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Abstract

Stochastic ordering among distributions has been considered in a variety of sce-
narios. Economic studies often involve research about the ordering of investment
strategies or social welfare. However, as noted in the literature, stochastic orderings
are often a too strong assumption which is not supported by the data even in cases
in which the researcher tends to believe that a certain variable is somehow smaller
than other. Instead of considering this rigid model of stochastic order we propose
to look at a more flexible version in which two distributions are said to satisfy an
approximate stochastic order relation if they are slightly contaminated versions of
distributions which do satisfy the stochastic ordering. The minimal level of contam-
ination that makes this approximate model hold can be used as a measure of the
deviation of the original distributions from the exact stochastic order model. Our
approach is based on the use of trimmings of probability measures. We discuss the
connection between them and the approximate stochastic order model and provide
theoretical support for its use in data analysis, including asymptotic distributional
theory as well as non-asymptotic bounds for the error probabilities of our tests. We
also provide simulation results and a case study for illustration.
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1 Introduction

Stochastic order relations between distributions have been considered in a great variety of
scenarios. Clinical studies are usually related to degrees of disease linked to different be-
haviors that often can be ordered through suitable variables. Economic studies frequently
involve order relations on variables measuring, e.g., investment strategies or social welfare.
In any case, an stochastic order indicates a global relation between two distributions that
improves those based on making comparisons through individual indices or features of the
distributions. The stochastic order between two distributions was introduced in Lehmann
(1955). In terms of distribution functions, F,G, it is defined by

F ≤st G if and only if F (x) ≥ G(x) for all x ∈ R (1)

(the inequality would be strict if F (x) < G(x) at least for any x). The books by Shaked
and Shanthikumar (2007) and Müller and Stoyan (2002) provide a rather complete
overview of this topic, including a discussion of a great variety of other stochastic orders.
However, our starting point in this paper is that, as noted in Arcones et al (2002), these
orderings are in general too strong as an assumption in problems in which one is inclined
to believe that a population X is somehow smaller than another population Y . In other
words, the stochastic order is a 0-1 relation, that either holds or not. We believe that
some index of the level of agreement with the stochastic order model for intermediate
situations can be helpful.

Let us focus, for simplicity, on the two-sample problem, where two independent sam-
ples are obtained from F and G. From a methodological point of view the statistical
testing problems of interest in relation with the stochastic order are (up to minor varia-
tions)

a) H0: F = G, versus Ha: G >st F

b) H0: G ≥st F , versus Ha: G 6≥st F

c) H0: G 6≥st F , versus Ha: G ≥st F

Problem a), usually referred to as the one-sided test, assumes that an stochastic ordering
holds and the focus is put on giving enough statistical evidence that the relation is strict.
Sometimes such an assumption is scarcely justified, or it is merely the result of the intuition
of practitioners. Even if obvious, it is relevant to say that some caution should be adopted
in such cases: unlike problems b) or c), for arbitrary distribution functions F and G both
H0 and Ha can be false.

Testing for stochastic dominance is the usual way of making reference to problem b),
which is the goal of a sequence of papers beginning with McFadden (1989) and including
Mosler (1995), Anderson (1996), Davidson and Duclos (2000), Schmid and Trede (1996
a,b), Barrett and Donald (2003), Linton et al. (2005), Linton et al. (2010), among
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others. It has the same statistical meaning as a goodness of fit problem. We just look for
absence of evidence against our stochastic order hypothesis as a minimal requirement to
continue our analyses under such assumption. Some weaknesses of this approach are well
known and lead to exploring alternative or complementary tools as we will recall below.

Problem c) appears to be the most attractive for people interested in assessing the
existence of an stochastic order between the parent distributions, because rejecting the
null would provide convincing evidence to guarantee that G stochastically dominates F .
Unfortunately, as often happens when testing hypotheses, searching for a well behaved
α-level test for this problem would be unpractical: the ‘no data’ test, rejecting H0 with
probability α regardless of the data is the UMP test. This is showed in Berger (1988) in
the one-sample setting, but the result can be easily generalized to the two-sample setup.
The workaround used there to overcome this problem was testing ‘restricted stochastic
dominance’, that is, testing the property on a fixed closed interval excluding the tails of
the distribution. A similar approach has been considered in the two-sample setting in
Davidson and Duclos (2013).

Here we address the problem of assessing stochastic order between two distributions as
in problems b) and c) from a new perspective based on contaminated (mixture) models.
More than an alternative technique for testing the null models b) and c), our goal is to
provide (through very simple techniques) additional resources to the available procedures
for the analysis of stochastic dominance. More precisely, for π ∈ (0, 1), we consider the
model

F = (1− π)F̃ + πH, F̃ ≤st G, (2)

where F̃ and H are distribution functions, and some other suitable variations of it. If
model (2) holds true (for small π) then the stochastic order model (1) holds except for
a small fraction of observations coming from F and, in this sense, we could say that the
stochastic order model is essentially valid. Alternatively, we could consider the minimal
value of π such that (2) holds. This yields a measure of deviation from the original model
(1). In this paper we provide appropriate statistical tools for analysis and inference about
this model as well as for suitable versions for the two-sample case.

This approach is new in this setting although it has been already considered in sta-
tistical testing in contingency tables and multinomial parametric models (Rudas et al.
(1994) and Liu and Lindsay (2009)) or in the analysis of similarity between samples in a
fully nonparametric context (Álvarez-Esteban et al. (2012)). In fact it is closely related
to ideas that go back to Hodges and Lehmann (1954) and their discussion of practical
vs. statistical significance. We further elaborate on this idea in Section 2 below.

Our handling of contaminated models is based on dealing with the dual idea of trim-
mings of a probability, as introduced in Álvarez-Esteban et al. (2008). In general, sets of
trimmings have nice statistical properties, see, e.g., Álvarez-Esteban et al. (2012). We
will show that they also behave well in the setting of stochastic ordering.

As a matter of example we discuss on the evolution with age of the commonly assumed
fact that generally boys are taller than girls. Our analysis is focused on a data set obtained
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from NHANES (National Health and Nutrition Examination Survey) and shows statistical
evidence of the levels of agreement of data with the stochastic dominance of heights of
boys over those of girls.

The organization of this paper is as follows. Section 2 provides some general back-
ground on trimmings, their connections to contaminated models and, in particular, to
contaminated stochastic order models. We also discuss links to related work on approx-
imately valid models. In Section 3 we give asymptotic theory for approximate inference
and non-asymptotic bounds related to contaminated stochastic order models, although
the involved proofs are postponed to a technical appendix. Finally, Section 4 contains
simulation results, the analysis of NHANES heights data set and some final conclusions.

2 Stochastic dominance and trimming

Trimming procedures are one of the main tools in Robust Statistics for their adaptability
to a variety of statistical problems. By trimming according to a particular pattern we
downplay the influence of contaminating data in our inferences. The introduction of data-
dependent versions of trimming, often called impartial trimming, allows to overcome some
limitations of earlier versions of trimming which simply removed extreme observations at
tails. Generally, impartial trimming is based on some optimization criterion, keeping the
fraction of the sample (of a prescribed size) which yields the least possible deviation with
respect to a theoretical model (see e.g.Álvarez-Esteban et al. (2008, 2012); Cuesta et al.
(1997); Garćıa-Escudero et al. (2008); Maronna (2005); Rousseeuw (1985)).

Trimming a fraction π of a sample or data set of size n usually means replacing the
empirical measure by a new one in which the data are re-weighted so that the trimmed
points have now zero probability while the remaining points will have weight 1/n(1− π).
Instead of simply keeping/removing data we can increase the weight of data in good
ranges (by a factor bounded by 1/(1− π)) and downplay the importance of data in bad
zones, not necessarily removing them. If the random generator of the sample were P ,
the theoretical counterpart of the trimming procedure would be to replace the probability
P (B) =

∫
B

1 dP by the new probability

P̃ (B) =

∫
B

g dP where 0 ≤ g ≤ 1

1− π
P -almost surely. (3)

We call a probability measure like P̃ in (3) a π-trimmed version or a π-trimming of P .
The set of π-trimmings of P will be denoted by Rπ(P ). If π = 0 then Rπ(P ) = {P}. If
π = 1 then we keep the notation R1(P ) for the set of probabilities which are absolutely
continuous with respect to P . This definition of trimming has been considered by several
authors (see, e.g., Gordaliza (1991); Álvarez-Esteban et al. (2008)). The flexibility in
allowing downweighting rather than removing points results in nice properties of Rπ(P )
including, in particular, a link between contaminated models and sets of trimmings as we
show in the next result.
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Proposition 2.1 Let P0, P be probability distributions on R with distribution functions
F0 and F , respectively and π ∈ [0, 1). The following statements are equivalent:

a) P = (1− π)P0 + πQ for some probability Q.

b) (1− π)P0(B) ≤ P (B) for every measurable B.

c) P0 ∈ Rπ(P ).

d) F (x) = (1− π)F0(x) + πG(x) for every x ∈ R, for some distribution function G.

Proof. Assume a) holds so that P = (1 − π)P0 + πQ. Since Q is a probability, then
P ≥ (1− π)P0 holds. Under condition b) P0 is absolutely continuous with respect to P .
Hence, by the Radon-Nikodym theorem, there exists a nonnegative density function, say
g := dP0

dP
, such that P0(B) =

∫
B
g dP for every B. Consider the set B = {g > 1

1−π}. If

P (B) > 0 and Bδ = {g ≥ δ
1−π}, then, P (Bδ) > 0 for some δ > 1, thus

(1− π)P0(Bδ) = (1− π)

∫
Bδ

g dP ≥ (1− π)
δ

1− π
P (Bδ) > P (Bδ),

which contradicts P ≥ (1− π)P0. Therefore, g ≤ 1
1−π P−almost surely and c) holds.

If c) holds, let g be the density of P0 with respect to P which, by (3), satisfies P0(B) =∫
B
g dP and 0 ≤ g ≤ 1

1−π . Then (1− π)P0(B) ≤
∫
B

1 dP = P (B) and we can define the

nonnegative measure Q̃(B) := P (B)− (1− π)P0(B). Now set Q(B) := Q̃(B)/π, and the
decomposition a) follows. Finally note that statements a) and d) are trivially equivalent.
�

We note that the equivalence of a), b) and c) holds in greater generality than presented
here. Since we are interested in the connection to stochastic order we refrain from pursuing
this issue here. We note also that the contaminated model a) is not symmetric in P and
P0. In contrast, the consideration of similarity between two probabilities, as introduced
in Álvarez-Esteban et al. (2012) is a symmetric concept. We will return to this later in
this section.

Statement d) in Proposition 2.1 involves only distribution functions which are the
relevant objects in assessment of stochastic order. So, for the sake of economy, we will
often say ‘F0 is a trimmed version of F ’ or write ‘F0 ∈ Rπ(F )’ to mean the related fact
for the associated probabilities.

Let us assume that some model distribution, F0, say, is given. We might be interested
in assessing whether the random generator of a sample, F , satisfies some stochastic order
relation with respect to F0. As noted in the Introduction, model (1) is possibly a too rigid
model to be realistic and we could, instead, consider model (2), namely,

F = (1− π)G+ πH, for some G ≤st F0. (4)
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Just as in Proposition 2.1, the contaminated model (4) can be simply formulated in terms
of trimming. With this goal, we write Fst(F0) for the set of distribution functions that
are stochastically smaller than F0, that is,

Fst(F0) = {G : G ≤st F0}.

