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Abstract

A robust clustering method for probabilities in Wasserstein space is introduced. This new
‘trimmed k-barycenters’ approach relies on recent results on barycenters in Wasserstein space that
allow intensive computation, as required by clustering algorithms. The possibility of trimming the
most discrepant distributions results in a gain in stability and robustness, highly convenient in this
setting. As a remarkable application we consider a parallelized estimation setup in which each of m
units processes a portion of the data, producing an estimate of k-features, encoded as k probabilities.
We prove that the trimmed k-barycenter of the m X k estimates produces a consistent aggregation.
We illustrate the methodology with simulated and real data examples. These include clustering
populations by age distributions and analysis of cytometric data.
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1 Introduction.

Cluster Analysis belongs to the class of statistical procedures which are most required
by practitioners. Even being simple to describe its scope, the fine details involved in
the admissible shapes for clusters, the determination of the number of clusters and the
habitual unexistence of exact algorithms to get the solution to relatively basic problems
are difficulties intrinsic to the theory. But today, the enormous sizes of data sets and
the increasing interest in structured complex data have also increased the interest and
the inherent difficulties of the theory. On the whole, these facts make cluster analysis
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a challenging theory demanding new tools for the statistical analysis (see e.g. Hennig
et al. [33] for the current state of the art and a panoramic view of the theory). In
particular, data available as probability distributions are the focus of several disciplines
such as demography or weather forecasting. In such cases, the natural space to describe
or analyze the data must preserve their intrinsic structure, leading to consider abstract
spaces where the elements are probability distributions. Although this would suffice to
justify developing cluster analysis on these spaces, meta-analysis or aggregation of cluster
analyses as well as parallelization of some cluster procedures can be also addressed from
such a perspective, giving an unexplored added value to the theory. In fact, a main goal
of this paper is to provide some tools for clustering in Euclidean spaces that arise by
resorting to clustering in suitable metric spaces constituted by probability distributions.

By the way, k-means is an unquestionable reference in the clustering framework (see
e.g. [33] to get a general perspective, in particular chapter 3 by B. Mirkin and chapter 5
by P. Awasthi and M.F. Balcan), being the simplest partitional clustering procedure gen-
eralizable to metric spaces. k-means in abstract spaces have been considered in Sverdrup-
Thygeson [43], Cuesta-Albertos and Matran [18], Parna [39] and [40], Luschgy and Pages
[38] or Lember [36], although their settings do not properly cover the current objective.
For a general metric space (F,d), a k-mean or k-barycenter of the points ey, ..., e, in F,
would be any set {my, ..., my} C E verifying

1< n
n in _d*(e;,m;) < — in d*(e;,m;) f t {ma,... CE. (1
n — je?ll,l_.r_{k} <617 m]) =N — je?ll,l..r.l,k} (61, mj) Oor every se {ml, ’mk} ( )

The k-means procedure shares many of the merits of the mean, as well as its drawbacks,
showing a very bad behaviour in presence of outliers or even bridge-points between clusters
(see Cuesta-Albertos et al. [16]). Trimmed k-means were introduced in [16] in Euclidean
spaces as a way of robustifying k-means. Given a trimming level « € (0, 1) and the set of n
points ey, ..., e, in E, trimmed k-means (see Definition 2.1) look for a set {m, ... ,my} C
FE and a partition, Cy,Cy,...,Ck, of ' that mimimize the trimmed dispersion, namely,

n —1[na] 2 2 dewm), @)

7=1 eiECj

where Cy, the set of trimmed elements, has [na] elements. A minimizing set {m, ..., my}
will be called a trimmed k-barycenter of eq,...,e,. We note that trimmed k-means in
linear functional spaces have been considered in Cuesta-Albertos and Fraiman [17] and
in Garcia-Escudero and Gordaliza [27]. Our framework, in contrast, focuses on the case
where each of m units, possibly after some preprocessing, gives an estimated distribution,
resulting in a meta-sample Py, ..., P, of distributions or sets of distributions. These
objects naturally live in P, (IR%), the set of probabilities on R? with finite second moment,
which we endow with the Lo- Wasserstein distance, defined by

L(U) = P, £(V) = Q}, (3)

1/2

Wa(P,Q) = inf { (BJlU = V)
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where we use £(X) to denote the distribution law of a r.v. X and E(X) for its mean.

In this work we consider k-barycenters and trimmed k-barycenters in this metric space,
the Lo—Wasserstein space. This space has deserved notable interest by its connection with
the celebrated Monge-Kantorovich transport problem, and provides a suitable setting for
statistical analyses of structured data such as histograms, density functions or probabili-
ties. For k = 1, existence, uniqueness and characterizations of (1-)barycenters (or Fréchet
means) in this space have been considered in Agueh and Carlier [1], while consistency
results can be found in Le Gouic and Loubes [34] or Bigot and Klein [8] and trimmed
barycenters have been introduced in Alvarez-Esteban et al [4]. Some recent additional
references that resort to Wasserstein spaces with an statistical motivation are [5], [14],
[15]. Being of indubitable mathematical interest, this approach could be considered just
as the introduction of an additional abstract space where clustering of probabilities could
be carried with more or less success. However, as already announced, through the paper
we will stress mainly on other applications of the theory: We will address the consensus or
aggregation of model-based cluster analyses through a kind of cluster prototypes, where
the prototypes are probability distributions.

Focusing on the aggregation of structured data, there can hardly be any doubt (beyond
its lack of robustness) about the good properties of the mean as a summary of a set of
elements in a linear space. However, when we move to a shaped space the use of the
mean can be unfeasible or produce undesirable effects (for example, the point-wise mean
of several normal densities is no longer a normal density and the normal shape could be
largely distorted). This kind of problem has been already pointed out in the statistical
setting by several authors, notably by Kneip and Gasser [32], and more recently, proposing
solutions based on Wasserstein spaces by Boissard et al. [10].

Consensus procedures in Cluster Analysis have a long story, but generally suffer from
the lack of feasible ways to measure the similarity between several clustering proposals
(see e.g. “A survey of Consensus Clustering” by Ghosh and Acharya in [33]). The use
of the Lo-Wasserstein distance allows to measure in a non-heuristic way how close the
consensus is to each base solution. Also, the trimmed nature of our aggregation process
provides robustness to the proposal. Trimming procedures have always been at the core
of Robust Statistics as an easily understandable way of limiting the effects of (in some
sense) extreme observations.

A main difficulty avoiding a broader use of Wasserstein metrics in applications is of
computational nature. Computation of Wasserstein distances and barycenters for mul-
tivariate probabilities can be a hard task, although the efforts made in the last years
predict better future. Cuturi and Doucet [19], Benamou et al [7], Carlier, Oberman and
Oudet [13] or Anderes, Borgward and Miller [2] develop optimization procedures for such
a hard goal that often involve intensive computation and are rather time-consuming, a
major drawback if one is planning to use these procedures for a distance based clustering
methodology. However, when the probabilities share a common shape, that is, when they
belong to a location-scatter family, as it frequently happens in model-based clustering,
we can now resort to a very efficient algorithm introduced in Alvarez-Esteban et al. [3] to



compute barycenters. This will result in a feasible computation of k-barycenters as well
as the robust trimmed k-barycenters of our proposal in general dimension.

Here we explore the use of trimmed k-barycenters in the Wasserstein space, providing
theoretical support as well as showing the feasibility and suitability of the approach to
get an understandable clusterization. As our main goal, we will consider the adaptation
of trimmed k-barycenters to allow aggregation of clusters. The idea is simple. Often
clustering procedures are related to shapes that allow the interpretation in terms of, say,
Gaussian distributions. Thus, under a well-clusterized problem, each unit would produce
k Gaussian distributions, having, as a result, a total of m x k Gaussian distributions. Now,
these can be naturally clustered in Wasserstein space into k groups, and the k probabilities
obtained through the trimmed k-barycenter (which, remarkably, will also be Gaussian)
would be the consensus representation of the reports of the different units. We give a
result on the consistency of this procedure (see Theorem 2.5). We stress that this seems
to be the first consistency result on parallelization in the k-means setting, being valid in
very general metric spaces. The procedure allows adaptations to cover other settings, but
to simplify the exposition we will consider the aggregation just in a parallelized setup.

The remaining sections of this paper are organized as follows. Section 2 introduces
k-barycenters and trimmed k-barycenters in Wasserstein space, including relevant results
about existence, consistency and error bounds for aggregation based on these trimmed
k-barycenters. Computational issues are discussed in Section 3. It is well known that in
Euclidean spaces, the usual k-means type algorithms produce iterations that converge to
some stationary point, which coupled with a moderate number of random starts provide
probabilistic guarantee of convergence to the global minimizer. We prove that the geom-
etry of Wasserstein spaces allows to get the same conclusion in this setup. A real data
application to population clustering by age distributions is described in Section 4. Sec-
tion 5 discusses several applications of trimmed k-barycenters to model-based clustering.
It covers aggregation issues, like parallelization and resampling procedures, but it also
includes improvements on initialization steps for clustering algorithms and exploratory
tools, showed on a troubling data set of cytometries. Finally, we include an Appendix
with a short account of some relevant facts related to Wasserstein spaces as well as proofs
for the main results in this paper.

