimate

of Hk
P . Although both estimates Ĥk

Pn,Φ,α and Hk
Pn,Φ,α are consistent, we may

have a loss of efficiency when using Ĥk
Pn,Φ,α instead of Hk

Pn,Φ,α. At this point
we have not been able to find the asymptotic distribution of both estimates.

An important advantage of the restricted minimum is its low computational
time. In Section 4, once the distances matrix is computed, the required time
to obtain the set Ĥk

Pn,Φ,α is around .4 seconds if k = 2 and around 15 seconds
if k = 3 (running times obtained with MatLab on a PowerPC G5 at 1.8GHz).
This speed suggest the possibility to use Ĥk

Pn,Φ,α as a starting point in the
search of the infimum Hk

Pn,Φ,α in (3).

In the rest of the paper the function Φ and the value of α ∈ [0, 1) will remain
fixed and, often, will be omitted in the notation. In particular, Hk

P and Hk
Pn

will stand for Hk
P,Φ,α and Hk

Pn,Φ,α respectively.

3 Existence and Asymptotic Results.

The existence and consistency proofs are given in the Appendix. They follow
the corresponding ones for the case k = 1 and E a Hilbert space which were
given in [2].

An important property of the optimal trimming functions is that they are,
essentially, a union of k balls with the same radius.

Proposition 3.1 Let P be a Borel probability on E and let G = {g1, ..., gm} ⊂
E. Let us denote

rP (G) := inf{r > 0 : P [∪i≤mB(gi, r)] ≥ 1− α}.

Let τG ∈ Pα such that∫
τG(y)P (dy) = 1− α and I∪i≤mB(gi,rP (G)) ≤ τG ≤ I∪i≤mB(gi,rP (G)). (5)

Then, we have that for every τ ∈ Pα,∫
inf

i=1,...,m
Φ[‖x− gi‖]τG(x)dP (x) ≤

∫
inf

i=1,...,m
Φ[‖x− gi‖]τ(x)dP (x).

Given G = {g1, ..., gm} we will denote by τG,P to any function in Pα which
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satisfies (5). Obviously, τG,P always exists. We also denote

D(G, P ) :=
∫

inf
i=1,...,m

Φ[‖x− gi‖]τG,P (x)dP (x).

Therefore, according to the definition of the set Ĥk
Pn

given in the paragraph

after (4), we have that Ĥk
Pn
⊂ {X1, ..., Xn} and

D(Ĥk
Pn

, Pn) = inf
{h1,...,hk}⊂{X1,...,Xn}

D({h1, ..., hk}, Pn). (6)

Theorem 3.2 (Existence of optimal trimming functions and sets) Let
P be a Borel probability on E. Given α ∈ [0, 1) and k ≥ 1, there exists
HP = {hP

1 , ..., hP
k } ⊂ E such that

Ik(P ) =
∫

Φ
[

inf
i=1,...,k

∥∥∥x− hP
i

∥∥∥]
τHP ,P (x)P (dx). (7)

Consistency results for {Hk
Pn
} and

{
Ĥk

Pn

}
n

are given in the following two

Theorems.

Theorem 3.3 (Consistency of ITkM-estimates) Let α ∈ (0, 1), k ≥ 1
and let P be a Borel probability measure on E such that the set Hk

P is unique.
Then the sequence {Hk

Pn
} converges (in norm) to Hk

P µ-a.s.

Theorem 3.4 (Consistency of approximate ITkM-estimates) Let α ∈
(0, 1), k ≥ 1 and let P be a probability on E such that the set Hk

P is unique
and is contained in the support of P .

Then, the sequence
{
Ĥk

Pn

}
n

converges almost surely to Hk
P .

Remark 3.5 It is easy to find counterexamples to Theorem 3.4 if the hypoth-
esis that Hk

P is contained in the support of P is removed.

Remark 3.6 The uniqueness assumption we handle in this paper is not al-
ways guaranteed even if α = 0. This assumption has been discussed very often
in the k-means literature (see, for instance, [2]). Some results are known in
the case that E = IR and α = 0 (see, for instance, [13], [8], [5], [14], and [9]),
but, at our best acknowledge, yet there is no satisfactory result even in the
case E = IR2, k = 2 and α = 0.

