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Summary. This paper introduces an analysis of similarity of distributions based on the
L2-Wasserstein distance between trimmed distributions. Our main innovation is the use of the
impartial trimming methodology, already considered in robust statistics, which we adapt to this
setup. Instead of removing data at the tails as in Munk and Czado (1998) we develop a data-
driven trimming method aimed at maximizing similarity between distributions. Dissimilarity
is then measured in terms of the distance between the optimally trimmed distributions. We
provide illustrative examples showing the improvements over previous approaches and give
the relevant asymptotic results to justify the use of this methodology in applications.

Keywords: Trimmed distributions, similarity, Wasserstein distance, asymptotics, impartial trim-
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1. Introduction.

An intrinsic consequence of randomness is variability. Samples obtained from a random ex-
periment will generally differ. This justifies the central role that similarity plays in Statistics.
Since we cannot expect even two ideal samples coming from the same experiment to be the
same, we should be able to detect departures from this idealized equality which cannot
be reasonably justified only by randomness. Often the researcher is not really concerned
about exact coincidence, but rather wants to guarantee that the parent distributions do not
differ too much. For example, in bioequivalence studies, when testing two different drugs
(or treatments), it is enough to check that both drugs have the same therapeutic effect
on patients. To achieve this it is sufficient to have two similar distributions in the target
variable. Moreover, a robust appeal to similarity leads to consider that samples initially
taken to be similar, should also be considered similar after being slightly contaminated.

Munk and Czado (1998) introduced in this context a nonparametric procedure to as-
sess similarity between distributions based on a trimmed version of the Lp-Wasserstein (or
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Mallows) distance. If Fp is the set of probabilities on R with finite p-th moment, the Lp-
Wasserstein distance between P and Q in Pp is defined as the lowest Lp-distance between
random variables (r.v.’s), defined on any probability space, with distributions P and Q. Be-
sides its intrinsic interest in connection to mass transportation problems, a main fact which
makes this distance useful in statistics on the line is that it can be explicitely expressed in
terms of quantile functions. If F and G are the distribution functions of P and Q and F−1

and G−1 are the respective quantile functions, then the Lp-Wasserstein distance between
P and Q is given by (see, e.g., Bickel and Freedman (1981))

Wp(P,Q) =
[∫ 1

0

|F−1(t)−G−1(t)|pdt

]1/p

(1)

(recall that F−1 is defined on (0, 1) by F−1(t) = inf{s : F (s) ≥ t} and satisfies that its
distribution function is F when considered as a r.v. defined on the unit interval). From
this it is obvious that for the probability measures based on two samples (resp. one sample
and a theoretical distribution) Wp coincides with the Lp distance to the diagonal in a Q-Q
plot (resp. probability plot). In the goodness-of-fit setting the large sample behavior of this
distance, for p = 2, was analyzed in del Barrio, Cuesta-Albertos, Matrán, and Rodŕıguez-
Rodŕıguez (1999) (see also del Barrio et al. (2000), Csörgö (2002), de Wet (2002) and del
Barrio et al. (2005)), while for p = 1 the analysis was carried in del Barrio, Giné, and
Matrán (1999).

Munk and Czado (1998) considered a trimmed version of the Wasserstein distance for
assessment of similarity between the distribution functions F and G as

Γα,p(F,G) := (1− 2α)−1

(∫ 1−α

α

|F−1(t)−G−1(t)|pdt

)1/p

. (2)

This work has been continued in Czado and Munk (1998) and in Freitag et al. (2007). An
interesting fact to be noted here is that the right hand side of the above expression equals
Wp(Pα, Qα), where Pα is the probability measure with distribution function