Then (4) holds if and only if
Rπ(F ) ∩ Fst(F0) 6= ∅ (5)

and this provides an alternative description of the contaminated model (4) in terms of
trimmings.

So far, our contamination model deals with distributions in an asymmetric way. We
take one of them, F0, as a reference model and wonder whether the other one is, after
suitable trimming, stochastically majorated by the model. However, with applications
to two-sample problems in mind, we should define a notion of proximity to the stochas-
tic dominance model on the basis of both distributions (or of both samples) without
a predetermined reference model. In the two-sample similarity problem considered in
Álvarez-Esteban et al. (2012), similarity of P1 and P2 at level π means that there exist
probabilities Q,P ′1, P

′
2 such that P1 = (1− π)Q+ πP ′1, P2 = (1− π)Q+ πP ′2, that is, that

P1 and P2 are π-contaminated versions of a common distribution. This suggests that in
the present setup of stochastic order we consider the model

F1 = (1− π)G1 + πF ′1

F2 = (1− π)G2 + πF ′2,
for some G1, G2 such that G1 ≤st G2. (6)

This contaminated model can be described, as well, in terms of trimmings. In fact, if Fst
denotes the set of pairs of distribution functions (G1, G2) such that G1 ≤st G2, then it
follows from Proposition 2.1 that (6) holds if and only if

(Rπ(F1)×Rπ(F2)) ∩ Fst 6= ∅. (7)

It is convenient at this point to assign names and notation to the contaminated stochastic
order models.

Definition 2.2 For distribution functions F1 and F2 we say that F1 is stochastically
smaller than F2 at level π and write F1 ≤πst F2 if (6) (equivalently, if (7)) holds.

Furthermore, for distribution functions F, F0, we say that F is a π-level stochastic
lower bound of F0 and write F ∈ SLBπ(F0) if (4) or, equivalently, if (5) holds.

We note that these models can be adapted in a straighforward way to deal with
contaminated stochastic minorization instead of majorization. We will use these models
in the sequel with corresponding adapted notation such as F ∈ SUBπ(F0) or F1 ≥πst F2.
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We note that F1 ≥πst F2 if and only if F2 ≤πst F1. A bit more caution is needed with the
set SUBπ(F0), since F ∈ SUBπ(F0) and F0 ∈ SLBπ(F ) are not equivalent.

We provide now simple evidence that the formulation of contaminated stochastic order
in terms of trimmings is particularly convenient. While two different trimmings of a fixed
probability are not necessarily comparable in stochastic order, our next result shows
that the set of trimmings of a fixed probability has a minimum and a maximum for the
stochastic order.

Proposition 2.3 Consider a distribution function F and π ∈ [0, 1). Define the distribu-
tion functions

F π(x) =

{
0 if x < F−1(π)

1
1−π (F (x)− π) if x ≥ F−1(π)

and

Fπ(x) =

{
1 if x ≥ F−1(1− π)

1
1−πF (x) if x < F−1(1− π)

,

where F−1 denotes the quantile function associated to F , namely, F−1(t) = inf{x : t ≤
F (x)}. Then F π, Fπ ∈ Rπ(F ) and any other F̃ ∈ Rπ(F ) satisfies

Fπ ≤st F̃ ≤st F π.

Proof. Consider Fπ. It is easy to see that 1
π
(F − (1 − π)Fπ) is a distribution function,

which, by Proposition 2.1, shows that Fπ ∈ Rπ(F ). Any other trimming of F , say F̃ , can
be expressed (recall (3)) as F̃ (x) =

∫ x
−∞ g(t)dF (t) for some density g (w.r.t. P ) satisfying

0 ≤ g ≤ 1
1−π . But then F̃ (x) ≤ min( 1

1−πF (x), 1) = Fπ(x) for all x, that is, Fπ ≤st F̃ . The
claims about F π follow similarly. �

An interesting consequence of Proposition 2.3 is that one can check whether the con-
taminated stochastic order models hold by looking just at the extremes of the relevant
sets of trimmings. This, in turn, provides very simple characterizations of the minimal
contamination level required for a contaminated stochastic order model to hold. We give
details about this facts in our next results. This minimal contamination level under which
some stochastic order relation holds is a useful measure of the deviation from the (pure)
stochastic order model and will be used in later sections.

Proposition 2.4 For arbitrary distribution functions, F, F0, and π ∈ [0, 1) the following
are equivalent:

(a) F ∈ SLBπ(F0) (b) Fπ ≤st F0 (c) π ≥ π0,
where

π0 := sup
x:F0(x)>0

F0(x)− F (x)

F0(x)
.

In particular, π0 is the minimal value of π for which F ∈ SLBπ(F0).
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Proof. If (a) holds then there exists G ∈ Rπ(F0) such that G ≤st F0. But then, by
Proposition 2.3, Fπ ≤st G ≤st F0 and we have (b). Obviously, (b) implies (a) since
Fπ ∈ Rπ(F ). Now, (b) is equivalent to

1

1− π
F (x) ≥ F0(x)

for every x ∈ R (note that the inequality holds trivially for x ≥ F−1(1− π)). But this is,
in turn, equivalent to

π ≥ F0(x)− F (x)

F0(x)

for all x ∈ R for which F0(x) > 0. This shows that (b) and (c) are equivalent too and
completes the proof. �

Remark 2.4.1 In a completely symmetric fashion we could check that F ∈ SUBπ(F0)
if and only if

π ≥ π′0 = sup
x:F0(x)<1

F (x)− F0(x)

1− F0(x)
(8)

so that π′0 is the minimal contamination level required for F ∈ SUBπ(F0) to hold.

We deal in the next result with the ≤πst model. It can be proved mimicking the proof
of Proposition 2.4, hence, we omit details.

Proposition 2.5 For arbitrary distribution functions, F1, F2, and π ∈ [0, 1) the following
are equivalent:

(a) F1 ≤πst F2 (b) (F1)π ≤st (F2)π (c) π ≥ π(F1, F2), where

π(F1, F2) := sup
x∈R

(F2(x)− F1(x)).

In particular, π(F1, F2) is the minimal value of π for which F1 ≤πst F2.

As in Remark 2.4.1, we can check that F1 ≥st πF2 if and only if π ≥ π̃(F1, F2)
:= supx∈R(F1(x)− F2(x)) = π(F2, F1). We note also that, since

sup
x∈R
|F1(x)− F2(x)| = max{sup

x∈R
(F2(x)− F1(x)) , sup

x∈R
(F1(x)− F2(x))}

= max{π(F1, F2), π(F2, F1)},

the relations F1 ≤st,π1 F2 and F1 ≥st,π2 F2 imply supx∈R |F1(x) − F2(x)| ≤ max{π1, π2}.
Hence, if π1 and π2 are small, then F1 and F2 are close to each other (in Kolmogorov
distance).

Next, we provide some examples to illustrate the meaning of the contaminated stochas-
tic order model.
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Example 2.6 Consider F (x) =
√
x, x ∈ [0, 1] and G(x) = x, x ∈ [0, 1]. Then F ≤st G.

Hence, if we take G to play the role of F0, then π0 = 0 or, equivalently, F ∈ SLB0(G).
On the other hand,

π′0 = sup
0<x<1

√
x− x

1− x
=

1

2
,

which means that it is necessary to trim at least 50% of the distribution F to make it
stochastically larger than G, that is, if we want to see F as a contaminated version of a
distribution stochastically larger than G, then the contamination must account, at least,
for 50% of the distribution. With our notation, F ∈ SUBπ(G) if and only if π ≥ 1

2
.

If we exchange the roles of both distributions and take F to play the role of F0, there
is no trimming level π < 1, for which (1 − π)

√
x ≤ x. x ∈ [0, 1] holds. This means

that G ∈ SLBπ(F ) is impossible for π ∈ [0, 1) and, consequently, we cannot see G as a
contaminated version of distribution stochastically smaller than F .

Turning our focus now to the ≤st relation, we obviously have F ≤0
st G. Since

supx∈[0,1]

√
x − x = 1/4 we that F ≥πst G if and only if π ≥ 1

4
, that is, the minimum

level of trimming in both distributions to reverse the original stochastic order is 1
4
. �

Example 2.7 We take now F (x) = Φ(x − µ) and G(x) = Φ(x), where Φ is the dis-
tribution function of the standard normal distribution, N(0, 1) and µ > 0 (F is the
distribution function of the N(µ, 1) law). Obviously, F ≥st G. Some calculus shows that

supx
Φ(x)−Φ(x−µ)

Φ(x)
= 1. Therefore, F ∈ SLBπ(G) is impossible if π < 1 which means that

the stochastic order between normal distributions with equal variances cannot be reversed
by trimming one of them.

The picture is different when we move to the ≤πst relation. It is easy to see that

π(F,G) = sup
x∈R

(G(x)− F (x)) = Φ
(
µ
2

)
− Φ

(
−µ

2

)
= 2Φ

(
µ
2

)
− 1.

This means that for a shift of 0.1 units in location, we need trimming about 0.04 on both
distributions to reverse the stochastic order. The required trimming is 0.0987 for a shift
of 0.25 units, 0.1915 for a shift of 0.5 units and 0.3413 if the shift is of length one. �

Remark 2.7.1 It is a well known fact that stochastic order is preserved by increasing
transformations, namely, if T : R→ R is an increasing function and F ◦ T−1 denotes the
distribution function induced by F through T then F1 ≤st F2 implies F1◦T−1 ≤st F2◦T−1.
This carries over to the ≤πst relation. In fact, let us assume that T is an increasing function.
By Proposition 2.2 in Álvarez-Esteban et al. (2011)

Rπ(F ◦ T−1) = {F̃ ◦ T−1, F̃ ∈ Rπ(F )}.

Preservation of the usual stochastic order implies that the transported probabilities F π ◦
T−1 and Fπ ◦ T−1 are the maximal and minimal, respectively, π-trimmed versions of
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F ◦ T−1. In particular, this and Proposition 2.5 imply that if F1 ≤πst F2 then F1 ◦ T−1 ≤πst
F2 ◦T−1. As a trivial consequence, for instance, if F and G are the distribution functions
of lognormally distributed random variables X = exp(N + µ) and Y = exp(N), where
N is a standard normal random variable and µ > 0, then F ≥st G and, by Example 2.7,
F ≤πst G if and only if π ≥ 2Φ

(
µ
2

)
− 1. �

We close this section with a comparison to alternative approaches to a relaxed version
of the stochastic order. In Arcones et al (2002), the value

θ(F,G) := P (X ≤ Y ) =

∫
(1−G(x−))dF (x),

where X and Y are independent random variables with distribution functions F and G,
is considered as an index of precedence of F to G. The relation F ≤sp G (F stochastically
precedes to G) is defined by θ(F,G) ≥ 1/2. This is motivated by the fact that, if F ≤st G
then θ(F,G) ≥ 1/2, with strict inequality unless F = G. On the other hand, this index
can be greater than 1/2, even if F 6≤st G. In other words, F ≤st G is a stronger relation
than F ≤sp G. It is argued then that the weaker nature of the relation F ≤sp G can be
more versatile in some applications. As an illustrative example in Arcones et al (2002)
the authors note that, if F (x) = Φ

(
x−µ
σ

)
, G(x) = Φ

(
x−ν
τ

)
are the distribution functions

of two normal laws, then F ≤st G if and only if µ ≤ ν and σ = τ , while F ≤sp G as
soon as µ ≤ ν. However, we note that this precedence relation leads to consider that a
distribution stochastically precedes that degenerated on its median, while, in fact, just
half of the times it will produce values below its own median.