However, if this hypothesis is suppressed, the proofs of all consistency results,
with obvious modifications, work to show that with µ-probability one, the
sequence

{
Ĥk

Pn

}
n

is sequentially compact and its adherence values are trimmed

k-means of P .
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Finally, the following result shows that our method also can be used to esti-
mate Ik(P ). Observe that the uniqueness assumption is not required on it.

Corollary 3.7 Let α ∈ (0, 1), k ≥ 1 and let P be a Borel probability on E
such that the set Hk

P is contained in the support of P . Then we have that,

lim
n

D
[
Ĥk

Pn
, Pn

]
= Ik(P ), µ− a.s.

4 A real data example: looking for patterns of electric power con-
sumers

The study was oriented to find patterns in the behavior of the electric power
home-consumers at Buenos Aires, Argentina in 2001. For each individual home
in the sample, measurements were taken at each of the 96 sub–intervals of
15 minutes in every week day, Monday to Friday, during January 2001. The
analyzed data were monthly averages over week days for each individual home.
Thus, every data is a vector of dimension 96.

We have taken a sample of 111 individuals. Since we were only interested in
the shape of the curves, the data were normalized in such a way that the
maximum of each curve was equal to one and the minimum equal to zero.

A first visual inspection of the data shows that there is an important group
of outliers that have no typical pattern behavior (see, as an illustration, the
two lower rows in Figure 1). We have performed the method described in the
previous section in the following way.

Concerning the mathematical framework, we have considered that our sample
is composed by square integrable real functions defined on the interval [0, 24]
with the L2-distance. Thus, given the function x in this space,

‖x‖ =

 1

24

24∫
0

x2(t)dt

1/2

.

Moreover, we take advantage of the properties of the least squares method by
taking Φ(t) = t2.

Let us begin by computing the trimmed 2-means with a trimming level α =
13/111 which allows to trim exactly 13 functions. Several computations (to
be described below) suggested us that the anomalous observations (with very
atypical pattern behaviour) in the sample are around 9. For this reason we
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have chosen the value of α = 13/111. The resulting trimmed 2-mean functions
as well as four trimmed functions are shown in Figure 1.

First 2-mean Second 2-mean

Four trimmed functions

Fig. 1. Result to apply the 2-means procedure with α = 13/111 and the L2-distance
to the electrical consumption data set. In the figure are shown the α-2-means of the
data (first row) and a sample of 4 from the 13 trimmed data in the parent sample.

The function in the graph labeled “First 2-mean” has a pike around 8pm while
the “Second 2-mean” function has two pikes: one around noon and second one
around 10pm. Thus, we can consider that the first function is a representative
of the families which are mainly outside during day time, while the second
function represents the group of families that have some activity at home
during day time (probably having lunch at home). It is quite reasonable to
assume that, from the point of view of the pattern of the electrical power
consumption, this is a key division.
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Let us have a look to the four trimmed functions represented in Figure 1. They
were chosen at random from the set of 13 trimmed functions, except for the
fact that in the initial sample there was another function quite similar to the
one in the right in the first row, and then, it was replaced by the one on the
lower right. All of them exhibit patterns quite difficult to be explained from a
home-consumer point of view. In particular, the one in the upper left is more
appropriate for a night business, the one in the upper right could correspond to
a day-business. The ones in the lower row may correspond to closed apartments
but with some electrical equipment running (like for instance a refrigerator).
Then, after normalization, small (in absolute value) differences are increased
showing a kind of crazy pattern.

Once the centers of the groups have been chosen, we have to assign each
non-trimmed function to the closest center. With this criteria we obtain two
clusters, first one composed of 37 elements and second one of 61.

In spite of the fact that previous explanation looks quite plausible, we need
to get some confidence on that this is the right explanation. In particular, we
need to have some hint to be sure that there are just two groups in the data
and to know (approximately) how many anomalous observations contains our
data set.

In order to try to solve these questions, first we have selected at random some
members of each cluster and, in Figure 2, we have represented them jointly
with the center of the group in which they have been included.