Fα(t) =
1

1− 2α
(F (t)− α) , F−1 (α) ≤ t < F−1 (1− α) (3)

and similarly for Qα. In other words, the trimmed Wasserstein distance considered by Munk
and Czado is nothing but the distance between the trimmed distributions Pα and Qα (see
our Definition 2.1 below). When comparing samples {x1, ..., xn}, {y1, ..., ym}, it corresponds
to the distance between the sample distributions associated to the symmetrically trimmed
samples (i.e. the samples obtained after removing the [nα] highest and the [nα] lowest values
of both samples). This way of trimming is widely used and gives a doubtless protection
against contamination by outliers. Though, the arbitrariness in the choice of the trimming
zones has been largely reported as a serious drawback of procedures based on this method.
In our setting the questionable fact would be why should two distributions largely different
at their tails be considered similar but they should be considered as non-similar if they
differ in their central parts?

To avoid this type of difficulty several estimators based on different trimming meth-
ods and general trimming techniques have been introduced in different statistical setups.
Least Trimmed Squares, Minimum Volume Ellipsoids or Minimum Covariance Determi-
nant estimators (see Rousseeuw (1985), Rousseeuw and Leroy (1987), or Maronna et al.
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(2006) for references), as well as the impartial trimming methodology (see, e.g., Gordaliza
(1991), Cuesta et al. (1997), Garćıa-Escudero et al. (2006) and Croux and Laine (2003) and
Maronna (2005)), are based on the idea that the trimming zone should be determined by the
data themselves. In our present setup we allow the trimming procedure to be chosen from
the data by discarding from the sample points whith high contributions to the dissimilarity
of the distributions.

To get a first idea about the differences between trimming procedures let us recall
Example 1 in Munk and Czado (1998). It corresponds to a multiclinical study on cholesterol
and fibrinogen levels in two sets of patients (of sizes 116 and 141) in two clinical centers.
For the fibrinogen data, our impartial trimming proposal for α = 0.05 essentially coincides
with the symmetrical trimming. However, Figure 1 displays the effects of our trimming
proposal for the cholesterol data, showing a significant trimming also in the middle part of
the histograms corresponding to both centers. This even improves the level of similarity
shown in Munk and Czado (1998), strengthening their assessment of similarity on these
data.

Center 1 (α= 0.05)

Cholesterol

0 200 400 600 800

Center 2 (α= 0.05)

Cholesterol

0 200 400 600 800

Fig. 1. Histograms corresponding to the trimmed data of cholesterol levels in two clinical centers.
The white part in the bars shows the proportion of trimming in such zone giving maximum similarity
to the remaining data of both centers.

The trimming method in this example is a natural extension of the impartial trimming
methodology (Gordaliza (1991), Cuesta et al. (1997)) to this framework and will be intro-
duced and analyzed in Section 2. However, we want to emphasize that in this paper we
use impartial trimming not only as a way to robustify a statistical procedure but also as
a method to discard a part of the data to achieve the best possible fit between two given
samples or between a sample and a theoretical distribution, thus searching for the maximum
similarity between them. In Section 3 we will compare our methodology with that of Munk
and Czado on a real data set, showing the flexibility that the impartial trimming introduces
in the similarity framework. The proofs of our results on the asymptotics of the involved
statistics will be deferred to a final Appendix.
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2. Measuring dissimilarities through impartial trimming.

Let X1, . . . , Xn be i.i.d. observations with unknown common distribution F . In some
instances the statistician wants to assess whether the data can be essentially assumed to
follow a particular pattern, say G, except for minor distortions. In other instances a second
i.i.d. sample, Y1, . . . , Ym with unknown common distribution G is available and we are
interested in checking whether the two samples can be assumed to come from essentially
equal random generators. This can be formally stated as a test of whether, at some fixed
trimming level, α, both distributions, F and G, are close. To fix ideas, as in the main
part of Munk and Czado (1998), we will measure closeness by the L2-Wasserstein distance.
Thus, we could consider

inf
A

1
1− α

(∫
A

(
F−1(t)−G−1(t)

)2
dt

)1/2

, (4)

where the set A varies on the Borel sets in (0, 1) with Lebesgue measure equal to 1 − α
as the target parameter of our inferences. It is convenient, however, to introduce here a
slightly more general concept: the trimming of a distribution. Trimmed probabilities can
be defined in general probability spaces, although for practical purposes we will restrict
ourselves to probabilities on the real line.