In contrast, and we think that more in line with the announced goal of giving a sound
treatment to statements like ‘We believe that population X is somehow smaller than
population Y ’, we note that the relation ≤πst allows to assess to what extent it can be
expected that the values obtained from the first distribution will be smaller than those
obtained from the second.

3 Inference in contaminated stochastic order models

In this section we will assume that X1, ..., Xn and Y1, ..., Ym are independent i.i.d. random
samples obtained from F and G, respectively. Our goal is to provide statistical methods
for the assesment of contaminated stochastic order between F and G. More specifically,
we are interested in testing the null model

H0 : F ≤πst G, (9)

for a fixed value of π against the alternative Ha : F 6≤πst G. We are also interested in
estimation of the minimal contamination level under which F ≤πst G holds. The methods
to be presented in this section could be easily adapted for inference about the π-level
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stochastic lower (or upper) bounds. For the sake of brevity we refrain from pursuing this
issue in this paper.

From Proposition 2.5 it is clear that the testing problem and the estimation problem
are very closely related, since we can rewrite (9) as the problem of testing

H0 : π(F,G) ≤ π (10)

against the alternative Ha : π(F,G) > π. Therefore, if L̂ = L̂(X1, ..., Xn, Y1, ..., Ym) were
an (asymptotic) lower confidence bound for π(F,G), rejection of H0 when L̂ > π would
yield a test with (asymptotically) controlled type I error probability. We note also that
often the real goal of the researcher will be to conclude that stochastic order essentially
holds. But then, within the present setup, the testing problem under consideration should
be

H0 : π(F,G) ≥ π (11)

against Ha : π(F,G) < π. Rejection of (11) would provide statistical evidence that
stochastic order, up to some (hopefully small) contamination, holds. In this case we
could base our decission on an upper confidence bound for π(F,G).

We will use the empirical version as the estimator of π(F,G). More precisely, we write
Fn and Gm, respectively, for the sample distribution functions of the X’s and Y ’s samples
and take

π(Fn, Gm) = sup
x∈R

(Gm(x)− Fn(x))

as estimator of π(F,G). We will make the following assumption in this section.

Assumption A1: F and G are continuous, and n,m → ∞ in such a way that λn,m :=
n

n+m
→ λ ∈ (0, 1).

From the Glivenko-Cantelli theorem, we trivially obtain that π(Fn, Gm) is a consistent
estimator, namely,

π(Fn, Gm)→ π(F,G) almost surely, as m,n→∞. (12)

Under the homogeneity hypothesis F = G, it is well-known (see e.g. Durbin (1973))
that, if F and G are continuous, π(Fn, Gm) = supx∈R(Fn(x)−Gm(x)) is distribution free
and, furthermore, that √

mn
m+n

π(Fn, Gm)→w B̄ := sup
t∈[0,1]

B(t), (13)

where B(t) denotes a Brownian bridge on [0, 1]. This result allows easy computation
of asymptotic critical values for testing the null model F = G. In fact, P (B̄ > x) =
exp(−2x2), x ≥ 0. On the other hand, for F 6= G, π(Fn, Gm) is no longer distribution free,
not even asymptotically as we can see in the next result. This suggests that we consider
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a bootstrap version of π(Fn, Gm) as follows. Given X1, . . . , Xn we take X∗1 , . . . , X
∗
n to

be i.i.d. with common ditribution Fn and write F ∗n for the empirical distribution on
X∗1 , . . . , X

∗
n. Similarly we define G∗m. With this setup we have the following.

Theorem 3.1 Under assumption A1, if we denote Γ(F,G) := {x ∈ R : G(x) − F (x) =
π(F,G)} and B1(t) and B2(t) are independent Brownian Bridges on [0, 1], then√

mn
m+n

(π(Fn, Gm)− π(F,G))→w sup
x∈Γ(F,G)

(√
λ B1(G(x))−

√
1− λ B2(F (x))

)
. (14)

Furthermore, if δn,m = K
√

n+m
nm

log log( nm
n+m

), with K > 2, and

Γn,m = {x : Gm(x)− Fm(x) ≥ π(Fn, Gm)− δn,m}

then, conditionally given the Xi’s and Yj’s, with probability one,√
mn
m+n

sup
x∈Γn,m

((G∗m(x)−Gm(x))− (F ∗n(x)− Fn(x))))

→w sup
x∈Γ(F,G)

(√
λ B1(G(x))−

√
1− λ B2(F (x))

)
(15)

Remark 3.1.1 The convergence result in (14) is just a rewriting of Theorem 4 in Ragha-
vachari (1973). In the Appendix we give a proof that yields (15) with little additional
effort. We note that (14) includes (13) because for equal distributions F = G, we have
π(F,G) = 0 and Γ(F,G) = R. We observe further that with the alternative notation

T (F,G, π) := {t ∈ [π, 1] : G(x) = t and F (x) = t− π for some x ∈ R},

the limit law in (14) can be rewritten

B̄(F,G, λ) := sup
t∈T (F,G,π(F,G))

(√
λ B1(t)−

√
1− λ B2(t− π(F,G))

)
. (16)

If T (F,G, π(F,G)) consists of a single point, say t0 (note that t0 ∈ [π(F,G), 1] in that
case), then B̄(F,G, λ) is centered normal with variance λt0(1−t0)+(1−λ)(t0−π(F,G))(1−
t0+π(F,G)). If T (F,G, π(F,G)) contains two or more points then B̄(F,G, λ) is not normal
and has positive expectation. In fact, it is the possibility of having two or more points in
T (F,G, π(F,G)) which has motivated the bootstrap proposal in Theorem 3.1 instead of
simply considering the direct bootstrap version√

mn
m+n

(π(F ∗n , G
∗
m)− π(Fn, Gm)) .

A look at the proof of Theorem 3.1 in the Appendix shows that the conditional asymptotic
behavior of

√
mn
m+n

(π(F ∗n , G
∗
m)− π(Fn, Gm)) mimics that of

√
mn
m+n

(π(Fn, Gm)− π(F, G))
(hence the bootstrap works) if T (F,G, π(F,G)) consists of only one point but can behave
differently otherwise. See also Proposition 3.5 below.
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It is convenient at this point to introduce the notation

B̄(a, λ) := sup
t∈[a,1]

(√
λ B1(t)−

√
1− λ B2(t− a)

)
. (17)

It is easy to see that B̄(a, λ) is a particular case of B̄(F,G, λ), coming, for instance, from
the choice F (respectively G) equal to the distribution function of the uniform distribution
on [a, 1] (resp. uniform on [0, 1]). The next result provides simple but useful upper and
lower bounds for the quantiles of B̄(F,G, λ).

Proposition 3.2 If α ∈ (0, 1), Kα(F,G, λ) (resp. Kα(a, λ)) is the α-quantile of B̄(F,G,
λ) (resp. B̄(a, λ)) and Φ denotes the standard normal distribution function then

Kα(F,G, λ) ≤ Kα(π(F,G), λ).

Furthermore, if α ∈ [1
2
, 1)

σ̄(F,G, π(F,G))Φ−1(α) ≤ Kα(F,G, λ)

where σ̄(F,G, π(F,G)) = maxt∈T (F,G,π(F,G)) σt and σ2
t = λt(1−t)+(1−λ)(t−π(F,G))(1−

t+ π(F,G)), while for α ∈ (0, 1
2
)

σ(F,G, π(F,G))Φ−1(α) ≤ Kα(F,G, λ)

with σ(F,G, π(F,G)) = mint∈T (F,G,π(F,G)) σt

From Proposition 3.2 we see that quantiles of B̄(F,G, λ) are bounded below by normal
quantiles. Optimization of σ2

t over the interval [π(F,G), 1] shows that

σπ(F,G) ≤ σ(F,G, π(F,G)) ≤ σ̄(F,G, π(F,G)) ≤ σ̄π(F,G),

with σ2
π = min(λ, 1− λ)π(1− π),

σ̄2
π =


1
4
− π2λ(1− λ) if λπ ≤ 1

2
and (1− λ)π ≤ 1

2
,

λπ(1− π) if λπ > 1
2
,

(1− λ)π(1− π) if (1− λ)π > 1
2
.

(18)

This entails that for α ∈ [1
2
, 1)

σπ(F,G)Φ
−1(α) ≤ Kα(F,G, λ) (19)

and for α ∈ (0, 1
2
)

σ̄π(F,G)Φ
−1(α) ≤ Kα(F,G, λ). (20)

On the other hand, upper bounds for quantiles of B̄(F,G, λ) are given by quantiles of
B̄(π(F,G), λ). On the other hand, upper bounds for quantiles of B̄(F,G, λ) are given by
quantiles of B̄(π(F,G), λ). We provide next a useful expression for the computation of
its quantiles. We also give a simple expression for the mean and the variance. Note that
to avoid confusion we state the result for B̄(a, λ), with π denoting the usual constant in
the following equations.
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Proposition 3.3 (a) If a ∈ (0, 1) and u ∈ R

P (B̄(a, λ) > u
√

1− a) = 1− Φ( u√
λa

)Φ( u√
(1−λ)a

) + e
− 2(1−a)u2

1−4λ(1−λ)a2

×
∫ u√

λa

−∞

1√
2π
e
− 1−4λ(1−λ)a2

2
(x− 2u

√
λa(1−2(1−λ)a)

1−4λ(1−λ)a2 )2

Φ

(
u(1−2(1−λ)a)√

(1−λ)a
+ 2
√
λ(1−λ)ax

)
dx.

(b) If a ∈ [0, 1)

E(B̄(a, λ)) = 1√
2π

[√
a(1− a) + π

2
− atan

(√
a

1−a

)]
,

Var(B̄(a, λ)) = 1−a2

2
+ π|2λ− 1|a− 1

2π

[√
a(1− a) + π

2
− atan

(√
a

1−a

)]2

.

Part (a) of the last result easily yields that B̄(a, λ) has subgaussian tails, with, for

instance, P (B̄(a, λ) > t) ≤ 3e
− 2t2

1−4λ(1−λ)a2 for t > 0. It can also be used to compute
approximately probabilities and quantiles of B̄(a, λ) through numerical integration. We
return to this issue in Section 4. From (b) we see that E(B̄(a, λ)) as a function of a (it
does not depend on λ) decreases from

√
π
8
, for a = 0 to 0 as a → 1 and also that an

unbalanced design (λ 6= 1
2
) results in an increase in variance, more important for large

values of a.

3.1 Testing for essential stochastic order

We turn here to the testing problem (11), namely,

H0 : π(F,G) ≥ π0 vs. Ha : π(F,G) < π0 (21)

for a fixed π0 ∈ (0, 1). We reject H0 for small values of π(Fn, Gm). More precisely, if
α < 1

2
, our first proposal is rejection of H0 in (21) if√

nm
n+m

(π(Fn, Gm)− π0) < σ̄π0Φ−1(α), (22)

with σ̄π as in (18). We show next that this provides a test of asymptotic level α, which
detects alternatives with power exponentially close to one (see Remark 3.4.1 below).
The result identifies a least favorable pair (other pairs are possible) within H0. For a
cleaner statement we will write πm,n for π(Fn, Gm) and PF,G for the probabilities under
the assumption that the underlying distribution functions of the two samples are F and
G, respectively.