All the chosen curves have one or two picks, according to the group in which
they have been included except for the curve represented in the upper left
graph. However, as shown in Figure 3, this curve is much more similar to the
center in the first group than to the center of the second group. The problem
with this home, is possibly, that the time-schedule does not match with those
of the two-picks group (having each of both picks earlier).

However, the most sound reason to accept that this data set contains two and
only two groups appeared when we computed the 3-means of this data set
with trimming sizes α = 3/111, 4/111, ..., 15/111. This set offers 13 different
possibilities to trim, and in consequence, 13 different possibilities for the 3-
means. But, we obtained just two different 3-means sets (see Figure 4). The
first 3-means set appeared for trimming sizes α = 3/111, ..., 9/111. The second
one appeared for trimming sizes α = 10/111, ..., 15/111.

Functions in the left hand side in Figure 4, corresponds to the first 3-means
set. Again, the first curve seems to represent the group of consumers with just
a pick (upper graph), the second one to the group with two picks (middle)
while the third one to a group of anomalous curves (because this function
has just a pick around noon). Observe that the first two curves (centers) are
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Elements in cluster 1 Elements in cluster 2

Fig. 2. Three randomly chosen elements in each cluster (green curves) represented
jointly with the curve which the trimmed 2-means procedure chosen as center of
the cluster (magenta curves). All curves share the main characteristic of the corre-
sponding center (one or two modes) except for the one represented in the upper left
graph.

exactly the same curves that we got when we search for the 2-means centers.
On the other hand, in spite of the fact the functions in the right hand side
represent not-so-strange patterns, it is not evident for us whether they have
one or two picks.

Our explanation for this fact is that, while it is allowed to trim up to 9 func-
tions, and we try to find three groups in the data set, we find the same two
groups as in the 2-means case plus a group of anomalous observations. How-
ever, if we trim 10 or more functions, no more groups of anomalous functions
are left. However, since we look for 3-means, it is compulsory to construct
exactly three groups and now the non-anomalous families are split in three
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Fig. 3. The element represented in the upper left graph in Figure 2, appears here
(green curve in both graphics) jointly with the centers of both two clusters (magenta
curves).

Trimming sizes 3 to 9 Trimming sizes 10 to 15

Fig. 4. 3-means of the electric consumption data when it is allowed to trim 3 to 15
functions takes only two values. First 3-means are shown in the graphs in the left
hand side and corresponds to trim from 3 to 9 functions. The 3-means, when the
number of trimmed functions lies between 10 and 15, are drawn in the graphs in
the right hand side.

13



(more or less arbitrary) groups. This fact suggests that the number of the
anomalous observations in the sample is 9.

An additional reason to argue for this interpretation of the data is that the 2-
means curves that we obtain if we compute them with trimming sizes varying
in the set {3/111, 4/111, ..., 15/111}, are always the same except for the case
α = 6/111 in which the one pick function is replaced by another (more noisy)
function which mainly exhibits just a pick at approximately the same hour
(see Figure 5).

First 2-mean Second 2-mean

Fig. 5. 2-means of the electric consumption data when it is allowed to trim exactly
6 functions.

5 Appendix. Sketch of the Proofs

PROOF OF PROPOSITION 3.1.- It is similar to that of Proposition 3.1 in
[2], and we omit it here. •

PROOF OF THEOREM 3.2.- Let us first show that if Hn = {hn
1 , ..., h

n
k} ⊂

E, n ∈ IN satisfy that

Ik(P ) = lim
n

D(Hn, P ), (8)

then, the set

I := {i : lim inf
n

‖hn
i ‖ < ∞}

is not empty.

Let us assume that, on the contrary I = ∅. Obviously there exists R > 0 such
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that P [B(0, R)] ≥ 1− α and, in consequence

Ik(P ) ≤ Φ(R)(1− α). (9)

On the other hand, we have that

lim sup P
[
∪k

i=1B(hn
i , 2R)

]
= 0

and, in consequence, from an index onward ∪k
i=1B(hn

i , 2R) ⊂ ∪k
i=1B(hn

i , rP (Hn)).
From here

lim
n

D(Hn, P )≥ lim
n

Φ(2R)
(
1− α− P

[
∪k

i=1B(hn
i , 2R)

])
= Φ(2R)(1− α) > Φ(R)(1− α),

since Φ is strictly increasing. But this, contradicts (8) and (9). In consequence,
we have that I 6= ∅.