Definition 2.1. Let P be a probability measure on R and let 0 ≤ α < 1. We say that
a probability measure P ∗, on R, is an α-trimming of P if P ∗ is absolutely continuous with
respect to P (P ∗ � P ) and dP∗

dP ≤ 1
1−α .

We will denote the set of α-trimmings of P by T α(P ), namely, if P denotes the set of
probability measures on R, then

T α(P ) =
{

P ∗ ∈ P : P ∗ � P,
dP ∗

dP
≤ 1

1− α
P -a.s.

}
. (5)

The limit case in which α = 1, T 1(P ), is just the set of probability measures absolutely
continuous with respect to P .

Obviously, trimmings in the Munk and Czado sense are included in this definition be-
cause Pα � P and

dPα

dP
=

1
1− α

I[F−1(α/2),F−1(1−α/2)].

Note that in the Munk and Czado trimmed distance (2) the effective trimming level is 2α
and, accordingly, this effective trimming size was 0.1 in Figure 1.

An equivalent characterization is that P ∗ ∈ T α(P ) if and only if P ∗ � P and dP∗

dP =
1

1−αf with 0 ≤ f ≤ 1. If f takes only the values 0 and 1 then it is the indicator of a set, say
A, such that P (A) = 1−α and trimming corresponds to considering the probability measure
P (·|A). Definition (5) allows to reduce the weight of some regions of the measurable space
without completely removing them from the feasible set.

The following proposition collects some elementary facts about trimmings.

Proposition 2.1. For any probability measure, P , on R,

(a) T α1(P ) ⊂ T α2(P ) if α1 ≤ α2.

(b) T 0(P ) = {P}.
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(c) T α(P ) is a convex set.

In the following proposition we employ the set Cα, the class of absolutely continuous
functions h : [0, 1] → [0, 1] such that, h(0) = 0, h(1) = 1, with derivative h′ such that
0 ≤ h′ ≤ 1

1−α . Compactness of this set in the ‖ · ‖∞ topology (see Lemma 3.2 in the
Appendix) will be a key fact in some proofs later.

Proposition 2.2. For any real probability measure, P ,

(a) T α(P ) = {P ∗ ∈ P : P ∗(−∞, t] = h (P (−∞, t]) , h ∈ Cα}

(b) T α(U [0, 1]) = {P ∗ ∈ P : P ∗(−∞, t] = h(t), 0 ≤ t ≤ 1, h ∈ Cα}.

Proof. Let A = {P ∗ ∈ P : P ∗(−∞, t] = h (P (−∞, t]) , h ∈ Cα}. Given P ∗ ∈ A, ab-
solute continuity of h entails

P ∗(s, t] = h (P (−∞, t])− h (P (−∞, s]) =
∫ P (−∞,t]

P (−∞,s]

h′(x) dx ≤ 1
1− α

P (s, t].

Hence, P ∗ � P and dP∗

dP ≤ 1
1−α . Thus, P ∗ ∈ T α(P ).

Conversely, given P ∗ ∈ T α(P ), if F is the distribution function of P and we define
h(t) =

∫ t

0
dP∗

dP (F−1(s))ds, it is immediate that h ∈ Cα and,

P ∗(−∞, t] =
∫ t

−∞

dP ∗

dP
(s)dF (s) =

∫ F (t)

0

dP ∗

dP
(F−1(s))ds = h (P (−∞, t]) .