2 Trimmed k-barycenters in Wasserstein space

In this section we present some relevant results about k-barycenters and trimmed k-
barycenters in Wasserstein space. Recall that it is the space Py(R?) of probabilities on R¢
with finite second moment equipped with the metric W, defined in (3). This is a complete
and separable metric space. Further details about it can be found in the Appendix. For
convenience we consider a general setup generalizing the one in (1), based on a sample
distribution g (giving uniform mass to {e,...,e,}), and consider (Borel) probabilities,



w, over Py(R?) such that

/’])2(Rd) W3 (P, Q)u(dP) < oo, for some (hence, for every) Q € Py(R?). (4)

We write W5 (Py(R?)) for the set of such p’s. Now, a k-barycenter of p € Wa(P2(RY)) is
a set {My,..., My} C Py(RY) such that

min WH(P.X)u(dP) < | min W(P,Q))u(dP) (5)
for any set {Q1,...,Qr} C P2(R?). Existence of a k-barycenter for any u € Wy(Py(R%))
is proved in Theorem 6.3 in the Appendix. In fact, (23) and (24) there show that the
minimal value (the left-hand side) in (5), to be denoted by Vi(u) in the sequel, has the
meaning of a dispersion measure with respect to an optimal k-set. Simple conditions
guaranteeing uniqueness of k-barycenters are not available even for distributions on the
real line. In contrast, uniqueness of k-barycenters is often used as a natural assumption to
state consistency results. Alternatively, consistency results are sometimes stated through
limit points of convergent subsequences, as in [34]. Under this type of assumption we
prove in Theorem 6.4 consistency of k-barycenters.

To introduce a trimmed version of the k-barycenter we proceed as in [16] (see also [4] for
trimmed barycenters in Wasserstein space) and consider the following abstract definition.
Given a level 0 < o < 1 and a probability P on a measurable space (£2,0), a probability
P* on o, is an a-trimming of P if there exists a measurable function 7 : 2 — R such that
0 < 7(w) <1 for every w € Q and P*(A fA P(dw) for every A € 0. Such a
function is often called an a-trimming functlon “In the sequel the set of all a-trimmings
of P will be denoted by 7,(P). Note that a hard 0 — 1 trimming of a probability P (the
case when 7 € {0,1}) corresponds to the conditional probability P given a set A, with
P(A) =1 — a, but we are also including the possibility of partial trimming of any point
w through the trimming function 7(w) € [0, 1]. Also note that no-trimming is included in
our definition as a trimming function (take 7 = 1 — @), thus P is a trimmed version of
itself for any a. We can now define trimmed k-barycenters in Wasserstein space.

Definition 2.1. An (a-)trimmed k-barycenter of pu € Wa(P2(R?)) is any set M =
{My, ..., My} C Po(R?) such that for some u® € To(u) :

Viea (1t / min  W2(P, M;)u®(dP) (6)

1€{1,....,k}

= mf{ min W3 (P,Q)u*(dP) : p* € To(w),{Q1,...,Qx} C Pg(]Rd)}.

1€{1,....k}

The related trimmed probability, u®, will be called an optimally trimmed probability
and its corresponding trimming function, 7, an optimal trimming function (associated
to M). We will also refer to the minimum value in (6), Vi.(p), as the (a-)trimmed



k-variation of p. Note that in terms of trimming functions we have

1 2
— [ _min, WHP. M7 (PyuaP). (7)

Via (M) =

We collect in the following proposition some main facts concerning trimmed k-barycen-
ters, including existence and a simple characterization of optimal trimming functions.
Existence arises from easy modifications to the arguments in [4] to prove existence of
trimmed barycenters once existence of barycenters is known. In this case we need the
support of the result concerning existence of k-barycenters, that we include as Theorem
6.3 in the Appendix. All other claims can be proved following available proofs for trimmed
k-means (in [16]) with minor changes (as in the proofs in [4] for trimmed barycenters).
For a nicer statement we denote the (generalized) open ball in Py(R?) centered at M =
{My,..., My} by B(M,r) := U B(M;,r), (and write B(M,r) for its closure) and set

ro(M) = inf {7‘ >0: w(BM,r))<l—-a< M(E(M,r))} )

Proposition 2.2. Given o € (0,1) and p € Wa(P2(RY)), there exists a trimmed k-
barycenter, M = {M, ..., My} of u. Furthermore,

i) If 7} is an optimal trimming function associated to M, then
IB(I\_/[,T’Q(I\_/I)) S 7—5 S IE(I\_/I,T’Q(I\_/I)) /,l/ — a.S.

i) If 0 < a < B <1, then Vi o(pr) > Vig(p), with equality if and only if there is a com-
mon solution, M, to the a and ( trimmed k-barycenter problems, that additionally
should satisfy ro(M) = rg(M) and p[B(M, r,(M))¢] = 0.

ii1) Via(1t) > Vit1.a(p) and the inequality is strict unless Vi o (1) = 0.

Note that the consideration of trimmed probabilities allows to guarantee the existence
of trimmed k-barycenters without any integrability condition on p (which would be nec-
essary to guarantee existence of k-barycenters). We note also that Proposition 2.2 is the
key link between quantizers (the trimmed k-barycenters) and clustering. Item i) estab-
lishes that an optimal trimming function, say 7,7, associated to a trimmed k-barycenter,
M, is essentially an indicator set of the union of & balls with the same radii. Moreover,
the k-set M induces a partition of the set B(M, r,(M)) into k clusters, Ci, ..., Cy, with
C; consisting of those probabilities in B(M, r,(M)) which are closer to M;, i = 1,... .k
(probabilities equidistant to several M;’s can be arbitrarily assigned without changing the
value Vi o(1t)). This induces a decomposition of the trimmed k-variation of u as

V(1) =

/mpm<mw» ®)

1—04

From this expression we see that each M; in the optimal k-set must be the barycenter
of its cluster, namely, the barycenter of u*, given by du* = conditioned to C;.




We note also that items i) and i) establish that, apart from some degenerate cases, the
a-trimmed k-variation, Vi . (1), decreases by increasing o or k.

Trimmed k-barycenters share the consistency properties of trimmed k-means. This
is just a minimal requirement for model-based clustering procedures. A proof of the
next results can be obtained combining the arguments used in [4] to prove consistency of
trimmed barycenters with Theorem 6.5 in the Appendix, about consistency of untrimmed
k-barycenters. Convergence of sets of k-barycenters in the following statements must be
understood in the Hausdorff distance, namely,

dy(A, B) = max (sup inf Wy(P, @), sup inf WQ(P Q))

PcAQEB QeB PeA

Theorem 2.3. Assume that (jin)n, 1 € Wa(P2(RY)) are such that pi, — pu. For a fived
a € (0,1), let M,, be any a-trimmed k-barycenter of ji,. Then the trimmed clusterized
variations of p, converge, namely, Vi o(ttn) = Via(pt), the sequence (M,,),, is precompact

and any limit is a_trimmed k-barycenter of . If p has a unique trimmed k-barycenter,
M, then dg(M,,, M) — 0.

Theorem 2.4. Consider o € (0,1) and assume that u € Wyo(P2(R?)) has a unique -
trimmed k-barycenter, M. If p,, is the empirical measure giving mass 1/n to probabilities
Py, ..., P, obtained as independent realizations of u, then the trimmed k-barycenters and
tmmmed clusterized variations are strongly consistent, that is, Vio(pn) — Via(p) a.s.
and, if M, is any trimmed k-barycenter of pi,, then dg(M,, M) — 0 a.s..

A main application of trimmed k-barycenters in Wasserstein space concerns aggrega-
tion of clustering procedures, either in a parallelization or distributed inference setup or
through the use of subagging or other resampling strategies to allow or improve compu-
tation. The parallelization setup refers to the case in which data come from m units Uj,
J=1,...,m. Each unit processes its own samples, that we assume to consist of n; i.i.d.
observations from some P. We write ]5] for the empirical measure observed by the j-th
unit. Through the use of some statistical engine (think of a mixture estimation method,
for instance) the j-th unit produces the k-features F(P;) = {N{, .. ,N,g}, j=1,...,m,
consisting of k distributions in Py(R?). We write F(P) = {Ny, ..., Ni} for the k-feature
associated to P. We assume that F(P) is uniquely defined and consists of k different
elements. We write

r(n) = swp du(F(P),F(Q)) (9)
QeB(Pn)
for the modulus of continuity of F at P. We assume also that the involved random elements
are defined on the same probability space (§2, F, Pr). Then the following result shows that
trimmed k-barycenters in Wasserstein space can be used for consistent aggregation of the
k-features. To avoid technicallities we consider only the case when akm is integer.