Therefore, there exist I∗ ⊃ I, H = {h1, ..., hk∗} ⊂ E with the same cardinal as
I∗ and a subsequence {Hnj

} which converges weakly to H. Now, the reasoning
in the first part of the proof of Theorem 3.6 in [2] allows to conclude that we
can take the sequence in such a way that there exists r = limj rP (Hnj

).

Given n ∈ IN , let us consider the disjoint sets

An
i :=

{
x ∈ E : ‖x− hn

i ‖ < inf
j=1,...,i−1

‖x− hn
j ‖

and ‖x− hn
i ‖ ≤ inf

j=i+1,...,k∗
‖x− hn

j ‖
}

, for i = 1, ..., k.

Let us denote Ci,j := B(h
nj

i , rP (Hnj
)). Taking into account that

lim
j

∫
∪i∈I∗Ci,j

τHnj
(x)P (dx) = α,

there exists a non-empty set J ⊂ I∗ and a new subsequence such that

if i ∈ J then lim
m

∫
Anm

i

τHnm
(x)P (dx) = pj > 0 (10)

if j /∈ J then lim
m

∫
Anm

i

τHnm
(x)P (dx) = 0.
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Without loss of generality, we can assume that the initial sequence coincides
with the last subsequence we have obtained.

From the boundness of the sequence {rP (Hn)}, it follows that

Ik(P ) = lim
n

D(Hn, P ) = lim
n

D
(
{hn

j : j ∈ J}, P
)
.

If for every j ∈ J , limn ‖hn
j − hj‖ = 0, then we can repeat the reasoning given

for the corresponding case in Theorem 3.5 in [2] to obtain that

Ik(P ) = D(H, P )

(notice that, if m := #H < k we only need to add k −m arbitrary points to
H to get the set we are looking for).

Thus, if we show that for every j ∈ J , limn ‖hn
j − hj‖ = 0, the result will

be proved. Let us assume that, on the contrary, there exists j ∈ J such that
lim supn ‖hn

j − hj‖ > 0.

Since (10) holds, we can assume that there exists p > 0 such that

P
[
B

(
hn

j , rP (Hn)
)]

> p, for every n ∈ IN, j ∈ J.

Now, let δ > 0, n ∈ IN and i ∈ {1, ..., k∗}, and define the sets

Bi
δ := {y : lim inf Φ [||y − hn

i ||] > Φ [||y − hi||] + δ}
Bn,i

δ := {y : Φ
[
||y − hk

i ||
]

> Φ [||y − hi||] + δ, for every k ≥ n}.

We can repeat the last part of the argument in the proof of Theorem 3.6 in
[2] just taking the value δ0 as a positive value such that P [Bi

δ0
] > 1− p + η0,

for i = 1, ..., k∗ where η0 > 0, δ < δ0 such that P [Bi
δ] > 1− ε for i = 1, ...., k∗

and

R = sup
i=1,...,k∗

Φ
[
2 sup

n
||hn

i ||+ sup rα(Hn)
]
,

to get that

lim
∫ (

inf
i=1,...,k∗

Φ [||y − hn
i ||]− inf

i=1,...,k∗
Φ [||y − hi||]

)
τn(y)dP (y)
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≥
∑

i=1,...,k∗
lim

∫
An

i

(Φ [||y − hn
i ||]− Φ [||y − hi||]) τn(y)dP (y)

=
∑

i=1,...,k∗
lim

 ∫
An

i ∩Bn,i
δ0

(
||y − xn||2 − ||y − x0||2

)
τn(y)dP (y)

+
∫

An
i ∩(Bδ0

n,i)
c ⋂

Bδn,i

(
||y − xn||2 − ||y − x0||2

)
τn(y)dP (y)

+
∫

An
i ∩(Bδ0

n,i)
c ⋂

(Bδn,i)c

(
||y − xn||2 − ||y − x0||2

)
τn(y)dP (y)