Proposition 3.4 With the above assumptions and notation, if α < 1
2

and π0 ≤ 1
2
,

lim
n→∞

sup
(F,G)∈H0

PF,G
[√

nm
n+m

(πn,m − π0) < σ̄π0Φ−1(α)
]

= lim
n→∞

PF0,G0

[√
nm
n+m

(πn,m − π0) < σ̄π0Φ−1(α)
]

= α, (23)
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where F0 is the distribution function of the law (1
2
−π0λ)U(0, 1

2
+π0(1−λ))+(1

2
+π0λ)U(1

2
+

π0(1−λ), 1+ π0

2
−λπ2

0) and G0 is the distribution function of the law U(0, 1). Furthermore,
if π(F,G) > π0 then

PF,G
[√

nm
n+m

(πn,m − π0) < σ̄π0Φ−1(α)
]
≤ e−2 nm

n+m
(π0−π(F,G))2

, (24)

while if π(F,G) < π0 then for n,m such that nm
n+m

(π0−π(F,G))2 ≥ (1
2
+
√
λn(1− λn)) log 2

−σ̄π0Φ−1(α), we have

PF,G
[√

nm
n+m

(πn,m − π0) ≥ σ̄π0Φ−1(α)
]
≤ 2e

− 2

1+2
√
λn(1−λn)

(σ̄π0Φ−1(α)+
√

nm
n+m

(π0−π(F,G)))2

.

(25)

Remark 3.4.1 Proposition 3.4 means that we can test H0 : π(F,G) ≥ π0 with a test
of asymptotic level α and furthermore, that alternatives, π(F,G) < π0, can be detected
with power exponentially close to one. In fact, focusing for simplicity in the case m = n,
we see from (25) that if C < 1 then for large enough n any alternative π(F,G) ≤ π1 < π0

will be rejected with power at least 1 − 2e−
C
2

(π0−π1)2n. If we combine this with (24) we
see that our proposal yields a test of H ′0 : π(F,G) ≥ π′0 against H ′a : π(F,G) ≤ π1 (with
π′0 > π0 > π1) which is uniformly exponentially consistent in the sense that both type I
and type II error probabilities are uniformly exponentially small for large enough n. We
refer to Barron (1989) for further discussion on uniformly exponentially consistent tests.

Remark 3.4.2 It is not really necessary to consider only the case π0 ≤ 1
2

in Proposition
3.4. In fact the same holds if π0λ ≤ 1

2
and π0(1 − λ) ≤ 1

2
, which is always the case if

π0 ≤ 1
2
. Otherwise, if π0 >

1
2

we could have π0λ >
1
2

or π0(1 − λ) > 1
2
. In the first case

Proposition 3.4 holds if we take F0 to be the distribution function of the law U(π0, 1) and
in the second we have to take the law (1 − π0)U(0, 1) + π0U(1, 1 + π0(1 − π0)). Details
can be checked in a straighforward way. From an applied point of view the interest of
Proposition 3.4 is to assess that stochastic order holds up to some small contamination,
say π0 = 0.1, π0 = 0.05 or π0 = 0.01. For this reasons and to get a simpler statement we
have chosen to focus on the case π0 ≤ 1

2
.

While Proposition 3.4 guarantees fast convergence to 0 of type II error probabilities
and of type I error probabilities as we move away from the boundary with the test in (22),
the test is somewhat conservative for finite samples as we will see in Section 4 and some
alternative procedures can be of interest. One possibility is to reject H0 : π(F,G) ≥ π0 if√

nm
n+m

(πn,m − π0) < σ̂n,mΦ−1(α), (26)

where σ̂2
n,m = mint∈T (Fn,Gm,π(Fn,Gm)) σ

2
t and σ2

t is as in Proposition 3.2 replacing F with
Fn and G with Gm. A little thought shows that this increases (slightly) the probability of
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rejection at the boundary (if α < 1
2

we are increasing the cut value), while providing still
a test of asymptotic level α. In Section 4 we show the improvement that (26) provides
over (22) for finite samples.

A second, more important source of improvement comes from the consideration of bias
corrected estimators instead of π(Fn, Gm). In fact

E(sup
x

(Gm(x)− Fn(x)) ≥ sup
x
E(Gm(x)− Fn(x)) = sup

x
(G(x)− F (x)).

This implies bias(π(Fn, Gm)) = E(π(Fn, Gm)) − π(F,G) ≥ 0. Furthermore, it is easy to
see from the proofs in the Appendix that√

mn
m+n

bias(π(Fn, Gm))→ E
(

sup
t∈T (F,G,π(F,G))

√
λB1(t)−

√
1− λB2(t− π(F,G))

)
.

Combining this last display with (b) in Proposition 3.3 and subsequent comments, we see

that, asymptotically, bias(π(Fn, Gm)) is smaller than
√

π
8

√
m+n
mn
' 0.63

√
m+n
mn

. We also

see that
√

m+n
mn

bias(π(Fn, Gm)) → 0 when π(Fn, Gm) is asymptotically normal (that is,

when T (F,G, π(F,G)) consists of a single point).

We consider the bootstrap bias estimator

b̂iasBOOT(π(Fn, Gm)) := E∗(π(F ∗n , G
∗
m))− π(Fn, Gm),

where F ∗n , G∗m are as in Theorem 3.1 and E∗ denotes conditional expectation given the
Xi’s and Yj’s. We define the bias corrected estimator

π̂n,m,BOOT := π(Fn, Gm)− b̂iasBOOT(π(Fn, Gm)). (27)

The next result is the key for the performance of π̂n,m,BOOT.

Proposition 3.5 Under the assumptions of Theorem 3.1 we have√
mn
m+n

b̂iasBOOT(π(Fn, Gm))→ 0.

in probability as n,m→∞.

A proof is given in the Appendix. Proposition 3.5 shows that
√

mn
m+n

(π(F ∗n , G
∗
m) −

π(Fn, Gm)) does not mimic the asymptotic behavior of
√

mn
m+n

(π(Fn, Gm)−π(F,G)) unless
π(Fn, Gm) is asymptotically normal. But, more importantly, it shows that the bootstrap
bias correction does not affect the first order behavior of π(Fn, Gm). In other words, that
rejection of H0 : π(F,G) ≥ π0 if√

nm
n+m

(π̂n,m,BOOT − π0) < σ̂n,mΦ−1(α), (28)
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with σ̂n,m as above, is a test of asymptotic level α with fastly decreasing type I and
type II error probabilities away from the null hypothesis boundary. We show later, in a
simulation study in Section 4, that the bootstrap correction (which of course has to be
approximated, in turn, through bootstrap simulation) yields a significant improvement
with respect to (22) or (26) in terms of power and approximation of the nominal level for
finite samples.

3.2 Testing against essential stochastic order

In some instances the researcher can be interested in gathering statistical evidence against
stochastic order, or to stochastic order up to some small contamination. The relevant
testing problem is then (10), namely,

H0 : π(F,G) ≤ π0 (29)

against the alternative Ha : π(F,G) > π0. Now, we would reject the null hypothesis for
large values of π(Fn, Gm). Motivated by Proposition 3.2 we consider the test that rejects
H0 in (29) if √

nm
n+m

(πn,m − π0) > K1−α(π0, λ), (30)

where K1−α(π0, λ) is the 1 − α quantile of B̄(π0, λ) defined in (17). Next, we give the
main facts about the test (30). As in the statement of Proposition 3.4 we write πm,n
for π(Fn, Gm) and PF,G for the probabilities under the assumption that the underlying
distribution functions of the two samples are F and G, respectively.

Proposition 3.6 With the above assumptions and notation,

lim
n→∞

sup
(F,G)∈H0

PF,G
[√

nm
n+m

(πn,m − π0) > K1−α(π0, λ)
]

= lim
n→∞

PF0,G0

[√
nm
n+m

(πn,m − π0) > K1−α(π0, λ)
]

= α, (31)

where F0 is the distribution function of the law U(π0, 1 + π0) and G0 is the distribution
function of the law U(0, 1). Furthermore, if π(F,G) < π0 and K1−α(π0, λ) ≥ 0 then

PF,G
[√

nm
n+m

(πn,m − π0) > K1−α(π0, λ)
]
≤ 2e

− 2

1+2
√
λn(1−λn)

nm
n+m

(π0−π(F,G))2

, (32)

while if π(F,G) > π0 then

PF,G
[√

nm
n+m

(πn,m − π0) ≤ K1−α(π0, λ)
]
≤ e−2(

√
nm
n+m

(π0−π(F,G))−K1−α(π0,λ))2

. (33)

A proof of Proposition 3.6 is given in the Appendix. Similar comments as in Remark 3.4.1
can be made now. The test in (30) is asymptotically of level α for H0 : π(F,G) ≤ π0 vs.
Ha : π(F,G) > π0 and uniformly exponentially consistent test for H ′0 : π(F,G) ≤ π′0 vs.
H ′a : π(F,G) > π1 if π′0 < π0 < π1. Later, in Section 4 we will see that this test shows a
good performance for finite sample sizes (even for small sizes).
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3.3 Confidence bounds.

Rather than testing for or against the contaminated stochastic order model one could
prefer to report results in terms of confidence intervals for the true contamination level,
π(F,G). Here we discuss briefly upper and lower confidence bounds for π(F,G). Proper
two-sided confidence intervals can we constructed from our confidence bounds in a straigh-
forward way. We omit details.

Recalling Theorem 3.1 and Proposition 3.2 we see that

π(Fn, Gm)−
√

n+m
nm

Kα(F,G, λ),

is an ideal upper confidence bound, asymptotically of level 1−α for π(F,G), that cannot
be used directly, since the quantiles Kα(F,G, λ) are unknown. It follows from Theo-
rem 3.1 that Kα(F,G, λ) can be consistently estimated by the conditional α-quantile of√

mn
m+n

supx∈Γn(Fn,Gm)((G
∗
m(x) − Gm(x)) − (F ∗n(x) − Fn(x)))), that we denote by K̂

(Boot)
α

which can be approximated by simulation. As a result, we have that

π(Fn, Gm)−
√

n+m
nm

K̂
(Boot)
α (34)

is an upper confidence bound for π(F,G) with asymptotic confidence level 1−α. Unfortu-
nately, our simulations show that the finite sample performance of this upper confidence
bound or test can be too liberal even for large sample sizes. Hence it can be better to
consider different confidence bounds.

Assuming α < 1
2
, it follows from Propositions 3.2 and 3.5 that

π̂n,m,BOOT −
√

n+m
nm

σ̂m,nΦ−1(α) (35)

with π̂n,m,BOOT and σ̂m,n as in (28) is an upper bound with asymptotic confidence level
at least 1 − α. Our simulations in Section 4 show a good performance of (35) for finite
samples.

Turning to the issue of lower confidence bounds, Theorem 3.1 and Proposition 3.2
imply that

π(Fn, Gm)−
√

n+m
nm

K1−α(π(Fn, Gm), λm,n) (36)

is a lower confidence bound for π(F,G) with asymptotic confidence level 1 − α. As for
the test in (30), quantiles K1−α(π(Fn, Gm), λm,n) can be numerically approximated from
part (a) of Proposition 3.3.