Theorem 2.5. Assume that F, P and ]% are as above and that samples from different

units are independent. Assume further that o € (0, i) and akm s an integer. Set



H:2(1+/€,/17%];—+°‘1)a). If n > 0 is such that

-
r(n) < EligélilllWZ(NiaNi’); (10)

Pr(WQ(Pj, P)>n)<a/2,j=1,...,k, and My, p,..m is an a-trimmed k-barycenter of
the set UT {N{,... Nj} (with equal weights - ), then

a2
Pr [dH (Mos s AN1, - N} > S0 < e m o > 1, (11)

We see from Theorem 2.5 that the aggregation procedure based on trimmed k-barycen-
ters shows a stable behavior with respect to variations in the trimming size and that, in
this setup, aggregation does not introduce any (asymptotic) bias. We note also that
W,(P;, P) — 0 a.s., as the sample sizes n; — oo (this follows from the strong law of
large numbers and (21), see the Appendix for details). In particular, for any n > 0,
Pr[Wg(I@’j,IP’) >n] < §, j=1,...,k, provided the sample sizes, n;, are not too small.
Also, if F is continuous at P then r(n) — 0 as n — 0 and we can ensure that (10) holds
by taking 7 small enough. Condition (10) concerns the degree of separation among the
N; and shows that consistent aggregation is simpler when the N;’s are well separated.
The upper bound (11) can be made more precise with further assumptions on P and
F. For instance, if d > 3 and P satisfies some regularity requirements (see [21]) then

Ws(P;, P) = Opr(n;]-/d). Hence, for some constant C' = C(P) we have Pr[Wy(P;,P) >
CN~Y < & with N = min(ny, ...,n). If, further, r(n) = O(n®) for some 8 > 0, then,
2

o
2m

for some constant C = C' (P,F) we conclude that, with probability at least 1 — ke™ 2™,
dig M, mr s AN, .. NG D) < N1,

and we see the influence of the number of units, the sample sizes and the smoothness of
[F on the quality of aggregation.

The scope of Theorem 2.5 can be enlarged assuming that the parent distributions
that produce the data processed by the units are slightly different. In this case, under
continuity of the statistical engine F, we could assume that the k-features associated to
the parent distributions are within some small, 7, dg-distance from {Ny,..., Ny} and

r("Q)H replaced by r("z)H + 7.

obtain a similar upper bound with

Remark 2.6. Often, the statistical engines providing the k-set of features also give asso-
ciated weights that are necessary to define the clusters (and should be not confused with
the weights appearing in the definition of the k-barycenter). This is also the case for the
procedure TCLUST (introduced in [29]), that we use in the applications in Section 5. Let
us to introduce our proposal for the estimates of the weights associated to the aggregated
solution obtained through the trimmed k-barycenter.

Since our trimming procedure will discard the most discrepant distributions reported
by the units, its effect will be notably apparent just for the less clearly defined clus-
ters. This suggests that we should not estimate the weights merely through the average



of the weights associated to each barycenter from those corresponding to the distribu-
tions reported by the units. This assignment would produce an overload effect on the
sharpest barycenters. However, we can consider the average rescaled by resorting just
to the weights which rely on untrimmed distributions. More precisely, additionally to
the already introduced notation, let 77 the weight that unit U; reported for N and let
M., . mm = {N1,..., Ni} be the a-trimmed k-barycenter of {Nf,z =1,...,k, k =
1,...,m}. For those th non-trimmed in the trimming process to get {Ny,..., Ny}, de-
fine g§ = argming WQ(NS,N;) and 7 := mean{n] : g =i}, i = 1,...,k. Our
estimates for the weights associated to the k-barycenters are:

i -1
7= (Zﬁ) ci=1,... k. (12)
r=1

On the basis offered by Theorem 2.5 and an additional consistency assumption for the
weights reported by the procedure, it is easy to show the consistency of these aggregated
estimates to the same limit weights.

As already noted, computation of Wasserstein distances or barycenters can be a hard
task and of course this applies also to trimmed k-barycenters. We close this section with
a result that can simplify this problem. It concerns location-scatter families, that is,
families of distributions on R that can be obtained from positive definite affine transfor-
mations from a standard representative. More precisely, given Xg, a random vector with
probability law Py € Pa4.(R?) (the subset of Py(R?) containing the absolutely continuous
distributions) and M , the set of d x d symmetric positive definite matrices, the set

F(Py) :={L(AXo+m): Ae M} _,,me R,

is a location-scatter family. Tt is easy to check (see [4]) that these families can be re-
parameterized in terms of the vector of means and the covariance matrix and also that we
can assume w.l.o.g. (as we do in the sequel) that P, is centered and has the identity I, as
covariance matrix. These families are often involved in model-based clustering procedures,
particularly when we are looking for elliptically shaped clusters (elliptical families belong
to this class, but the definition includes the possibility of non-elliptical families). Location-
scatter families are closed for Wasserstein barycenters, that is, if u € Wy(Py(RY)) is
supported in F(F) then the barycenter of u belongs to F(F) (Theorem 3.11 in [4]).
From this fact and the comments following equation (8) we obtain the following result.

Proposition 2.7. Let u be a probability on Py(R?) which is supported in the location-
scatter family F(FRy), for any Py € Pauc(RY). Then any trimmed k-barycenter of u is a
set of k probabilities that belong to F(F).

3 Computation of trimmed k-barycenters in Wasserstein space

We discuss now the problem of (approximate) computation of trimmed k-barycenters of a
set of probabilities Py, ..., P, € Py(RY) with weights w1, ..., w,. This corresponds to the



case where i € Wo(P,(IR?)) is concentrated on the finite set { P, .. ., P} with probabilities
w;, i = 1,...,r and covers the case of empirical trimmed k-barycenters considered in
Theorem 2.4. Hence, our goal is to compute k probabilities, P, ..., P, € Py(R?), and
weights w = (wy, ..., w,) € Co(w) such that

w; min Wi2(P;, P;) = min w; min W3(P;,Q;), (13)
; j=1,....k Q¢€P2(Rd),w*eca(w) ; j=1,...,k
where Co(w) = {w* = (wi,...,w}) : 0 < w; < w;/(1 —a), Y, wf = 1}. Below, we

present an iterative procedure for computing a solution to (13). In fact, it is a suitable
adaptation of available algorithms for obtaining trimmed k-means, with updates of weights
and distances in each concentration step. Of course its utility is conditioned by feasibility
of the computation of Wasserstein distances and barycenters, which we consider later.

Algorithm (trimmed k-barycenters with weights):

1. Random start: Take n = 0 and draw k random initial centers P, ..., P{, (say from
the original sample).

2. Concentration step:
(a) For every i =1,...,r, compute the values

d? = min W3(P!, P,), g =arg min W; (P!, P,).
=1,k J=Tysk

7

(b) Consider the permutation ((1),...,(r)) such that df}) < ... <dj,.
(c) Set hy, =inf{h € N: >, wi > 1 — a} and define

W) if 1 < hn
(58) = l1—a-— Zighn w(i) ifz: = hn
0 if 2 > h,,

and take the weights w(;) = 67y /(1 — a).
3. Set n = n + 1 and update the centers taking as new center Pj’”rl the barycenter of
the probabilities in {F; : g;" = j} with weights w(j.

4. Repeat steps 2 and 3 until 9y = gZYl for i < h,, and wa;rl = W)

5. Repeat several times steps 1 to 4 and keep the best solution in the sense of minimizing
the objective function given in (13).

Even in its simpler version of k-means, it is well known that minimizing an objective
function like (13) is an NP-hard problem and that with a greedy algorithm such as k-
means only convergence to a local minimum is guaranteed. However, if a large amount

10



of random initializations are considered, there is enough empirical evidence of the nice
behavior of this kind of algorithms suggesting convergence to the global optimum. In
the Appendix, we will provide evidence that steps 2 to 4 of the algorithm will produce
stationary partitions (no loops in the process may occur). This is a well known fact for the
non-trimmed k-means algorithm on non-weighted data sets on Euclidean spaces (see e.g.
page 38 in [33]), but some extra effort is needed in our current setting. Broadly speaking,
we need to assure that the barycenter of {P;, ..., P} with weights {wy,...,w,} changes
as soon as we trim one of the involved probabilities. This goal will be carried through
Propositions 6.6, 6.8 and 6.9, covering the case of absolutely continuous probabilities, but
also that of discrete probabilities with finite supports. By now, let us begin stressing some
distinctive facts about the presented algorithm:

1. In Step 2.(b) we obtain a permutation such that df}, < ... < df', in which the ties
o : : (1) ) o
are not broken arbitrarily. The way in which they are broken is irrelevant, but it is
important to fix one. In this case, we have chosen the same order as in the initial
sample.

The effect of this previously selected order is to determine only a point which is going
to be partially trimmed. Notice that this has no effect in the value of the objective
function. It is obvious that if d") < d?h ) then the probability P should not be
trimmed, and that if d?%) > d?h then the probability P should be fully trimmed.
Thus, the only concern is how to split the amount of trimming 1 —a — )", <h,, W(i)
between the probabilities whose indices satisfy that d = d” o) However, since
all the distances d;, for the indices in this group Comc1de the way in Whlch these
probabilities are trlmmed does not affect the value of the obJectlve function.

Anyway, it is important to take into account that in practice it is quite strange to
have two identical values for d?i)'

2. The reason to choose the stopping criteria based on the stationarity of the partition
instead of that one of the k-barycenters, is due to the possibility of lack of uniqueness
of the barycenters, that would lead to the possibility of getting a partition with
more than one possibility for the k-barycenters and, consequently, to a non-ending
algorithm.

However, as already noted, if the involved probabilities are absolutely continuous,
then the barycenter is unique, and, consequently, the stationarity of the partition
and that of the k-barycenters would be equivalent.

The algorithm can be efficiently improved to address several kinds of problems, and this
is the case for aggregation. Concerning the first step of initializations, as we will discuss
later, for aggregation problems random initializations can be advantageously substituted
by handling the solutions provided by the units as initializations. Also the use of weights
can be highly recommended to improve the merging effect in parallelized schemes when
the sizes of the subsamples are highly inhomogeneous.