≥ lim

n
[δ0η0 −Rε] ,

and taking limits on ε, we finally have that

Ik(P ) = lim
∫

inf
i=1,...,k∗

Φ [||y − hn
i ||] τn(y)dP (y)

≥ δ0η0 + lim
∫

inf
i=1,...,k∗

Φ [||y − hi||] τn(y)dP (y)

≥ δ0η0 +
∫

inf
i=1,...,k∗

Φ [||y − hi||] τx0(y)dP (y),

what contradicts the definition of Ik(P ). •

The consistency result (given in Theorem 3.4) is based on the following result.

Proposition 5.1 It happens that lim supn Ik(Pn) ≤ Ik(P ), µ− a.s.

PROOF.- It is similar to that of Proposition 7.4 in [2], and we omit it here.•

PROOF OF THEOREM 3.3.- Let us denote Hk
Pn

= {hn
1 , ..., h

n
k}. Following the

argument in the first part of Theorem 3.6 in [2] it is possible to prove that
µ-a.s. the set ∪nH

k
Pn

and the sequence {rPn(Hn)} are bounded. Let us fix a
point ω0 in the set in which those facts plus the Glivenko-Cantelli Theorem
are satisfied.

If we prove that for this ω0, every subsequence
{
Hk

Pin

}
of

{
Hk

Pn

}
admits a

new subsequence
{
Hk

P
i
′
n

}
which converges in norm to

{
Hk

P

}
the result will be

proved.
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From a similar argument to that used in the proof of Theorem 3.2 we obtain

that every subsequence
{
Hk

Pin

}
contains a further subsequence

{
Hk

P
i
′
n

}
which

satisfies that there exist J ⊂ {1, ..., k}, H = {hj, j ∈ J} ⊂ E and p > 0 such
that if we define the sets An

i similarly as in the proof of Theorem 3.2 then

(1) If j ∈ J , then the sequence
{
h

i
′
n

j

}
converges weakly to hj and

inf
n

Pn

[
An

j

]
> p.

(2) If j /∈ J , then limn

∥∥∥∥hi
′
n

j

∥∥∥∥ = ∞ or, else, limn Pn [An
i ] = 0.

From here it is possible to repeat the reasoning in the proof of Theorem 3.7
in [2] to get the desired result. •

The consistency of the approximate ITkM Ĥk
Pn

follows from the following
Proposition.

Proposition 5.2 Let us assume that the hypotheses in Theorem 3.3 hold.
Let Gn = {gn

1 , ..., gn
k}, n ∈ IN, be a sequence of sets with cardinal k which

converges (in norm) to the set Hk
P . Then, we have that

lim sup D(Gn, Pn) ≤ Ik(P ), µ− a.s.

PROOF.- Let us denote the trimmed k-M estimates by Hn = {hn
1 , ..., h

n
k}

n ∈ IN . Notice that the set of real numbers

IH :=
{
‖y − gn

i ‖, ‖y − hn
i ‖ : y ∈ ∪k

i=1B
[
hn

i , rPn(Hn)
]
, n ∈ IN

}

is bounded. Therefore, the map Φ is uniformly continuous on IH. By Theorem
3.3, we have that (possibly after a re–labeling)

lim sup
i=1,...,k

‖gn
i − hn

i ‖ = 0, µ− a.s.

Let us define the family of sets {An
i , i = 1, ..., k, n ∈ IN} like in Theorem 3.2.

We obtain that

D(Gn, Pn)≤
∫

Φ[ inf
i=1,...,k

‖y − gn
i ‖]τHn,Pn(y)Pn(dy)

≤ Ik(Pn) +
k∑

i=1

∫
An

i

(Φ[‖y − gn
i ‖]− Φ[‖y − hn

i ‖]) τHn,Pn(y)Pn(dy)
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and the result is proved taking into account Proposition 5.1 and that the
second term in the right hand side converges to zero because of the uniform
continuity of Φ. •

PROOF OF THEOREM 3.4. It is similar to that of Theorem 5.1 in [2], and
we omit it here •
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