4 Simulations and Case Study

We explore here the finite sample performance of the tests and confidence bounds intro-
duced in Section 3. We start with the tests for essential stochastic order (22), (26) and
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(28). We consider several values of π0 and have simulated from different pairs (F,G).
Proposition 3.4 tells us that (at least asymptotically) for a fixed value of π = π(F,G),
type I error probability is largest for Fπ,b corresponding to (1

2
− πλ)U(0, 1

2
+ π(1− λ)) +

(1
2

+ πλ)U(1
2

+ π(1 − λ), 1 + π
2
− λπ2) and G coming from the uniform law on (0, 1),

while from the point of view of power the worst performance (recall Theorem 3.1 and
Proposition 3.2) should come from the pair (Fπ,a, G) with Fπ,a the d.f. of the uniform
law on (π, 1 + π) and G as before. Consequently, we have simulated samples from these
choices Fπ,a, Fπ,b and G for several values of π. We have also considered the case F0 = G.
Although we have some indication that the balance of sample sizes has an impact on the
performance of the procedure (see the comments after Proposition 3.3) we have, for the
sake of brevity, focused on the case m = n and have considered different sample sizes.
In the next tables we show the simulated rejection frequencies for the tests (22), (26)
and (28). In all cases we have computed this simulated rejection frequency from 1000
replicates of the procedure. In the case of test (28) the bootstrap bias correction has been
approximated by the average from 1000 bootstrap replicates. In all cases the nominal
level of the test was α = 0.05 and G is the d.f. of the uniform law on (0, 1).

Table 1: Observed rejection frequencies. H0 : π(F,G) ≥ π0 vs. Ha : π(F,G) < π0

G = U(0, 1), m = n; reject if
√

nm
n+m

(πn,m − π0) < σ̄π0Φ−1(0.05)
π0 n F0.2,a F0.2,b F0.1,a F0.1,b F0.05,a F0.05,b F0.01,a F0.01,b F0

0.01

50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.05

50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.071 0.183
5000 0.000 0.000 0.000 0.000 0.000 0.008 0.924 0.939 0.995

10000 0.000 0.000 0.000 0.000 0.000 0.021 0.999 1.000 1.000

0.1

50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
500 0.000 0.000 0.000 0.001 0.010 0.152 0.532 0.589 0.698

1000 0.000 0.000 0.000 0.011 0.155 0.491 0.946 0.952 0.979
5000 0.000 0.000 0.000 0.025 0.996 1.000 1.000 1.000 1.000

10000 0.000 0.000 0.000 0.036 1.000 1.000 1.000 1.000 1.000

0.2

50 0.000 0.000 0.000 0.004 0.006 0.024 0.045 0.048 0.075
100 0.000 0.002 0.010 0.087 0.151 0.296 0.480 0.499 0.559
500 0.000 0.021 0.706 0.880 0.997 0.996 1.000 1.000 1.000

1000 0.000 0.022 0.985 0.994 1.000 1.000 1.000 1.000 1.000
5000 0.000 0.047 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10000 0.000 0.041 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2: Observed rejection frequencies. H0 : π(F,G) ≥ π0 vs. Ha : π(F,G) < π0

G = U(0, 1), m = n; reject if
√

nm
n+m

(πn,m − π0) < σ̂m,nΦ−1(0.05)
π0 n F0.2,a F0.2,b F0.1,a F0.1,b F0.05,a F0.05,b F0.01,a F0.01,b F0

0.01

50 0.000 0.000 0.000 0.000 0.000 0.003 0.007 0.015 0.017
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.016
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.007

1000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.016
5000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.051

10000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.117

0.05

50 0.000 0.000 0.000 0.001 0.000 0.003 0.005 0.011 0.017
100 0.000 0.000 0.000 0.001 0.000 0.007 0.020 0.036 0.039
500 0.000 0.000 0.000 0.000 0.000 0.015 0.100 0.105 0.147

1000 0.000 0.000 0.000 0.000 0.000 0.022 0.206 0.231 0.360
5000 0.000 0.000 0.000 0.000 0.000 0.023 0.948 0.973 0.998

10000 0.000 0.000 0.000 0.000 0.000 0.025 1.000 1.000 1.000

0.1

50 0.000 0.000 0.000 0.011 0.010 0.042 0.063 0.064 0.080
100 0.000 0.000 0.000 0.011 0.019 0.033 0.123 0.124 0.137
500 0.000 0.000 0.000 0.017 0.151 0.216 0.606 0.693 0.761

1000 0.000 0.000 0.000 0.025 0.337 0.523 0.961 0.957 0.979
5000 0.000 0.000 0.000 0.028 0.993 0.999 1.000 1.000 1.000

10000 0.000 0.000 0.000 0.033 1.000 1.000 1.000 1.000 1.000

0.2

50 0.000 0.015 0.048 0.101 0.151 0.171 0.273 0.295 0.288
100 0.000 0.013 0.118 0.175 0.369 0.406 0.580 0.614 0.643
500 0.000 0.020 0.770 0.880 0.993 0.993 1.000 0.999 1.000

1000 0.000 0.033 0.988 0.995 1.000 1.000 1.000 1.000 1.000
5000 0.000 0.038 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10000 0.000 0.032 1.000 1.000 1.000 1.000 1.000 1.000 1.000

We see in Table 1 how alternatives are detected with power rapidly increasing to 1, as
predicted by (25). For instance, in this balanced setup (m = n), if we fix π0 = 0.05 (we
are trying to establish that F is stochastically smaller than G up to 5% contamination)
then, to guarantee that alternatives with π(F,G) = 0.01 are detected with power at least
90% the bound (25) requires a sample size n = m = 8143. In the simulation study we
observe that the power is above 90% for n = m = 5000. We also see the very small type
I error probability guaranteed by (24). In fact, we see that the test in (22) is somewhat
conservative for finite samples with slow convergence to the nominal level This is more
clearly seen for small values of π0. In Table 2 we see that the correction (26) improves
slightly the convergence to the nominal level, resulting in some increase in power while
keeping the low type I error probabilities. Table 3 shows the remarkable effect of the
bootstrap bias correction (28). We see that sample sizes about n = m = 1000 suffice to
give a rather close agreement to the nominal level, even for small values of π0. And we
also see that the bias correction results in a significant increase in power. As an example,
if we are trying to reject that there is more than 10% contamination with respect to
the stochastic order model and we were, in fact, sampling from distributions with 5%

20



Table 3: Observed rejection frequencies. H0 : π(F,G) ≥ π0 vs. Ha : π(F,G) < π0

G = U(0, 1), m = n; reject if
√

nm
n+m

(π̂n,m,BOOT − π0) < σ̂n,mΦ−1(0.05)
π0 n F0.2,a F0.2,b F0.1,a F0.1,b F0.05,a F0.05,b F0.01,a F0.01,b F0

0.01

50 0.000 0.000 0.000 0.003 0.001 0.012 0.019 0.034 0.038
100 0.000 0.000 0.000 0.001 0.000 0.005 0.015 0.027 0.028
500 0.000 0.000 0.000 0.000 0.000 0.001 0.016 0.028 0.049

1000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.030 0.063
5000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.038 0.136

10000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.051 0.277

0.05

50 0.000 0.000 0.000 0.009 0.015 0.042 0.062 0.067 0.093
100 0.000 0.000 0.000 0.006 0.008 0.038 0.065 0.098 0.106
500 0.000 0.000 0.000 0.003 0.007 0.058 0.208 0.220 0.332

1000 0.000 0.000 0.000 0.001 0.009 0.039 0.415 0.426 0.566
5000 0.000 0.000 0.000 0.000 0.003 0.057 0.978 0.987 1.000

10000 0.000 0.000 0.000 0.000 0.006 0.050 1.000 1.000 1.000

0.1

50 0.000 0.005 0.003 0.030 0.054 0.089 0.137 0.138 0.134
100 0.000 0.001 0.007 0.052 0.076 0.121 0.246 0.250 0.266
500 0.000 0.000 0.007 0.040 0.337 0.387 0.801 0.830 0.876

1000 0.000 0.000 0.005 0.056 0.589 0.661 0.976 0.985 0.997
5000 0.000 0.000 0.003 0.057 0.999 1.000 1.000 1.000 1.000

10000 0.000 0.000 0.008 0.058 1.000 1.000 1.000 1.000 1.000

0.2

50 0.007 0.051 0.130 0.172 0.321 0.350 0.483 0.469 0.508
100 0.003 0.068 0.280 0.339 0.541 0.600 0.758 0.761 0.798
500 0.004 0.051 0.888 0.928 1.000 0.997 1.000 1.000 1.000

1000 0.002 0.050 0.999 0.999 1.000 1.000 1.000 1.000 1.000
5000 0.002 0.054 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10000 0.004 0.045 1.000 1.000 1.000 1.000 1.000 1.000 1.000

contamination or less, then samples of size 1000 would give a probability of rejection of
60% or more and from samples of size 5000 we would reject with probability close to 1.
Even for the hard problem of concluding that F and G satisfy the stochastic order up
to 1% contamination we see nonnegligible power for n = 5000 or 10000, a sample size
not unusual in some econometric studies (for instance, the Canadian Family Expenditure
Survey, considered in Barrett and Donald (2003) involves more than 9000 units).

In the testing problem (29), namely, the problem of looking for statistical evidence
against stochastic order up to some small contamination, we have considered the test (30),
that is, H0 : π(F,G) ≤ π0 is rejected if

√
n
2
(π(Fn, Gn) − π0) > K1−α(π0,

1
2
). K1−α has

been aproximated using the expresion in Proposition 3.3 (a) plus numerical integration
and inversion. As before, we have focused on the case m = n and α = 0.05. In this
case, for a fixed value of π = π(F,G), the worst case from the point of view of type I
error corresponds to F̃π,a = U(π, 1 + π) vs G = U(0, 1) while the worst case for power is

F̃π,b = 1−π
2
U(0, 1+π

2
)+ 1+π

2
U(1+π

2
, 1+ π(1−π)

2
) vs. G = U(0, 1) and these are the distributions

that we have considered. Again, we have also considered F̃0 = U(0, 1). The results are
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reported in Table 4. We observe a very good agreement between nominal and simulated
levels, even for small values of n. We also see rapidly decaying error probabilites as
predicted by (32) and (33).

Table 4: Observed rejection frequencies. H0 : π(F,G) ≤ π0 vs. Ha : π(F,G) > π0

G = U(0, 1), m = n; reject if
√

nm
n+m

(πn,m − π0) > K0.95(π0, λn,m)

π0 n F̃0 F̃0.01,a F̃0.01,b F̃0.05,a F̃0.05,b F̃0.1,a F̃0.1,b F̃0.2,a F̃0.2,b

0.01

50 0.045 0.039 0.052 0.060 0.111 0.159 0.302 0.485 0.824
100 0.022 0.031 0.040 0.066 0.107 0.199 0.450 0.848 0.986
500 0.021 0.026 0.045 0.210 0.477 0.951 1.000 1.000 1.000

1000 0.011 0.028 0.047 0.441 0.774 1.000 1.000 1.000 1.000
5000 0.002 0.017 0.049 1.000 1.000 1.000 1.000 1.000 1.000

10000 0.001 0.005 0.047 1.000 1.000 1.000 1.000 1.000 1.000

0.05

50 0.015 0.010 0.016 0.023 0.052 0.056 0.142 0.253 0.600
100 0.004 0.007 0.009 0.014 0.031 0.069 0.186 0.518 0.885
500 0.000 0.001 0.002 0.009 0.047 0.211 0.664 1.000 1.000

1000 0.000 0.000 0.000 0.001 0.060 0.606 0.954 1.000 1.000
5000 0.000 0.000 0.000 0.001 0.040 1.000 1.000 1.000 1.000

10000 0.000 0.000 0.000 0.000 0.056 1.000 1.000 1.000 1.000

0.1

50 0.001 0.002 0.005 0.004 0.007 0.009 0.027 0.079 0.274
100 0.000 0.003 0.000 0.001 0.002 0.010 0.031 0.163 0.520
500 0.000 0.000 0.000 0.000 0.001 0.002 0.056 0.958 0.999

1000 0.000 0.000 0.000 0.000 0.000 0.001 0.035 1.000 1.000
5000 0.000 0.000 0.000 0.000 0.000 0.000 0.056 1.000 1.000

10000 0.000 0.000 0.000 0.000 0.000 0.000 0.057 1.000 1.000

0.2

50 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.004 0.029
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.051
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.044

1000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.052
5000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.053

10000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040

Now we will discuss on the evolution associated to age of the heights of boys and
girls. It is a commonly assumed fact that generally boys are taller than girls but also
that girls are more precocious in body development than boys. We analyze these facts
through our methodology on the basis of a data set obtained from NHANES (National
Health and Nutrition Examination Survey). We will consider just the more interesting
case of obtaining upper bounds for the levels of stochastic order in both senses. Data are
obtained from the surveys of the years 1999, 2001, 2003, 2005, 2007 and 2009. We have
considered individuals in growth age, from 2 to 19 years. The sample sizes for every cohort
by sex and age are showed in Table 5, the smallest global sample size corresponding to
the age of 10 years (556 boys and 536 girls).