Steps 2 and 3 of the algorithm above involve a large amount of computations of dis-
tances and barycenters in Wasserstein space. This limits a practical use of the algorithm
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to cases where these computations can be efficiently done. Of course, as we will show next,
it covers the case of probability measures on the real line. Remarkably, it also covers the
case of location-scatter families, which play a pivotal role in statistical applications. In
the model-based cluster analysis setup, our algorithm mainly addresses the problem of
clustering based on elliptical shapes. Moreover, recent progress in the computation of
optimal transportation through regularization/discretization ideas is enlarging the range
of problems which could be addressed with our approach (recall [19], [7], [2]).

For probabilities on R, Wasserstein distance is simply the Ls-distance between quantile
functions (see (19) in the Appendix). Furthermore, if Fy'',..., F~! are the quantile
functions associated to the probabilities Pj,..., P, then > ., w, F; ! is the quantile of
the barycenter of P, ..., P, with weights wy,...,w, (see [1]). This allows to use the
algorithm to compute trimmed k-barycenters. We illustrate this application through the
analysis of a dataset of population densities in Section 4.

In higher dimension there is no simple general way to compute Wasserstein distances
and barycenters. However, an important exception to this claim is given by the case
where Pi,..., P, are probabilities in the same location-scatter family as introduced in
Section 2. A relevant fact (see Theorem 2.3 in [3]) is that distances between distributions
P,Q € F(F), depend only on their means mp, mg and covariance matrices Xp, ¥ and
can be computed through

1/2
W2(P,Q) = ||mp — mg|® + trace (Ep +3p—2 (2}122Q2}!2) ) . (14)

On the other hand, by Proposition 2.7, we know that in these families the barycenters
also belong to the family. Hence, if in the random start step of the trimmed k-barycenter
algorithm we choose initial centers within the family F(F,), then all the subsequent centers
will belong to F(P,) and all distances can be computed using (14). Moreover, for the
computation of updated centers in Step 3 it suffices to use the facts that (see [3, 4]) if p is
the probability giving weights wy, ..., w, to the probabilities P, 5, ..., P, »,. € F(F)
then,

i) its barycenter is the probability P,, 5 € F(F), where m = Y., w;m; and ¥ is the
unique positive definite matrix satisfying

3w (SEEY) - 8 (15)

=1

ii) starting from any positive definite matrix Sy, the iterative procedure

n )

r 2
oot = 5012 Sy misy e ) s (16)
i=1

converges to the solution of (15), ¥ = lim,, o0 Sy,
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iii) the (generalized) variance of y, Var(u) := .7, W3 (P, v, P so), takes the value

Var(u) = Z w;(||mg]|? + trace(X;)) — (||m]|? + trace(X)).

i=1

Section 5 will explore some possibilities of the new clustering methodology in this setup
of location-scatter families, including the parallelization setup of Theorem 2.5. Our choice
for F is the TCLUST algorithm for model based clustering introduced in [29]. Although,
to simplify the exposition, Theorem 2.5 assumed equal weights for the distributions of
the different units, it is natural to be more confident with the reports based on larger
samples. Thus, we propose to compute trimmed k-barycenters with weights proportional
to sample sizes, that is,

wii=—2 =1,k j=1,...,m.
' Z;nzl n;
For the initialization steps we will consider every set {N}, ..., NF} fori=1,...,m.

Remark 3.1. By clustering the k& x m distributions obtained from the m units, the par-
allelization procedure of Theorem 2.5 avoids to address the label correspondence prob-
lem. In a well separated configuration of the true k-feature, it should be expected that
any of the k distributions reported by every unit has an unambiguous classification. In
such cases, trimming has only a mild impact and the procedure can even be seen as an
alignment-by-groups tool.

When some clusters are not well separated or their relative sizes are very different,
parallelization or analysis with distinct procedures will generally produce serious troubles
for getting a consensus. We want to stress that, in such cases, trimming following our
scheme would mainly act on the troubling clusters, eliminating the more discrepant dis-
tributions. In some way this is consistent with the idea of consensus by voting. Since
the trimming procedure is not based on a labeling of the & x m distributions according
to the reporting units, the real trimming size on the troubling clusters will be notably
increased allowing to get the consensus just among the more similar distributions in the
meta-sample. In contrast, the proposal resorts to that labeling for the initialization steps
of the algorithm. For moderate values of m, the number of units processing the data, it
would be convenient to try all the solutions reported by the units as an initialization for
the algorithm. In this way the final solution will be the best (wide) consensus that any
initial proposal could produce through the ‘negotiation’.

Finally, we note that by varying the trimming level o we can obtain a picture of the
stability of the solution provided by the method. In fact, a joint analysis of the influence
of a and k on the output of the procedure could lead to reconsider the number of clusters
present in the sample. This strategy was introduced in Garcia-Escudero et al [28] and
can be suitably adapted to this setup.
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4 Clustering probabilities on the real line

In this section we illustrate the application of trimmed k-barycenters in Wasserstein space
to clustering age distributions of countries in the Americas. Our dataset has been down-
loaded (13/08/2015) from http://www.census.gov, which provides population estimates
with real-time updates. This database has been used in [20] for illustration of functional
PCA of densities and in [9] to show different PCA techniques, including geodesic PCA
in Wasserstein space. We have excluded very small countries from our analysis and con-
sidered the 36 countries with population at least 100000. After some preprocessing (see
[6] for details) for each country in the study our dataset consists of the total population
numbers by age, with age ranging from 0 to 104. From this we compute an approximation
to the sample quantile function for each country, which is all the information required by
our methods. In Figure 1 we include three (pre-processed) population histograms. Al-
though our computations involve only quantile functions we have added a kernel density
estimate and this is what we show in subsequent figures in this section.

Population histogram. Belize Population histogram. Canada Population histogram. Virgin Islands

Our goal is to obtain a simple, but comprehensive enough description of the types of
age distributions of the countries in the dataset, a task that we carry out by looking for a
(small) number of age distributions that play the role of ‘main profiles’ of ‘representative
types’. In the case of multivariate data this is often done with the aid of clustering
techniques (see e.g. Flury [24] for an example). Here we will use trimmed k-barycenters
for clustering this dataset of distributions. Since we are just interested in the different age-
distribution profiles we will assume equal weights for all countries. In our analysis we will
deal simultaneously with the choice of the number of centers, k, needed for a succesful
summary of the profiles and of the number of outliers. Intuitively, if one distribution
represents a true sector of the population, increasing the level of trimming should not
lead to sharp changes of the center of this sector. In contrast, if a cluster were artificial
it would consist of points belonging to different true clusters and the trimming process
would result in a greater displacement of the barycenter. Also, if a point x is an outlier,
it should be separated from the true clusters and, once the points in the dataset which
are more outlying than x have been trimmed, x himself should be trimmed for every
reasonable choice k. Thus, if z is really an outlier, there should exist a trimming threshold
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ap such that x should be trimmed in the a-trimmed k-barycenter problem for o > «p,
independently of k, and if k-barycenters are to give a good description the dataset then
the k barycenters should not change much with small changes of the trimming level.

We have used the algorithm introduced in Section 3 with o € {55,..., 2} and k =
2,...,6. Table 1 reports the total number of times that countries were trimmed (if any)
in the process. Note that for each « there are 5 choices of k, hence, the maximum number
times that a country can be trimmed is 30.

Country # of times | Country # of times
Virgin Islands 28 | Canada 22
Argentina 7 | Nicaragua 7
Trinidad and Tobago 7 | Uruguay 6
Jamaica 5 | Guatemala 4
Belize 3 | Haiti 3
Honduras 3 | St Vincent & Grenadines 3
Puerto Rico 2 | Grenade 2
Bolivia 1 | Chile 1
Saint Lucia 1

Table 1: Number of removals from analysis, by country

For a = 1/36, the trimmed countries were Virgin Islands (V.1.), four times, and Ar-
gentina (once). For v = 2/36 only Canada and V.I. were trimmed (five times each).
With o = 3/36, apart of Canada and V.I. (5 times each), Argentina (twice), Guatemala,
Nicaragua and Trinidad and Tobago (T.T.) were also trimmed. At level & = 4/36 Canada
and V.I. were trimmed (four times each), Argentina and Nicaragua were trimmed twice
and there were eight countries trimmed once. For o = 5/36, V.I. was trimmed five times;
Canada four; Jamaica, Nicaragua, T.T. and Uruguay twice and there were 8 countries
trimmed only once. Finally, for « = 6/36, V.I. was trimmed five times and Canada four;
T.T. and Uruguay were trimmed three times and Jamaica and Nicaragua were trimmed
twice. 11 countries were trimmed once. From this table we see that the age distributions
of V.I. and Canada deviate from the distributions of all the other countries and should be
trimmed. The next candidates for trimming are Argentina, Nicaragua and T.T. However,
for o € {3/36,...,6/36} these countries are trimmed only one third of times and we,
therefore, decided to trim only two countries, that is, choose oo = 2/36.

Turning to the choice of k, we would accept that there exist at least k£ groups in our
dataset if the variation of the k barycenters, when a changes is small.