Therefore P ∗ ∈ A, and first part is proved. Part (b) is immediate from (a). 2

Statement (b) in Proposition 2.2 says that the class Cα is the class of all the distribution
functions of α-trimmings of the U [0, 1] distribution. Then, (a) gives a characterization of the
α-trimmings of every distribution in terms of the α-trimmings of the U [0, 1] distribution. It
will be useful to write Ph for the probability measure with distribution function h(P (−∞, t]).
The set of α-trimmings of P can then be written T α(P ) = {Ph : h ∈ Cα}.

For a Borel set A ⊂ (0, 1) with Lebesgue measure 1 − α we can consider the function
h ∈ Cα defined by h′ = 1

1−αIA. It is clear then that our problem (4) will produce an upper
bound for

τα(F,G) := inf
h∈Cα

∫ 1

0

(F−1(t)−G−1(t))2h′(t)dt = inf
h∈Cα

W2
2 (Ph, Qh). (6)

On the other hand the infimum in (6) is easily seen to be attained at function h0 below
(see (8)), associated to a set with Lebesgue measure 1−α, as it was considered in (4). This
minimizer, h0, is an impartial α-trimming for P and Q, and h0(F (x)) and h0(G(x)) are the
distribution functions of the impartially α-trimmed probabilities.

We will use (τα(F,G))1/2 as a measure of dissimilarity, and introduce a nonparametric
test of similarity in an analogous way to that introduced by Munk and Czado. As usual
in bioequivalence studies, the interest of the statisticians when analyzing similarity of dis-
tributions relies on asserting the equivalence of the involved probability distributions. In
hypothesis testing this is achieved by taking equivalence or similarity as the alternative
hypothesis, while dissimilarity is the null hypothesis. In agreement with this point of view,
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Munk and Czado (1998) considered the testing problem with the null hypothesis being that
the trimmed distance (2) exceeds some ∆-value, a threshold to be analyzed by the experi-
menters and the statisticians in an ad hoc way. Graphics on p-values for different ∆-values
(see Figure 4 in Section 3) play a key role in this analysis, and the fact that (τα(F,G))1/2 is
measured in the same scale as the variable of interest favors this goal. As a final consider-
ation regarding the use of (τα(F,G))1/2 to detect similarity/dissimilarity, we must remark
the fact just proved that it is the Wasserstein distance between trimmed versions of the
original distributions. This allows to handle the very nice properties of this distance (see,
e.g., Bickel and Freedman (1981)) in a friendly way in connection with our problem.

We will base our test of H0 : τα(F,G) > ∆2
0 against Ha : τα(F,G) ≤ ∆2

0 on the empirical
counterparts of τα(F,G), namely, Tn,α := τα(Fn, G), where Fn denotes the empirical d.f.
based on the data, in the one sample problem and Tn,m,α := τα(Fn, Gm) in the two sample
case. Our next results show that, under some mild assumptions on F and G, Tn,α and
Tn,m,α are asymptotically normal, a fact that will be used later to approximate the critical
values of H0 against Ha. Before stating our results we introduce some notation.

We can consider the map t :→ |F−1(t)−G−1(t)| as a random variable defined on (0, 1)
endowed with the Lebesgue measure, `. Let us denote by

LF,G(x) := `{t ∈ (0, 1) : |F−1(t)−G−1(t)| ≤ x}, x ≥ 0

its distribution function and write L−1
F,G for the corresponding (left continuous) quantile

inverse. If LF,G is continuous at L−1
F,G(1− α) then LF,G(L−1

F,G(1− α)) = 1− α, and

inf
h∈Cα

∫ 1

0

(F−1(t)−G−1(t))2h′(t)dt =
∫ 1

0

(F−1(t)−G−1(t))2h′0(t)dt, (7)

where

h′0(t) =
1

1− α
I(|F−1(t)−G−1(t)|≤L−1

F,G(1−α)) (8)

in this case h0 is in fact the unique mimimizer of the criterion functional. When LF,G is
not continuous at L−1

F,G(1− α)), then, from the definition of the quantile function, we have

`{t ∈ (0, 1) : |F−1(t)−G−1(t)| < L−1
F,G(1− α))}

≤ 1− α ≤ `{t ∈ (0, 1) : |F−1(t)−G−1(t)| ≤ L−1
F,G(1− α))}.