Through this analysis F a
n and Ga

m will respectively denote the empirical distribution
functions (EDF’s) of girls and boys at age=a.

The graphics in Figure 1 show some illustrative situations of the joint behavior of
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Table 5: Sample sizes by age (boys, top row; girls, bottom row).
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

796 632 633 563 557 582 579 543 556 556 735 728 704 716 793 783 716 725
776 563 620 567 542 564 572 579 536 587 733 757 764 665 702 703 716 647

the empirical distribution functions (EDF). As a global summary, Figure 2 shows the
evolution of π(F a

n , G
a
m) (red) and π(Ga

m, F
a
n ) (green) for a = 2, ..., 19. The application

of (35), with α = 0.05 and 1000 bootstrap samples for every year, allow to produce
the sequence of upper bounds for π(F a, Ga) and π(Ga, F a) (F a and Ga are the parent
distribution functions) with asymptotic confidence level of 95% that are represented in
Figure 3.

From the obtained bounds (see table 6 below), we would obtain statistical evidence
enough to confirm that boys are essentially taller than girls until 8 years and from 14
onwards. However, at 10 or 11 years old, the girls are essentially taller than boys (for in-
stance, with confidence 95% girls are taller than boys at age 11 except for a contamination
lower than 2%).

Table 6: 95%-Upper bounds by age for π(F a, Ga) (top row) and π(Ga, F a) (bottom).
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.01 0.02 0.01 0.02 0.02 0.06 0.04 0.08 0.30 0.30 0.29 0.08 0.01 0.01 0 0 0 0
0.33 0.16 0.27 0.32 0.28 0.21 0.24 0.13 0.04 0.02 0.12 0.56 0.91 1.00 1 1 1 1

5 Discussion

In the stochastic dominance setting, the approximation to the model given by the mixture
approach can be easily characterized and strongly suggests the estimation of the mixture
index as well as the testing statistics. In fact this mixture index gives a nice interpretation
to the meaning of the one-sided Kolmogorov-Smirnov statistic.This is a consequence of the
fact that although the contaminating distributions can distort the model in very different
ways, there exist a most unfavorable way for that, thus the less favorable hypothesis can
be stated in terms of just two distributions involving the parent distributions P1 and P2

and the maximum level of contamination allowed, say π0.
The introduced methodology is based on the consideration of the natural estimator

of the contamination level given by the empirical level π(Fn, Gm). In the paper we have
showed the feasibility of this methodology, giving non-asymptotic computable bounds and
justifying the use of bootstrap approximations and bias corrections. Our approach allows
to address the statistical assessment of essential stochastic dominance giving a sense to
the meaning of “essential” through the level π(F,G) (problem c) in the introduction).
Since this is the, so far, less explored problem, we have considered it in more detail in
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Figure 1: Graphics (corresponding to ages 2, 10, 12 and 15 years) showing the different
evolution of the EDF’s for boys and girls. The main legends give the values π(F a

n , G
a
m)

and π(Ga
m, F

a
n ) for these years.

the applications, but our results also cover and extend the framework of testing against
stochastic dominance.

Finally we should highlight that the level π(Fn, Gm) can be also used as a descriptive
index of the evolution in time of an stochastic dominance. In a forthcoming paper we will
explore the possibilities in the multivariate or in the stochastic processes framework.

Appendix

In this Appendix we provide proofs for the results in Section 3. Most of them are related
to the behavior of π(Fn, Gm). We keep the notation of Section 3, including that for the
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sets
Γ(F,G) = {x ∈ R̄ : G(x)− F (x) = π(F,G)}

and
T (F,G, π) = {t ∈ [0, 1] : G(x) = t, F (x) = t− π for some x ∈ R̄}

(we write R̄ = R ∪ {−∞,+∞} in the definition of the sets, with G(+∞) − F (+∞) =
G(−∞)− F (−∞) = 0, to cover the case π(F,G) = 0 with G(x) < F (x) for all x ∈ R).

Throughout this Appendix we will assume (without loss of generality) that Xi =
F−1(Ui), i = 1, . . . , n and Yj = G−1(Vj), j = 1, . . . ,m where U1, . . . , Un, V1, . . . , Vm are
i.i.d. r.v.’s. We will write αm,1(t), 0 ≤ t ≤ 1 for the empirical process based on the
Vj’s and αn,2 for the empirical process on the Ui’s. We note that, in particular, Gm(x) =
G(x)+ 1√

m
αm,1(G(x)) and Fn(x) = F (x)+ 1√

n
αn,2(F (x)). We will use this fact throughout

this Appendix without further mention. We introduce the processes

αn,m(s, t) =
√
λn,mαm,1(s)−

√
1− λn,mαn,2(t), 0 ≤ s, t ≤ 1, (37)

Bλ(s, t) =
√
λB1(s)−

√
1− λB2(t), 0 ≤ s, t ≤ 1, (38)

where λn,m = n
n+m

→ λ ∈ (0, 1) and B1, B2 are independent Brownian bridges on [0, 1].
Finally, we will write ‖·‖∞ for the sup norm in [0, 1] and ωm,1(δ), ωn,2(δ) for the oscillation
modulus of the empirical processes αm,1 and αn,2, respectively, namely,

ωm,1(δ) = sup
0≤t−s≤δ

|αm,1(s)− αm,1(t)|
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Figure 3: 95%-Confidence Upper bounds for the level of stochastic dominance of height of
boys over girls (red) and of girls over boys (green) through the growth period a = 2, ..., 19.

and similarly for ωn,2.

The following estimates give the key to the asymptotic distributional behavior of the
estimator π(Fn, Gm).

Lemma 5.1 If we denote ∆n,m = 2(m−1/2‖αm,1‖∞+n−1/2‖αn,2‖∞), Γ̃δ(F,G) = {x ∈ R :
G(x)− F (x) ≥ π(F,G)− δ} and

Rn,m =
√
λn,mωm,1(∆n,m) +

√
1− λn,mωn,2(∆n,m)

then

sup
x∈Γ(F,G)

αn,m(G(x), F (x)) ≤
√

mn
m+n

(π(Fn, Gm)− π(F,G))

≤ sup
x∈Γ̃∆n,m (F,G)

αn,m(G(x), F (x)) (39)

and √
mn
m+n

(π(Fn, Gm)− π(F,G)) ≤ sup
t∈[π(F,G),1]

αn,m(t, t− π(F,G)) +Rn,m. (40)
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Proof. We recall that Γ(F,G) := {x ∈ R̄ : G(x)−F (x) = π(F,G)}. Hence, if x ∈ Γ(F,G)

then Gm(x)−Fn(x) = (Gm(x)−G(x))− (Fn(x)−F (x)) + π(F,G) =
√

n+m
nm

αn,m(F (x) +

π(F,G), F (x))+π(F,G). From this obtain the lower bound in (39). Also, writing Gm(x)−
Fn(x) = (Gm(x)−G(x))− (Fn(x)−F (x)) + (G(x)−F (x)) we see that Gm(x)−Fn(x) ≤
G(x)−F (x)+m−1/2‖αm,1‖∞ +n−1/2‖αn,2‖∞ while for any x ∈ Γ(F,G), Gm(x)−Fn(x) ≥
π(F,G) −m−1/2‖αm,1‖∞ −n−1/2‖αn,2‖∞. Therefore, for any x′ outside Γ̃∆n,m(F,G) and
any x ∈ Γ(F,G)

Gm(x′)− Fn(x′) < π(F,G)−m−1/2‖αm,1‖∞ − n−1/2‖αn,2‖∞ ≤ Gm(x)− Fn(x),

which means that π(Fn, Gm) = supx∈Γ̃∆n,m (F,G)(Gm(x)− Fn(x)). As a consequence√
mn
m+n

(π(Fn, Gm)− π(F,G)) ≤ sup
x∈Γ̃∆n,m (F,G)

√
λn,mαm,1(G(x))−

√
1− λn,mαn,2(F (x)),

giving the upper bound in (39).
Consider now x ∈ Γ̃∆n,m(F,G). If G(x) ≤ π(F,G) then G(x) ≥ π(F,G) − ∆n,m and

F (x) ≤ ∆n,m, from which we see that

αn,m(G(x), F (x)) ≤ αn,m(π(F,G), 0) +Rn,m.

On the other hand, if x ∈ Γ̃∆n,m(F,G) and G(x) ≥ π(F,G) then G(x)−π(F,G)+∆n,m ≥
F (x) ≥ G(x)− π(F,G) ≥ 0 and this entails

αn,m(G(x), F (x)) ≤ αn,m(G(x), G(x)− π(F,G)) +Rn,m.

Combining the last two estimates we conclude (40). �

Proof of Theorem 3.1. From (39) we see that the result will follow if we show that

sup
x∈Γ(F,G)

αn,m(G(x), F (x))
w→ sup

x∈Γ(F,G)

Bλ(G(x), F (x)) (41)

and
sup

x∈Γ̃∆m,n (F,G)

αn,m(G(x), F (x))
w→ sup

x∈Γ(F,G)

Bλ(G(x), F (x)) (42)

We can assume without loss of generality that αm,1 and αn,2 are defined on a rich enough
probability space in which there are also independent Brownian bridges, for which we
keep the notation B1, B2 such that ‖αm,1 − B1‖∞ → 0 and ‖αn,2 − B2‖∞ → 0 a.s. (see
e.g. Theorem 1, p. 93 in Shorack and Wellner (1986)). Note that ‖αn,m − Bλ‖∞ → 0
a.s., which implies that a.s.

sup
δ≥0

∣∣∣∣∣ sup
x∈Γ̃δ(F,G)

αn,m(G(x), F (x))− sup
x∈Γ̃δ(F,G)

Bλ(G(x), F (x))

∣∣∣∣∣ ≤ ‖αn,m −Bλ‖∞ → 0 (43)
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This (take δ = 0), proves (41). We claim that

sup
x∈Γ̃∆n,m (F,G)

Bλ(G(x), F (x))→ sup
x∈Γ(F,G)

Bλ(G(x), F (x)) a.s. (44)

In fact, by continuity, supx∈Γ̃∆m,n (F,G) Bλ(G(x), F (x)) = Bλ(G(xn), F (xn)) for some

xn ∈ Γ̃∆m,n(F,G) and by compactness, from any subsequence we can extract a further
subsequence (that we keep denoting xn) such that xn → x0. Since ∆m,n → 0 a.s.,
necessarily, x0 ∈ Γ(F,G) and Bλ(G(xn), F (xn)) → Bλ(G(x0), F (x0)), which means that
a.s.

lim sup
n→∞

sup
x∈Γ̃∆m,n (F,G)

Bλ(G(x), F (x)) ≤ sup
x∈Γ(F,G)

Bλ(G(x), F (x)).