For k = 2, letting o = 0,1/36,...,6/36, we obtain seven pairs of 2-barycenters. We
have grouped them by similarity. This is shown in Figure 2. Each graph includes seven
barycenters, corresponding to the different trimming levels and stability becomes appar-
ent. We conclude that £ > 2. The cases £ = 3 and k£ = 4 produce similar ouputs.
We only comment the case £k = 4. Figure 3 contains the 4-barycenters obtained for
a=0,1/36,...,6/36, with younger countries represented in the upper left corner, mov-
ing to older countries as we move left to right and from the first to the second row. We
notice the very small variation among profiles in each group (in particular, there is no
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variation at all in the young countries group) and we conclude that k& > 4. The picture
changes if we take k = 5 or k = 6. In the first case, four of the five groups remain stable
(an example appears in the upper left hand side graph in Figure 4), but we observe a new
group (see the upper right graph in Figure 4) which is not stable at all. Similarly, with
k = 6 we have two unstable groups (bottom row in Figure 4). This suggests that k = 4
is a good choice for this dataset.

As a final summary, for the choice @ = 2/36 and k& = 4 the composition of the clusters
is shown in Table 2, while Figure 5 shows the density functions of the four barycenters,
and those of the countries included in each group (groups I and II in top row, III and IV
in bottom). We recall that trimmed countries are shown in Figure 1.
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Figure 2: 2-barycenters when o = 0,1/36,...,6/36. Colors refer to different values of «

Group I Belize, Bolivia, Guatemala, Haiti, Honduras, Nicaragua

Group II | Colombia, Dominican Republic, Ecuador, El Salvador, Guyana, Jamaica,
Mexico, Panama, Paraguay, Peru, Suriname, Venezuela

Group II | Argentina, Bahamas, Brazil , Chile, Costa Rica, Grenada, St Lucia,
St Vincent and Grenadines

Group IV | Aruba, Barbados, Cuba, Curacao, Puerto Rico, Trinidad and Tobago,
United States, Uruguay

Trimmed | Canada, Virgin Islands

Table 2: Barycenters and members of the groups. k =4 and o = 2/36

5 Clustering aggregation in location-scatter

We present now some applications of trimmed k-barycenters in Wasserstein space in the
aggregation of model based clustering. It is widely known that the success of a model-
based clustering procedure depends strongly on the number, k, of ‘clusters’ (underlying
distributions) and the degree of separation among them, the dimension of the space, d,
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Figure 3: 4-barycenters when o = 0,1/36,...,6/36. Colors refer to different values of «

and the sample size. Our proposal can be used with any model-based clustering statistical
engine. We emphasize that our goal here is not to provide arguments for or against any
particular statistical engine, but, rather, to present applications showing the positive
effects that the trimmed k-barycenter approach can provide.

Our choice for the statistical engine in this section is TCLUST (see [29] and [25] for
details). It is a consistent procedure that applied to a sample of d- dimensional data
yields clusters obtained from estimates of centers and shapes of the clusters based on
ellipsoidal regions. It involves the maximization of a pseudo-likelihood function through
a natural generalization of the spurious-outlier model introduced in [26]. It is based on k
Gaussian distributions, allowing different scatter matrices, and assumes the presence of
some underlying positive weights associated to the distributions generating the set of ‘reg-
ular’ Gaussian observations. Additionally, to avoid degeneration of solutions, TCLUST
includes contraints on the eigenvalues of the covariance matrices to control the relative
shapes of the clusters. For a given trimming level «, the method discards the proportion «
of data consisting of points with a worse fit to the model and reports the £ normal distri-
butions (determined by their mean vectors, covariance matrices and associated weights)
that best summarize the remaining data. We recall that the aggregation of the involved
weights will be carried through (12).
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Figure 4: Two 5-barycenters (resp. 6 barycenters), first (resp. second) row, when o = 0,1/36,...,6/36.
Colors refer to different values of «

We will measure the deviation between outputs of the TCLUST algorithm in terms of

k

) 1

DX({Pr,. P} AQu, -+ Qu}) = min { = ST WE(P; Qo) }, (17)
j=1

where o ranges in the set of permutations of {1,... k}. We note that when A4,, A C

Py(RY) are subsets with k elements dy(A,, A) — 0 if and only if D(A,, A) — 0, but D

seems more appropriate from a computational point of view.

5.1 Parallelization

In this setup we compare the performance of TCLUST applied to a large sample versus
that obtained when we apply trimmed k-barycenters to the set of m solutions obtained
by TCLUST from m subsamples produced through a partition of the sample.

Figure 6 shows the output of TCLUST with £ = 5 and trimming level v = 0.05
on a simulated sample of size n = 10°. This sample has been obtained from 5 normal
distributions NV;,7 = 1, ..., 5 with respective proportions of the data 15%, 15%, 15%, 20%
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Figure 5: The 4-barycenters (black curves) and the countries associated to each of them (grey curves)

and 33% and parameters:

my = (Oa0)721 = (4,2,2,4),7712 - (_374)722 = (27 _17 _174)7m3 = (676>a
Sy = (2,0,0,3), ma = (5,0), 54 = (2,0,0,2), ms = (1,5), 55 = (2,—1,—1,1). (18)

The remaining 2%, to be considered merely as noise, has been obtained from a normal
distribution with parameters my = (2,2.5), ¥y = (4,0,0,4), playing a troubling ‘bridge-
effect” among clusters. Additionally, to explore the effect of higher dimension, we added
independent observations of a standard normal distribution to fill 8 additional variables,
completing a data set of dimension 10. We notice that the configuration of this problem
presents difficulties for TCLUST, because the underlying normal distributions present
a big overlap, being better suited for a mixture model. A succesful clustering analysis
requires very large sample sizes. This will allow us to stress on the usefulness of parallelized
computation.

We have also applied TCLUST 100 times, with the same parameters, on the 100
subsamples of equal sizes, 10, obtained through a partition of the large sample, thus
we are just considering a parallelization of the above problem based on 100 units. To
get a solution based on the ones given by the 100 units, we resort to the 0.1-trimmed
5-barycenters. The procedure has been applied to the meta-sample of the 500 = 5 x 100
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Figure 6: First and second coordinates of the TCLUST classification (k = 5, a = 0.05, nstart = 150,

restr.fact = 50, iter.max = 100, equal.weights = F) applied to simulated sample of size 10% from model
(18) in dimension 10. Black circles represent trimmed points.

provided Gaussian distributions, giving the consensus solution. The labels which relate
those 5 distributions reported by the same unit have been used only to design the (non-
random) initialization steps of the algorithm. This is a natural and much more efficient
alternative to random initializations because we are guaranteeing that in most cases we
are choosing one distribution of every detected cluster (at least by one of the units).

In Figure 7 we show (in gray) the ellipses corresponding to the solutions, as well
as those based on the consensus solution (solid dark) and on the large sample solution
(dotted dark). We note the instability of the solutions given by TCLUST for the two
clusters on the left, that for a very large sample has less effect, but is clear for several
solutions provided for the 10* sized problems. We must stress the role of trimming in
the k-barycenter step, being able to discard the most outlying solutions. In this sense,
we would suggest to analyze the sensibility of the final solutions against changes in the
trimming level, with stability as evidence of a succesful clustering.

As Figure 7 shows, there is complete agreement between the solution obtained from
the full data set and that obtained from the parallelized version (with squared distance,
D? = 0.00175). Tt is worth to mention that the computation time in the parallelized case
is considerably shorter than that for the complete sample (33m vs 2h 8m in a MacBook
Pro with a 2,5 Ghz processor Intel Core i7, using the library “parallel” in R with 8 cores).
Regarding the reported weights and the aggregated obtained through (12), the greatest
difference was 0.0035, corresponding to the SE cluster.
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Figure 7: Gray: first two coordinates of 95% level ellipses (with their centers) of normal distributions
reported by TCLUST on 100 subsamples of size 10* (a random partition of the full sample in Figure
6); solid black: ellipses for 0.1-trimmed 5-barycenters of the 5 x 100 normal distributions reported by
TCLUST; dotted dark: TCLUST output for the full sample

5.2 Resampling aggregation

The use of resampling methods to improve accuracy of statistical prediction begins with
the seminal works by Breiman (see e.g. [11]). In the clustering setting, ‘bagged clustering’
was initiated in Leisch [35], using an aggregation of the bootstrapped solutions based on
a combination of partitioning and hierarchical methods. Later, Dudoit and Fridlyand
[23] introduced other variants, resorting to plurality voting or to modifications of the
dissimilarity matrix to get the final cluster solution. Subagging is a term considered
in Bithlmann [12] as a ‘sobriquet for subsample aggregating where subsampling is used
instead of the bootstrap for the aggregation’, while ‘subragging’ is a robust version which
chooses the median instead of the mean in the aggregation step. Since our aggregation
procedure is based on a robustified version of the k-barycenter, in the spirit, the following
examples could be considered also as a bragging and subragging approaches.

We have applied these principles to a simulated dataset generated from model (18),
but now we consider 18 additional independent N(0,1) variables to get a data set in
dimension 20. We consider a sample of size 15000 and 100 samples of size 8000 obtained
by resampling in each of two scenarios: with and without replacement. Figure 8 is similar
to the display in Figure 7. In each case we applied TCLUST (k = 5, a = 0.05, nstart =
150, restr.fact = 10, iter.max = 100, equal.weights = F) to get the solution based on the
full sample (dotted lines) and on 100 resamples (gray lines) of size 8000 in each case with
(left) or without (right) replacement. The aggregated solutions (solid lines) are given by
the trimmed k-barycenter procedure (a = 0.1, k = 5) applied to the 5 x 100 estimations.
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We see in Figure 8 that subsampling looks more stable than bootstrap, but the ag-
gregated solutions are similar by the effect of trimming. We note that the maximum
difference between global and aggregated (through (12)) weights was 0.006 (resp. 0.002)
for resampling with (resp. without) replacement, while the squared distances between the
k-sets obtained between the solution obtained for the complete sample and the obtained
by aggregation were respectively 0.023 and 0.012. By considering bootstrap samples (i.e.
resampling with replacement and resample size equal to the original sample size), D?
changed from 0.023 to 0.010.