Thus we can also assure the existence of a set A0 (although not necessarily unique) such
that `(A0) = 1− α and

{t ∈ (0, 1) : |F−1(t)−G−1(t)| < L−1
F,G(1− α))}

⊂ A0 ⊂ {t ∈ (0, 1) : |F−1(t)−G−1(t)| ≤ L−1
F,G(1− α))}.

Obviously, if for any such A we consider the function IA, then 1
1−αIA ∈ Cα and the infimum

in (6) is attained at 1
1−αIA. Therefore the problems (6) and (4) are equivalent.

Although the involved statistics are considerably more complex in our setting, the fol-
lowing results show an analogous behavior to that obtained for the symmetrically trimmed
distributions in Munk and Czado (1998), leading to a similar analysis in the applications.
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Theorem 2.3. Assume that F , G ∈ P̄4 = ∪s>4Ps, LF,G is continuous at L−1
F,G(1− α)

and F has a continuously differentiable density F ′ = f such that

sup
x∈R

∣∣∣∣F (x)(1− F (x))f ′(x)
f2(x)

∣∣∣∣ < ∞. (9)

Then
√

n(Tn,α − τα(F,G)) is asymptotically centered normal with variance

σ2
α(F,G) = 4

(∫ 1

0

l2(t)dt−
(∫ 1

0

l(t)dt

)2
)

, (10)

where

l(t) =
∫ F−1(t)

F−1(1/2)

(x−G−1(F (x)))h′0(F (x))dx,

and h0 is given by (8).
This asymptotic variance can be consistently estimated by

s2
n,α(G) =

4
(1− α)2

1
n

n−1∑
i,j=1

(i ∧ j − ij
n )an,ian,j ,

where an,i = (X(i+1) −X(i))((X(i+1) + X(i))/2−G−1(i/n))I
(|X(i)−G−1

“
i
n

”
|≤`−1

Fn,G(1−α))
.

Theorem 2.4. Under the assumptions on Theorem 2.3, if G satisfies also (9) and
n

n+m → λ ∈ (0, 1) then
√

nm
n+m (Tn,m,α − τα(F,G)) is asymptotically centered normal with

variance (1 − λ)σ2
α(F,G) + λσ2

α(G, F ). This asymptotic variance can be consistently esti-
mated by s2

n,m,α = m
n+ms2

n,α(Gm) + n
n+ms2

m,α(Fn).

The proof of both statements is very similar. We will give in the Appendix only the
proof of Theorem 2.3.

If τα(F,G) = 0 then Theorem 2.3 reduces to
√

nTn,α → 0 in probability (observe that
τα(F,G) = 0 implies (x − G−1(F (x)))2h′0(F (x)) = 0 for almost every x and, therefore,
σ2

α(F,G) = 0). Although this would generally suffice for the applications (like those consid-
ered in Section 3), the following theorem gives the exact rate and the limiting distribution
in that case. We will use the notation

Cα(F,G) =
{

h ∈ Cα :
∫ 1

0

(F−1(t)−G−1(t))2h′(t)dt = 0
}

.

Observe that Cα(F, F ) = Cα, but for F 6= G we have that Cα(F,G) is a proper subset of Cα.
Note also that Cα(F,G) 6= ∅ if and only if τα(F,G) = 0. In fact, the size of Cα(F,G) depends
on the Lebesgue measure of the set {t ∈ (0, 1) : F−1(t) 6= G−1(t)}. τα(F,G) = 0 if and only
if the Lebesgue measure of this last set is less than or equal to α; if it equals α then Cα(F,G)
consists of only one function, h, corresponding to h′(t) = 1

1−αI(F−1(t)=G−1(t)). Lemma 3.3
in the Appendix proves that Cα(F,G) is also a compact set for the ‖ · ‖∞ topology.