Since, obviously, supx∈Γ̃∆m,n(F,G) Bλ(G(x), F (x))) ≥ supx∈Γ(F,G) Bλ(G(x), F (x)), we get

(44). Using now (43) we conclude (42) and prove (14).

For the bootstrap result we note that√
mn
m+n

sup
x∈Γn,m

((G∗m(x)−Gm(x))− (F ∗n(x)− Fn(x))))
d
= sup

x∈Γn,m

α′n,m(Gm(x), Fn(x)),

where α′n,m is an independent copy of αn,m (hence, independent of the Xi’s and Yj’s). We
can argue as above and assume that there is an independent copy Bλ, that we denote B′λ
such that ‖αn,m − B′λ‖∞ → 0 a.s. Since a.s. B′λ(Gm(x), Fn(x))→ B′λ(G(x), F (x)) we see
that we simply have to prove that

V ∗n,m = sup
x∈Γn,m

B′λ(F (x), G(x))→ sup
x∈Γ(F,G)

B′λ(F (x), G(x)) := V a.s.

To check this, we note that, a.s., Gm(x) − Fn(x) → G(x) − F (x) uniformly in x ∈
R̄. Consider a sequence of points xn ∈ Γn,m, that is, such that Gm(xn) − Fn(xn) ≥
π(Fn, Gm)−δn,m. ¿From any subsequence we can extract a further convergent subsequent
for which, again, we keep the notation xn → x0. Then, since δn,m → 0, G(x0)− F (x0) =
limn(Gm(xn) − Fn(xn)) ≥ limn π(Fn, Gm) − δn,m = π(F,G), that is, x0 ∈ Γ(F,G). This
shows that lim supn→∞ V

∗
n,m ≤ V . For the lower bound, we recall from Lemma 5.1 that

for x ∈ Γ(F,G), Gm(x)−Fn(x) ≥ π(Fn, Gm)−∆m,n Now, the choice of δn and the law of
iterated logarithm for the empirical process (see, e.g., Theorem 1, p. 504 in Shorack and
Wellner (1986)) ensure that a.s.

lim sup
n→∞

∆n,m

δn
= lim sup

n→∞

2
K

(
√
λn,m

‖αm,1‖∞√
log logm

+
√

1− λn,m ‖αn,2‖∞√
log logn

)

=
√

2
K

(
√
λ+
√

1− λ) ≤ 2
K
< 1.

Hence, eventually ∆n,m < δn,m and if x ∈ Γ(F,G) then Gm(x)−Fn(x) ≥ π(Fn, Gm)− δn,
that is, eventually Γ(F,G) ⊂ Γn,m. As a consequence we see that, with probability one,
lim infn→∞ V

∗
n,m ≥ V . This completes the proof. �
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Next, we prove the results connected to the limiting distribution in Theorem 3.1.

Proof of Proposition 3.2. The upper bound for Kα(F,G, λ) follows from the obvious
fact

B̄(F,G, λ) = sup
t∈T (F,G,π(F,G))

(√
λ B1(t)−

√
1− λ B2(t− π(F,G))

)
≤ sup

t∈[π(F,G),1]

(√
λ B1(t)−

√
1− λ B2(t− π(F,G))

)
= B̄(π(F,G), λ).

For the lower bound note that for every t ∈ T (F,G, π(F,G)) we have B̄(F,G, λ) ≥√
λ B1(t)−

√
1− λ B2(t−π(F,G)) and this last variable is centered, normally distributed

with variance σ2
t and its α-quantile is, therefore, σtΦ

−1(α). If α ≥ 1
2

then the best
lower bound of this kind is obtained for σt = σ̄(F,G, π(F,G)), while for α < 1

2
we have

Φ−1(α) < 0 and the largest upper bound is given by σ(F,G, π(F,G))Φ−1(α). �

Proof of Proposition 3.3. We observe first that {
√
λ B1(t)−

√
1− λ B2(t− a)}a≤t≤1

has the same distribution as{√
1− aB( t−a

1−a) +
√
λa(1− a)(1− t−a

1−a)X +
√

(1− λ)a(1− a) t−a
1−aY

}
a≤t≤1

,

where B is another Brownian bridge and X and Y are independent standard normal
r.v.’s, independent of B (just note that both processes are centered Gaussian with the
same covariance function, namely, λs(1− t) + (1−λ)(s− a)(1− t+ a) for a ≤ s ≤ t ≤ 1).
This implies that

B̄(a, λ)
d
=
√

1− a sup
0≤s≤1

(
B(s) +

√
λa(1− s)X +

√
(1− λ)asY

)
(45)

with B,X and Y as above. From this point, we focus, for simplicity, on the case λ = 1
2
,

the general case following with straighforward but tedious, changes from this. Using the
well-known fact that

P

(
sup

0≤t≤1
(B(t)− α(1− t)− βt) > 0

)
=

{
e−2αβ if α > 0, β > 0

1 otherwise
, (46)

see, e.g., Hájek et al. (1999), p. 219, we see that

P (B̄(a, λ) > u
√

1− a) = P

(
sup

0≤s≤1

(
B(s) +

√
a/2(1− s)X +

√
a/2sY

)
> u

)
= 1− Φ(

√
2u√
a

)2 +

∫
x≤
√

2u√
a
,y≤
√

2u√
a

e−2(u−
√

a
2
x)(u−
√

a
2
y) 1

2π
e−

x2+y2

2 dxdy

= 1− Φ(
√

2u√
a

)2 + e−
2u2

1+a

∫ √
2u√
a

−∞

1√
2π
e−

1−a2

2
(x−

√
2au

1+a
)2

Φ
(√

2u(1−a)√
a

+ ax
)
dx
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and conclude (a). To prove (b), we write

U = sup
0≤t≤1

(B(t) + α(1− t) + βt).

and note from (46) that P (U > u) = e−2(u−α)(u−β) for u ≥ max(α, β) and P (U > u) = 1
otherwise. Hence, U has density 2(2u − (α + β))e−2(u−α)(u−β), u ≥ max(α, β) and if we
write M(t) = E(etU) for the moment generating function of U , then with the change of
variable u = v + α+β

2
we obtain

M(t) =

∫ ∞
α∨β

2(2u− (α + β))e−2(u−α)(u−β)etudu

= e
(α−β)2+t(α+β)+ t2

4
2

∫ ∞
|α−β|

2

4ve−2(v− t
4

)2

dv

= e(α∨β)te
1
2

(|α−β|− t
2

)2
[ ∫ ∞

|α−β|
2

4(v − t
4
)e−2(v− t

4
)2

dv + t

∫ ∞
|α−β|

2

e−2(v− t
4

)2

dv
]

= e(α∨β)t
[
1 + t

√
π
2
e

1
2

(|α−β|− t
2

)2

(1− Φ(|α− β| − t
2
))
]

= e(α∨β)t

[
1 +

t

2

(1− Φ(|α− β| − t
2
))

ϕ(|α− β| − t
2
)

]
.

Differentation in this last expression yields now

E(U) = M ′(0) = α ∨ β + 1
2

(1−Φ(|α−β|))
ϕ(|α−β|) ,

E(U2) = M ′′(0) = (α ∨ β)2 + 1
2

+ (α + β)1
2

(1−Φ(|α−β|))
ϕ(|α−β|) ,

Now, taking α =
√
a/2X, β =

√
a/2Y and taking expectations in the resulting expression

we obtain

E(B̄(a, 1
2
)) =

√
a(1−a)

2
E(max(X, Y )) +

√
π(1−a)

2
E(e

aZ2

2 (1− Φ(
√
a|Z|))), (47)

where Z = (X − Y )/
√

2 is standard normal. Observe now that

E(e
aZ2

2 (1− Φ(
√
a|Z|))) = 2√

2π

∫ ∞
0

e−
(1−a)z2

2 (1− Φ(
√
az))dz

= 2
2π

∫
(0<
√
az<y)

e−
(1−a)z2+y2

2 dzdy = 1
π
√

1−a

∫
(0<
√
a/(1−a)x<y)

e−
x2+y2

2 dxdy

= 1
π
√

1−a

∫
(0<r<∞,atan(

√
a

1−a)<θ<
π
2

)

re−
r2

2 drdθ = 1
π
√

1−a

[
π
2
− atan

(√
a

1−a

)]
.
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Plugging this into (47) and taking into account that E(max(X, Y )) = 1√
π

we obtain

the conclusion about E(B̄(a, 1
2
)). A similar computation yields E(B̄(a, 1

2
)) = 1−a2

2
and

completes the proof. �

Next, we prove the result about the level and power of the test for essential stochastic
order.

Proof of Proposition 3.4. We assume for simplicity m = n. The general case can be
handled with straighforward changes. A simple computation shows that π(F0, G0) = π0

and Γ(F0, G0) = {1+π0

2
} and, using Theorem 3.1, that

√
n
2
(πn,n−π0)

w→ N(0, σ̄2
π0

). Hence,

lim inf
n→∞

sup
(F,G)∈H0

PF,G
[√

n
2
(πn,n − π0) < σ̄π0Φ−1(α)

]
≥ lim

n→∞
PF0,G0

[√
n
2
(πn,n − π0) < σ̄π0Φ−1(α)

]
= α.

For the upper bound we recall from (39) that
√

n
2
(πn,n − π(F,G)) ≥ αn,n(G(x), G(x) −

π(F,G)) for every x ∈ Γ(F,G). As a consequence, for (F,G) ∈ H0 and x ∈ Γ(F,G),

PF,G
[√

n
2
(πn,n − π0) ≤ σ̄π0Φ−1(α)

]
≤ P

[
αn,n(G(x), G(x)− π(F,G)) ≤ σ̄π0Φ−1(α)−

√
n
2
(π(F,G)− π0)

]
. (48)

We observe that, for any x ∈ Γ(F,G), αn,n(G(x), G(x) − π(F,G)) is a sum of n i.i.d.
centered random variables with variance σ2(x) = 1

2
G(x)(1−G(x))+ 1

2
(G(x)−π(F,G))(1−

(G(x)− π(F,G))) and third absolute moment smaller than 23/2. From the Berry-Esseen
inequality (see, e.g., Theorem 1, p. 848 in Shorack and Wellner (1986)) we see that for
some universal constant C > 0

PF,G
[√

n
2
(πn,n − π0) ≤ σ̄π0Φ−1(α)

]
≤ Φ

(
σ̄π0Φ−1(α)−

√
n
2

(π(F,G)−π0)

σ(x)

)
+

23/2C

σ(x)3/2
√
n
.

The computations leading to the expressions for σ̄2
π and σ2

π show that 1
2
π(F,G)(1 −

π(F,G)) ≤ σ(x) ≤ 1
4
(1 − π2(F,G)) ≤ 1

4
(1 − π0) = σ̄2

π0
for (F,G) ∈ H0 and x ∈ Γ(F,G).