Figure 8: Dotted: ellipses provided by TCLUST (k = 5, @ = 0.05, nstart = 150, restr.fact = 10, iter.max
= 100, equal.weights = F) for the full dataset in subsection 5.2; Gray: 100 estimations provided by
TCLUST (with the same parameters) for resamples of sizes 8000 Solid: bragging (left) and subragging
(right) solutions given by the a-trimmed k-barycenters procedure (for k =5 and a = 0.1)

5.3 Improving clustering initializations

Performance of model based clustering procedures depends on the initializations. Since
most of these clustering methods involve random initializations, the number of initial ran-
dom starts should be dramatically increased to get guarantee of a successful identification
of the components. As we will see, our robust aggregation proposal can be also helpful in
this task by combining even unfortunate solutions. We will present their effects in a sim-
ulated example which is not based on an isolated data set, but in a batch of them, which
share components with common patterns. We will show how trimmed k-barycenters could
provide smart initial solutions to clustering procedures, allowing to increase the number
of well-identified populations.

We consider 100 data sets of same sizes generated in the same way. Any data set con-
tains 100 observations from 9 fixed normal distributions on R?*. They also include a 5% of
contamination data. Only the two first coordinates of the involved distributions present
differences. The distribution for each observation in the other 23 variables is N (0, I53).
In Figure 9 we include the representation of a data set, where the different colors show
the distributional origin of the observations. The central component is N(0,2.25 x I5),
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the other main components are centered at the vertices of a regular octagon centered at
the origin with radius 7. Their covariance matrices are characterized by their eigenvalues,
(v/3,4/2), and their eigenvectors, one corresponding to the direction joining the center
and the origin and the other to its orthogonal direction. The contaminated observations
correspond to data obtained from a mixture of 8 normal distributions with equal weights
and covariance matrices 0.2 x I, whose centers are uniform perturbations of the coor-
dinates of the vertices of a regular centered octagon. For this octagon the radius is the
maximum distance observed from the regular observations to the center.

The dependence of TCLUST solutions with respect to the input parameters (trimming
level and restriction factor) has been studied in [30] and [31] providing evidence on stability
as well as practical tools to assist in the choice of parameters. The choice of trimming level
is a compromise between robustness and efficiency. It should be big enough for eliminating
the effect of outliers, but not so big as to eliminate an entire cluster. For small sample
sizes and high dimensions, low levels of restriction factor (controlling the relative shapes
between clusters) are required for avoiding spurious solutions. These considerations lead
to our choices of 0.05 for the trimming level and 4 for the restriction factor for applying
TCLUST (k =9, a = 0.05, nstart = 50, restr.fact = 4, iter.max = 20, equal.weights = F)
to each data set in this batch. After we computed the trimmed k-barycenters (for k = 9)
corresponding to the 9 x 100 TCLUST estimations, for different trimming levels ranging
values from 0.50 to 0.05. We find also stability with respect to the trimming level for the
k-barycenter estimation, but, as this trimming level approaches 50% the k-barycenter is
no longer able to find the central population and with low trimming levels the inaccuracies
of TCLUST in identifying the true components are inherited by trimmed k-barycenter.
The best performance of k-barycenters corresponded to trimming levels around 20%. A
summary of the results is shown in Figure 9. Later we use this solution as the initial
solution for TCLUST.

Now we will compare the behavior of standard TCLUST estimations based on random
initial starts, with those based on the start given by the aggregation just obtained through
the trimmed k-barycenter (kB TCLUST). For a better comparison, we also include (Or-
acle TCLUST) the behavior when the initial start is based just on the true parameters,
a kind of oracle information not available when applying clustering in real applications.
For the evaluation of these TCLUST proposals, we reutilize the batch of 100 data sets
and three criteria. The first one corresponds to the overall percentage of rightly classified
observations (overall %). For the second we consider the percentage of datasets in which
there is a bijection between estimated clusters and real components, in the sense than
more than 50% of the observations from each true component are rightly identified by the
associated cluster (bijection> 50%). The third one is related with the overall percentage
of true components, whose associated clusters identify more than the 75% of the true ob-
servations from the component (% components> 75%). Table 3 gives the values obtained
by the mentioned proposals when applied to the batch of 100 datasets. In relation with
the performance of the mentioned proposals, kB TCLUST reached a similar performance
than the reference given by oracle TCLUST corresponding to right identification of the 9
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Figure 9: Black lines: ellipsoids of 20% trimmed 9-barycenter of the 9 x 100 TCLUST estimations from
the 100 samples described in subsection 5.3; other colors: ellipsoids of TCLUST solutions for first 5
datasets in batch (ellipses with same color come from the TCLUST solution for the same dataset)

components and better performance than standard TCLUST that failed in two of the 9
main populations.

Overall | Bijection > 50% | % (Components > 75%)
kB TCLUST 86.34% 98% 88.33%
Standard TCLUST | 63.10% 1% 41%
Oracle TCLUST 94.70% 100% 99.22%

Table 3: Performance comparison of TCLUST for different initial starts

5.4 Application to cytometric analysis

The automated analysis of flow cytometry data is an active field in several research areas.
While traditional methods of analysis rely on subjective manual gating, in the last years,
different groups have developed computational methods for identifying cell populations in
multidimensional data. However, the task is by no means easy, because to the expected
variability between individuals we must add noises from diverse sources. In fact, “the
lack of statistical and bioinformatics tools to parallel recent high-throughput technological
advancements has hindered this technology from reaching its full potential” (sic, see [37]).

Our goal here is to provide evidence of the usefulness of statistical tools, arising from
the trimmed k-barycenters approach, in connection with this topic. We use the T cell
phosphorylation dataset analyzed in Pyne et al. [41], [42] and available in the Genepattern
website (http://WWW.broadinstitute.org/cancer/software/genepattern/FLAME—vieW—publish ed—data). This
data set contains cytometric samples of 30 subjects in CD4, CD45RA, SLP76 and ZAP70
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before (B - 13 samples) and 5 min after stimulation (A - 30 samples). There are differences
in these variables for B and A samples as shown in [42], [41] and references therein. It is
worth noting the recent availability of multilevel methodologies designed for simultaneous
modeling and registration of cytometric data as the JCM proposal considered in [42].

We applied trimmed k-baricenters (for k=>5) to TCLUST estimation corresponding to
each available sample in A and B sets. The three plots in Figure 10 represent observations
in two samples contained in A (left and center panels) and one sample in B (right panel).
It is possible appreciate in them the high variability between samples, even when they
belong to the same set, as it is the case for the two samples on the left and the center
panels. The plots show blue ellipsoids for representing the TCLUST estimation and black
ellipsoids corresponding to the 30% trimmed k-barycenter based on the 30 cytometries
of group A. Since the data are 4-dimensional, notice that in all the graphics in this
subsection, we use the plots based on the 2 first canonical components corresponding to
this trimmed k-barycenter and the black ellipsoids are kept as a reference.

Since we have two batches of 30 (A) and 13 (B) samples, we expect that an application
of trimmed k-barycenter with a high level of trimming (50%), allows to identify the most
common pattern in the A set, which represents nearly 70% of the samples. Trimming was
able to identify most of the A samples when we applied 50% trimmed k-barycenters to the
full set of estimations provided from the samples. The procedure was able to eliminate
89.2% of samples from B, while 67.3% of samples from A survived as non-trimmed. In
Figure 11, the left plot shows the trimmed k-barycenters of the B samples obtained,
for £ = 5 at different levels of trimming. We should stress on the stability for most of
the components estimations when using different trimming levels and the changes in the
configuration of these components between A and B. The plot on the right shows the
ellipsoids corresponding to 50% trimmed k-barycenters (gray) summarizing samples in
B. The plot also includes the ellipsoids corresponding to the TCLUST solutions (non-
trimmed in blue and trimmed in red).

6 Appendix

Here we present the proofs of the main results in the paper. Most of the proofs make use
of some well-known features of transportation cost metrics. For the sake of readability we
include also some relevant facts concerning the Lo-Wasserstein distance defined in (3) in
connection with the present work. We refer to [44] for a comprehensive approach.

We note first that the infimum in (3) is attained, that is, there exists a pair (X,Y),
defined on some probability space, with £(X) = P and £L(Y) = @ such that E[| X —Y||? =
W2(P,Q). Such a pair (X,Y) is called a optimal transportation plan (o.t.p.) or optimal
coupling for (P,Q). If the probability P has a density, the o.t.p. (X,Y) for (P,Q)
can be represented as (X, 7T(X)) for some suitable map T'. This optimal transport map,
minimizing the transportation cost for (P, Q) is the P-a.s. unique cyclically monotone
map that transports P to (). Thus, optimality is a feature of the map itself and cyclically
monotone maps are always optimal maps from P to the image measure. As an example,
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Figure 10: Left and middle: cytometries of two individuals after stimulation (group A); right: cytometry
of an individual in group B. Blue ellipsoids: TCLUST (k=5, o = 0.15, nstart=400, iter.max=50, restr.fact
=25); black ellipsoids: trimmed k-barycenter (k = 5, o = 0.3) based on the 30 x 5 estimations obtained
through TCLUST from the 30 cytometries of group A.

an affine map, T : R? — R? written in matrix notation as T'(x) = Ax + b, is an optimal
map if and only if A is a (symmetric) positive semidefinite matrix. Optimality of maps is
not generally preserved by composition. However, some kind of operations like positive
linear combinations and point-wise limits of optimal maps keep optimality.

For probabilities on the real line, if F' and Fa I are the quantile functions associated
to P and @, they are an Whs-o.t.p., that is,

Wa(P,Q) ( /O ) - FQl(t))2dt) " (19)

In higher dimension there is no equivalent simple expression. However, if mp, mq are the
means of P and (), and P*, Q* are the corresponding centered in the mean probabilities,
then we can focus on the case of centered probabilities because

W22(P’ Q) = HmP - mQ”2 + W22(P*’Q*) (20>

Recall that P»(R?) is the set of probabilities on R? with finite second moment. Con-
vergence in the W, metric on Py(R?), Wy(P,, P) — 0, is characterized by

2 2
Py, P and /Rd |zl|2P, (dz) %/Rd l2l2P(dz). (21)

Finally, we mention that if (B,),, (Q,). are sequences in Py(R?), such that P, —,, P and
Qn —w Q, then WQ(P, Q) < llmlanQ(Pn,Qn)

A main tool for proving convergence results in the space Wy(Po(R?)) (recall the def-
inition (4) in Section 2) is given by the next couple of results, extending (21) and the
subsequent comment for W, (see e.g. Theorem 6.9 and Remark 6.12 in [44]) to the
Wasserstein distance, Wp,, defined on Wy (Py(RY)) .
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Figure 11: In the canonical coordinates of the 30% trimmed 5-barycenters corresponding to the A samples.
Left: trimmed 5-barycenters of B samples for different trimming levels (50%, 40%, 30%, 20%, 10% and
5%; gray level ranging from black to white). Right: trimmed 5-barycenters for both sets of estimations
and trimming level 50%, and different estimations provided by TCLUST, in red the trimmed ones.

Theorem 6.1. Assume (fi,)n, t € Wa(Po(R?)), and consider the probability concentrated
at zero, dyoy (that can be substituted by any other fized probability in Py(R?)). Convergence
Wop, (tin, 1) — 0 holds if and only if

fn —w i and lim lim sup/ W3 (0503, P)pn(dP) = 0. (22)
R Wa(S(0},P)>R

—0  n—oo

Proposition 6.2. (Lower semicontinuity). If the sequences (fin)n, (Vn)n in Wa(Pa(RY))
are such that ., —»y 0 and v, —, v, then We, (u, v) < liminf Wp, (f5, vn).

Now we prove the main results concerning existence and consistency of k-barycenters.

Theorem 6.3. (Erxistence of k—barycenters) Let i € Wy(Pa2(RY)) and, for k > 1, define

Vi =it { [ win, WAP.QUMAP)(Qr, - Qb PRD Y. (29

1e{1,....k}

Then Vi(p) < Vi—q(p) < -+ < Vi(u) < oo and all the inequalities are strict unless p is
supported on less than k elements of Py(RY). Moreover, there exists a k-barycenter of u,
say M = {Mj, ..., My} C Po(RY), that satisfies

/ min WE(PXu(dP) = Vi), (24)
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Proof: From the assumption p € Wy(Ps(R?)) we see that
0< Vi) < Vi (1) < - < Vi) £ [ WEP S itdP) < ox
Let {H,}, = {QF,...,Q}}), be a minimizing sequence of k-sets, namely, such that
[ W HuEP) - Vido).

We first prove that the sequence {H,}, is bounded. After a rearrangement, if neces-
sary, we can assume that Wh(Q7, ) < -+ < Wh(QF, ). Now, since Wi(H,,d) <
2W3(H,, P) + 2W3Ws(P,d10y) we see, integrating, that W3(H,,dy) is a bounded se-
quence, that is, W3(Q?, &) is bounded, and, consequently, {Q7}, is a tight sequence.
Taking subsequences we can assume that for some [ € {2,... k}, QF —, Q;,i=1,...,1,

while W2(Q?,dp) — oo for i > [ + 1. By lower semicontinuity and Fatou’s Lemma we
find that

Vi) < [ min WEP.Qu(dP) < [ limint min W3(P.QDu(dP) <

,,,,, n—oo i=1

.....

n—00 i=1,..., n—00

liminf [ min W2 (P, Q1) u(dP) = lim inf/WQQ(P, H,)u(dP) = Vi(u) < Vi(p).

Therefore {Q1,...,Q;} is a l-barycenter of p and, for any choice of {Qi1,...,Qk},
{Q1,...,Qk} is a k-barycenter of p. If p is not supported on an l-set then given an

l- barycenter of p there exists Q; 1 and r > 0 such that Wy (Q;, Q1) > 2r, i = ., and
(BWQ(QZH, r)) > 0. But then, on the ball Byy, (Qi41,7), we have min;—y ;4 l/V2 (P, Qi) <
min;—;__; Wi(P,Q;) and, as a consequence Viy1(p) < Vi(u). °

We note at this point that for p € Wa(P2(R?)) and Q € Py(RY),
Wi, (1.50) = | WA(P.Q)u(aP).

In particular, for P,Q € Py(R?), W, (0p,dq) = Wa(P,Q). We note also that the set of
probabilities with support on the k-set Q = {Q1, ..., Qk}, that we will denote by P(Q),
is a closed convex set in Wy (Py(R?)) and

W2, (1, P(Q) = inf (W3, (1,0),v € P(Q)} = [ min WH(P,Q)u(dP).  (25)

.....

In particular, when M is a k-barycenter of g, this and (24) yield the characterization
Vi(1) = W, (1, P(M)). (26)

Theorem 6.4. (Consistency of k-barycenters) Let (fi,)n, pt be probabilities on Wy(Po(R?))
such that Wp, (tn, 1) — 0. Then the k-variations of p, converge, Vi.(un) — Vi(p). If
is not supported on a (k — 1)-set of Wa(Pa(RY)) and M,, is any k-barycenter of ji,, the
sequence (M,,),, is sequentmlly compact and any limit is a k-barycenter of p. If  has a
unique k-barycenter, M, then M,, converges to M in Hausdorff distance.
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Proof: If My is a k-barycenter of y, the convergence Wp, (fin, ) — 0 implies the con-
vergence of the distances to the closed set P(My), W3, (tn, P(Mo)) — W4, (11, P(My)).
Hence, recall (26)

erlun W2(P, M) i, (dP) — lnlnn W2(P, M) u(dP) = Vi(p). (27)
It the degenerate case of p supported on a (k — 1)-set, we know that Vj(u) = Vi_1(n) =0
and the argument leading to (27) would give Vi (u,) < Vi1(ptn) — 0. Therefore, let us
assume that Vj_1 (i) > 0 and denote by M, i = 1,..., k the probabilities in M,,. Arguing
as in the proof of Theorem 6.3, the assumption Wp, (11, 1) — 0 easily leads to guarantee
that the sequences { M}, are tight. Therefore, any subsequence has a subsequence (for
which we keep the same notation) with weakly convergent components M —,, M; for
i=1,...,k. We write M = {M,..., M}

On the other hand, since p,, —,, i, we can apply Skorohod’s Representation Theorem
(see, e.g., Theorem 11.7.2 in Dudley [22]), and assume that there are W5(Py(R?))-valued
random elements Z,,, Z, defined on some probability space (§2,0,7) with laws £(Z,,) =
tn, L(Z) = p, such that Z,, — Z T—a.s. By lower semi-continuity (Proposition 6.2), this
leads to

Wy(Z(w), M;) < liminf Wh(Z,(w), M), i=1,...,kfor T —a. e. w, (28)
n—o0
thus
min Wy (Z, M;) < liminf min Wu(Z,, M) T — as.. (29)
i=1,..., n—oo i=1,...,

From this, Fatou’s theorem, (25) and (27) we get

Wi (1, P / min - W3(P, M;)u(dP) <liminf [ min WZ(P M), (dP)

@e{l ,,,,, k n—o00 i=1,...,

< lim sup IIllIl WQ(P M), (dP) < lim min WQ(P M), (dP) = Vi(p), (30)

n—oo i=1,..., n—oo 1=1,...,

hence Vi (pt,) — Vi(u) and any weak limit M of a weakly convergent subsequence of M,
is a k-barycenter of .