This and the fact that σ̄π0Φ−1(α)−
√

n
2
(π(F,G)−π0) ≤ 0 yield that for every (F,G) ∈ H0

PF,G
[√

n
2
(πn,n − π0) ≤ σ̄π0Φ−1(α)

]
≤ Φ

(
Φ−1(α)−

√
n

2σ̄π0
(π(F,G)− π0)

)
+

8C

(π(F,G)(1− π(F,G)))3/2
√
n

≤ α +
8C

(π(F,G)(1− π(F,G)))3/2
√
n
.

On the other hand, from (48) and Hoeffding’s inequality we see that

PF,G
[√

n
2
(πn,n − π0) ≤ σ̄π0Φ−1(α)

]
≤ e−2(σ̄π0Φ−1(α)−

√
n
2

(π(F,G)−π0))2

≤ e−n(π(F,G)−π0)2

. (49)
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This, in particular, yields (24). Now fix δ > 0 small enough to ensure that π0 + δ < 1 and
π(1− π) ≥ 1

22/3π0(1− π0) if π0 + δ ≥ π ≥ π0. Then

sup
(F,G)∈H0

PF,G
[√

n
2
(πn,n − π0) ≤ σ̄π0Φ−1(α)

]
≤ α +

16C

(π0(1− π0))3/2
√
n

+ e−
n
2
δ → α

and this proves (23).

Finally, for the proof of (25) we simply note that πn,n − π(F,G) ≤ n−1/2(‖αn,1‖∞ +
‖αn,2‖∞) and, therefore,

PF,G
[√

n
2
(πn,n − π0) > σ̄π0Φ−1(α)

]
= PF,G

[√
n
2
(πn,n − π(F,G)) > σ̄π0Φ−1(α) +

√
n
2
(π0 − π(F,G))

]
≤ P (‖αn,1‖∞ > K/

√
2) + P (‖αn,2‖∞ > K/

√
2),

where K = σ̄π0Φ−1(α) +
√

n
2
(π0 − π(F,G)). An application of the Dvoretzky-Kiefer-

Wolfowitz inequality, see Massart (1990), yields

PF,G
[√

n
2
(πn,n − π0) > σ̄π0Φ−1(α)

]
≤ 2e−K

2

and completes the proof. �

Proof of Proposition 3.5. We keep the notation of the proof of Theorem 3.1 with
Gm(x) = G(x)+ 1√

m
αm,1(G(x)) and Fn(x) = F (x)+ 1√

n
αn,2(F (x)) for independent uniform

empirical processes αm,1, αn,2 that we assume, without loss of generality, to be defined on
a rich enough probability space in which there are independent Brownian bridges, Bm,1,
Bn,2, satisfying

P
[
‖αm,1 −Bm,1‖∞ > m−1/2(x+ 12 logm)

]
≤ 2e−x/6, x > 0 (50)

and similarly for αn,2 and Bn,2 (see, e.g., Csörgo and Horváth (1989), p. 114). In

particular, we have that E(‖αm,1 − Bm,1‖∞) ≤ 12(1+logm)√
m

. We define G̃m(x) = G(x) +
1√
m
Bm,1(G(x)), F̃n(x) = F (x) + 1√

n
Bn,2(F (x)) and π(F̃n, G̃m) = supx∈R(G̃m(x)− F̃n(x)).

From (50) we obtain that√
nm
n+m

E|π(Fn, Gm)− π(F̃n, G̃m)|
≤

√
λn,mE(‖αm,1 −Bm,1‖∞) +

√
1− λm,nE(‖αn,2 −Bn,2‖∞)→ 0, (51)

as n,m→∞. We can write, as well, G∗m(x) = Gm(x)+ 1√
m
α′m,2(Gm(x)), F ∗n(x) = Fn(x)+

1√
n
α′n,2(Fn(x)) with α′m,1, α′n,2 independent uniform empirical processes, independent of

αm,1 and αn,2 and B′m,1, B′n,2 for Brownian bridges related to α′m,1, α′n,2 as in (50). Now, we
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define G̃∗m(x) = G̃m(x) + 1√
m
α′m,1(Gm(x)), F̃ ∗n(x) = F̃n(x) + 1√

n
α′n,2(F̃n(x)), π(F̃ ∗n , G̃

∗
m) =

supx∈R(G̃∗m(x)− F̃ ∗n(x)). We claim that√
nm
n+m

E|π(F ∗n , G
∗
m)− π(F̃ ∗n , G̃

∗
m)| → 0. (52)

In fact, after estimate (51) it suffices to show that

E

(
sup
x
|α′m,1(Gm(x))− α′m,1(G̃m(x))|

)
→ 0 (53)

and the same for α′n,2. But we have that E sup0≤t−s≤a |B′m,1(t)−B′m,1(s)| ≤ 7
√

2a log(1/a),
for a ∈ (0, 1

2
] (see Theorem 3, p. 538, in Shorack and Wellner (1986)). Hence, conditioning

on Gm, G̃m and taking ν ∈ (0, 1
2
) we obtain from (50) that for some positive constant, K,

E

(
sup
x
|α′m,1(Gm(x))− α′m,1(G̃m(x))|

)
≤ K

(
logm√
m

+ 1
mν/2

E(‖αm,1 −Bm,1‖s∞)
)
→ 0.

Now, from (51) and (52) we see that the result will follow if we prove that√
nm
n+m

E|π(F̃ ∗n , G̃
∗
m)− π(F̃n, G̃m)| → 0. (54)

As in the proof of Theorem 3.1 we see that

supx∈Γ(F̃n,G̃m) α
′
n,m(x) ≤

√
nm
n+m

(π(F̃ ∗n , G̃
∗
m)− π(F̃n, G̃m)) ≤ supx∈Γ̄(F̃n,G̃m) α

′
n,m(x),

where α′n,m(x) =
√
λn,mα

′
m,1(G̃m(x)) +

√
1− λn,mα′n,2(F̃n(x)), Γ(F̃n, G̃m) = {x : G̃m(x)

−F̃n(x) = π(F̃n, G̃m)} and Γ̄(F̃n, G̃m) = {x : G̃m(x) − F̃n(x) ≥ π(F̃n, G̃m) − 2(‖α′m,1‖∞/√
m+ ‖α′n,2‖∞/

√
n). We can mimic the argument in Theorem 3.1 to show that

sup
x∈Γ̄(F̃n,G̃m)

α′n,m(x)− sup
x∈Γ(F̃n,G̃m)

α′n,m(x)→ 0

in L1. Finally, to show that

E
(

sup
x∈Γ(F̃n,G̃m)

α′n,m(x)
)
→ 0,

observe that G̃m(x) − F̃n(x) is a Gaussian process with continuous sample paths whose
increments have nonzero variance. As a consequence (see Lemma 2.6 in Kim and Pollard
(1990)), with probability one, Γ(F̃n, G̃m) consists of just one point, say xn,m, which de-
pends on F̃n and G̃m. Conditionally given F̃n and G̃m, supx∈Γ(F̃n,G̃m) α

′
n,m(x) = α′n,m(xn,m)

is a centered random variable. But taking expectations we see that, in fact,

E
(

sup
x∈Γ(F̃n,G̃m)

α′n,m(x)
)

= 0.
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This completes the proof. �

Proof of Proposition 3.6. We only deal with (31) since (32) follows from the Dvoretzky-
Kiefer-Wolfowitz inequality and (33) from Hoeffding’s inequality reproducing almost ver-
batim the arguments in Proposition 3.4. Also, for ease of notation, we consider the case
m = n. For the pair F0, G0 we have π(F0, G0) = π0 and T (F0, G0, π0) = [π0, 1]. This and
Theorem 3.1 imply that

lim inf
n→∞

sup
(F,G)∈H0

PF,G
[√

n
2
(πn,n − π0) > K1−α(π0,

1
2
)
]

≥ lim
n→∞

PF0,G0

[√
n
2
(πn,n − π0) > K1−α(π0,

1
2
)
]

= α.

To complete the proof of (31) assume, without loss of generality, that, as in the proof of
Proposition 3.5, αn,1 and αn,2 are defined on a rich enough probability space together with
Brownian bridges Bn,1, Bn,2 satisfying (50). In particular, if Bn(s, t) = 1

2
Bn,1(s)+ 1

2
Bn,2(t),

then there are universal constants c1, c2 > 0 such that

P (‖αn,n −Bn‖ ≥ c1
logn√
n

) ≤ c2
n2 . (55)

Recall from Lemma 5.1 that√
n
2
(πn,n − π0) ≤ sup

t∈[π(F,G),1]

αn,n(t, t− π(F,G)) +Rn,n (56)

with Rn,n = 1√
2
(ωn,1(∆n,n) + ωn,2(∆n,n)). We saw in the proof of Theorem 3.1 that

lim supn→∞
∆n,n

δn
= 2

K
< 1 a.s. if δ = K

√
2
n

log log n and K > 2. This implies that a.s.,

eventually ωn,1(∆n,n) ≤ ωn,1(δn). From Stute’s results on the oscillation of the empirical
process (see, e.g. Theorem 1, p. 542 in Shorack and Wellner (1986)) we have that a.s.

lim
n→∞

√
nωn,1(δn)√

K
√

2 log n log log n
= 1.

Consequently,
√
nωn,1(∆n,n)

logn
→ 0 a.s. and the same happens for ωn,2(∆n,n). Hence,

√
nRn,n
logn

→
0 a.s. and, in particular

P
[
Rn,n >

logn√
n

]
→ 0. (57)

Now, combining (56), (55) and (57) we obtain that

PF,G
[√

n
2
(πn,n − π0) > K1−α(π0,

1
2
)
]

≤ P

[
sup

t∈[π(F,G),1]

αn,n(t, t− π(F,G)) +Rn,n > K1−α(π0,
1
2
) +

√
n
2
(π0 − π(F,G))

]

≤ P

[
sup

t∈[π(F,G),1]

Bn(t, t− π(F,G)) > K1−α(π0,
1
2
)− (c1+1) logn√

n
+
√

n
2
(π0 − π(F,G))

]
+P

[
Rn,n >

logn√
n

]
+ c2

n2 .
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This shows that if suffices to prove that

lim sup
n→∞

sup
a≤π0

P
[
B̄(a, 1

2
) > K1−α(π0,

1
2
) +

√
n
2
(π0 − a)− rn

]
≤ α (58)

if rn ↘ 0. To check this we note that the distribution function of P (B̄(a, 1
2
) ≤ x) depends

continuously on (a, x) (this follows easily from Proposition 3.3 (a), for instance). Hence,

given ε > 0 we can find π1 < π0 and δ > 0 such that P
(
B̄(a, 1

2
) > K1−α(π0,

1
2
)−r

)
≤ α+ε

if π1 ≤ a ≤ π0 and 0 ≤ r ≤ δ. But then, taking n large enough to ensure that rn ≤ δ we
have

sup
π1≤a≤π0

P
[
B̄(a, 1

2
) > K1−α(π0,

1
2
) +

√
n
2
(π0 − a)− rn

]
≤ sup

π1≤a≤π0

P
[
B̄(a, 1

2
) > K1−α(π0,

1
2
)− δ

]
≤ α + ε,

while

sup
a≤π1

P
[
B̄(a, 1

2
) > K1−α(π0,

1
2
) +

√
n
2
(π0 − a)− rn

]
≤ sup

a≤π1

P
[
B̄(a, 1

2
) >

√
n
2
(π0 − π1)

]
≤ P [‖B1‖∞ + ‖B2‖∞ >

√
n(π0 − π1)]

≤ 2e−
n
2

(π0−π1)2

.

The last two estimates complete the proof. �
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