It only remains to show that, in fact, these weakly convergent subsequences are con-
vergent (through subsequences) in the Ws-sense. For this, observe that inequalities in
(30) are, in fact, equalities. But then (29) must be also an equality. From this, taking
into account that the support of p is not degenerated in a (k — 1)—set and (28), we con-
clude that the sets Q; := {w : Wh(Z(w), M;) = liminf,,,oc Wa(Z,(w), M)} have positive
probability, 7(€;) > 0,7 = 1,..., k. Choose any subsequence and take w € €; satisfying
also Z,(w) — Z(w). Then there exists a new subsequence for which we additionally have
Wy (Zp(w), M) — Wh(Z(w), M;). But then, by Lemma 14 in [34], Wyh(M[*, M;) — 0.
This shows that from every subsequence we can extract a further subsequence such that
dr(M,,, M) — 0. All the other claims follow from this fact. .
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When p,, are the sample distributions obtained from n realizations, P,..., P,, of the
random probability measure u € Wy(Po(R?)), Varadarajan’s Theorem guarantees that
Hn —>w p almost surely. Taking the probability degenerated at zero, dgpy, the classical
Strong Law of Large Numbers applied to the i.i.d. random variables W3 (F;, §;03) states

/732(Rd) Wa (P, b0y (dP) = Z Wi(P,, 010y) —as. /Pz(Rd) W; (P, b0 pu(dP),

hence the characterization in Theorem 6.1 of convergence in the Wp, sense, and Theorem

6.4, prove the Strong Law of Large Numbers for k-barycenters.

Theorem 6.5. Assume that p € Wyo(P2(RY)). If p, is the sample probability giving
mass 1/n to the probabilities Py, ..., P, obtained as independent realizations of u, then
Vi(ptn) = Vi(p) a.s.. If the k-barycenter of u, M, is unique and M, is a sample k-
barycenter, then the k-barycenters are consistent, i.e. M,, —q.s. M in Hausdorff distance.

Once the existence and consistency for k-barycenters have been proved, the adaptation
to cover the trimmed versions relies on the same arguments as those employed in Section
5.5 of [4]. Therefore we omit the proofs for Proposition 2.2 and Theorems 2.3 and 2.4. In
particular it must be stressed that, in the trimmed setting, the integrability condition on
the u,, and p probability measures is unnecessary. In contrast we give the following proof
because it involves a different way of looking at clustering of clusters.

Proof of Theorem 2.5. We write = r(n) and note that H > 2. Since

LkJ <IE‘(}A7J) N B(N;, 1) = @) = <max min WQ(NZ , N;) > 7‘) C (dH(IF(p]),IF(P)) > 7“),

) 1<i<k 1<I<k
=1

we see that,

k
Pr [U (F(Pj) A B(N;,r) = @)] < Pr [WQ(J%,P) > n] < % j=1,....  (31)
i=1

Let us set now X! = I{§(F (P ;)NB(N;, 7)) = 1}. Observe that, for fixed i, X7, ..., X" are
independent Bernoulli random variables. Call p! = Pr(X; = 1). The balls B(N;,r) are

R c
pairwise disjoint (recall that H > 2) and therefore, [Ule (F(P]) N B(N;,r) = @)} -
(X] = 1), which implies that p/ > 1 — 2. But then, if Bj, denotes a binomial r.v.

2 .
with parameters m and 1 — £, we see from Hoeffding’s inequality that Pr( Z;n:l X! <

%
a2
m(l —a)) < Pr(By <m(l—a)) <e 7™ As a consequence,

Pr{o {#(!F )N B( Nl,r)) < m(1 —a)” (32)

1=

2

< Pr(ZXij <m(l—a)) <ke 2™

J=1
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From (32) we see that, with probability at least 1 — ke’§m, each ball B(N;,r) con-
tains, at least, m(1 — «) sample points ]\Afl] and, in particular, the number of points out-
side UY_, B(N;, ) is less than akm. Hence, the optimal a-trimmed k-variation is upper
bounded by r? (take a trimming of the empirical measure concentrated on UX_ B(N;,r)
and use the N;’s as centers). To ease notation let us write M = M,,, .., and 7, for the
associated optimal trimming radius as in Proposition 2.2. Since, by assumption, akm is
an integer, we can assume that the optlmal trimming function, 7, takes values in {0, 1}.
We write B(M,#,) = {x € B(M 7o) @ Ta(z) =1} and snnllarly for B(N,4) for N € M.
Now, the number of points out51de B(M, ra) is akm. Hence, each ball B(N;, r) contains,

at least, m(1 — 2 — ak) = m(1 — (k + 1)a) points in B(M To). Let us focus on the

ball B(Ny,r). There exists N € M such that B(N,#,) contains at least a fraction = of
the points in B(Ny,7) N B(M, #,). But then C' := B(Ny,7) N B(N,#,) contains at least
2(1—(k+1)a) points and, from equation (8), denoting s = W, (N, B(Ny, 7)) we conclude

9 (1 —ak+1))m
T m—a) Z Wa(N - E*m(1 — «)

and, therefore,

l—alk+1

This, in turn, implies that W5(N, N1) < rZ (recall that H = 2(1 + k(= ak+1))1/2))-
Observe that the choice of 7 guarantees that the balls B(N;,r4 ) are disjoint. Since the

choice of N; was a}rbitrary, we conclude that for every i = 1,...,k there exists N; € M
such that Wa(N;, N;) < rZ. The fact that the balls B(N;, rZ) are disjoint ensures that

{Ny,... ,Nk} is just a relabehng of M and, as a consequence that, with probability at
a2
least 1 — ke 2™,

Wo(N, B(N,, 7)) < rk (;‘J‘QW.

H
d(M,{Ny,...,N;}) < %

This completes the proof. °

Next we prove that the algorithm introduced in Section 3 converges when applied to a
finite set of absolutely continuous or to discrete (with finite support) probabilities. This
will be the consequence of the following propositions.

Proposition 6.6. Let P, i =0,...,r be probability measures in Pg(Rd) with associated
weights w;, 1 =0,...,r, with ) _ w; = 1. Let P be the barycenter of P;, i = 1,...,r with
weights w = w;(>r_ w;)~Y, i =1,...,r and Py be the barycenter of P;, i =0,...,r. If
we assume that wy > 0, that Py # P, and that P is absolutely continuous, then Py # P.

Proof: Sincgﬁ is absolutely continuous, there exist maps 7; :_]Rd —R%i=0,...,kpush-
ing forward P to P;, such that W?(P, P;) = [, ||z —T;(x)|[*dP. Moreover, by Proposition
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3.3 in [3], it must be
Zw;‘ﬂ(a:) =z, P—as.

On the other hand,

ZwiTi(x) = Zwix +woTy(x) =: T*(x), P — as.
=0 i=1

Since Ty is not the identity P-a.s., and wg > 0, it is clear that P{Ty(x) # x} > 0, and
consequently (see the proof of Proposition 3.3 in [3]) we get:

S wW(P.R) = sz/ﬂx— 2| dP>Zw,/||T* (2)|2dP
1=0
2 Zwl PT* > Zwl PQ, [

Recall that the condition P is absolutely continuous is verified if we know that P;, i =
1,...,r are absolutely continuous. Concerning the discrete case, let us retain the notation
of the previous proposition and let {a ..., aﬁli} be the support of P;,i = 0,1,...,r. As
stated in Lemma 6.7 below, P also has a finite support, say {b1,...,b,}. In this case, the
optimal coupling between P and P;, i = 0,...,r, is determined by a family of positive
numbers pfg’t, s=1,...,h; t =1,..., h; which satisfy

z:p”:]_D ] and Zpst

Slight modifications of the proof of Theorem 1 in [2] lead to the following lemma.
Lemma 6.7. With the notation above, we have that,
1. The support of P is finite.
2. For every s =1,...,h, and i =1,...,r, it holds: #{s : p., > 0} = 1. Moreover, if
ki denotes the only index such that p . >0, then

bs = Zw;‘azi, and P;[a,] > Plb,].

3. There exist maps T; : RY — R? such that, if the dz’stm’bution of X is P, then the
distribution of T;(X) is P; and W*(P, P,) = [p. ||z — Ti(2)||*dP.

Item 3 in Lemma 6.7 allows to repeat the proof of Proposition 6.6 to obtain:

32



Proposition 6.8. Assume the same notation as in the previous proposition, and let
P, 1 = 0,...,r be probability measures with finite support. If wy > 0 and By # P,
then Py # P.

Proposition 6.9. Let k € N fixed, and consider a family of probabilities Py, ..., P. with
weights w; > 0 and ), w; = 1. The proposed algorithm to compute trimmed k-barycenters
with weights converges to a local minimum of the objective function given in (13) either
if the involved probabilities are absolutely continuous or if all their supports are finite.

Proof: Notice that Step 4 in the algorithm provides a partition of the set {1,...,r} in
the finite family of subsets

™ = {i:w'=0}
R} = {i:w}!)=1and g =3}, j=1,...,k
Qf = {i:0<w!<landg=j}, j=1,....k

Thus, T" contains the indices of the probabilities which are completely trimmed and R}
those of the probabilities which are not trimmed and are associated to group j. After
this, at most one index 4, remains. In such a case, it belongs to one of the sets @7, while
the remaining sets are empty. Moreover, once the two sets U; R} and T" have been fixed,
the value of wj! is also fixed, and, then, only the index g; can vary. Thus, Step 4 only
has a finite number of possibilities. Therefore, if we show that each time we run steps
2 and 3 the value of the objective function strictly decreases, the result will be proved
because this implies that we cannot visit twice the same solution. But this is trivial
because, if the probabilities are absolutely continuous, then Proposition 6.6 implies that
if the stopping condition is not fulfilled, then at least a barycenter Pf“ will vary and we
will have a reduction of the objective function. The same happens using Proposition 6.8
if the supports of the probabilities are finite. °
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