Now we are ready for the last result in this section, that establishes the asymptotic
behavior of nTn,α when F and G are equivalent at trimming level α.



8 Álvarez-Esteban et al.

Table 1. Two-sample p-values for classical tests.
Test p-value

GPA by gender GPA by major

Shapiro-Wilks (Sample 1) 0.0176 0.0360
Shapiro-Wilks (Sample 2) 0.0217 0.0001
Kolmogorov-Smirnov 0.0028 0.0040
Wilcoxon-Mann-Whitney 0.0004 0.0175

Theorem 2.5. If τα(F,G) = 0, F satisfies (9) and∫ 1

0

t(1− t)
f2(F−1(t))

dt < ∞, (11)

then

nTn,α →
w

min
h∈Cα(F,G)

∫ 1

0

B(t)2

f2(F−1(t))
h′(t) dt,

where {B(t)}0<t<1 is a Brownian bridge.

Remark 2.6. Arguing as in the proof of Lemma 15 it can be seen that a.s.

h 7→
∫ 1

0

B2(t)
f2(F−1(t))

h′(t)dt

is ‖ · ‖∞-continuous as a function of h. Hence, it attains its minimum value on the compact
set Cα(F,G). This justifies the expression for the limiting distribution in Theorem 2.5.

3. Example.

Our analysis will be based on the variable GPA (College Grade Point Average) collected
from a group of 234 students. This variable takes values from 0 to 4. The students are
classified by the variables Gender and Major (1 = Computer Science, 2 = Engineering, 3
= Other Sciences). We are interested in studying the distributional similarity of the GPA
obtained by males (n = 117) and females (m = 117), and between students with a major
in computer sciences (n = 78) and students with a major in engineering (m = 78). Figure
2 shows the histogram for each sample.

Comparisons of these samples using classical procedures produce the results displayed
in Table 1. The classical t-test is not appropriate as the Shapiro-Wilks tests reject the nor-
mality of the four samples. Then, the use of nonparametric methods like the Kolmogorov-
Smirnov test (KS) or the Wilcoxon-Mann-Whitney test (WMW) is more appropriate to
asses the null hypothesis that both samples come from the same distribution. The p-values
of these tests reject clearly that the GPA of males and females is the same. The p-values
of the KS and WMW tests (0.0040 and 0.0175, respectively) would lead us to the same
conclusion in the other comparison (GPA by major).

We introduce the possibility of impartially trimming both samples as described in the
previous section. Varying the trimmed proportion, α, we obtain the optimal trimming
functions displayed in Figure 3. In this figure, and for each comparison, we plot the value
of |F−1

n (t)−G−1
m (t)| and the cutting values L−1

Fn,Gm
(1− α) for α = 0.05, 0.1 and 0.2. The

first plot shows that the optimal trimming involves the lower tail, but not exactly from
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Fig. 2. Histograms for variable GPA

the lower end point. When the trimming level grows (α = 0.1 and 0.2) the trimmed zone
is not an interval and it includes points around percentiles 20%, 40%, 60% and 70%. For
the second comparison, it is shown that the points that should be trimmed to make more
similar both samples are between percentiles 10% and 30%. This example illustrates how
the dissimilarity between two samples is not always found symmetrically in the tails of the
distribution. Particularly, in the case of the first comparison the less similar zone is close to
the lower tail, but not to the upper tail, where in fact, there are the more similar values.

3.1. p-values curve
To gain some insight into the assessment of the similarity or dissimilarity of the underlying
distributions we can use the same p-values curves used in Munk and Czado (1998).

In order to test the null hypothesis H0 : τα(F,G) > ∆2
0 against Ha : τα(F,G) ≤ ∆2

0 in
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Fig. 3. Trimming functions

the two-sample comparison case, we will use the statistic

Zn,m,α =
√

nm

n + m

(Tn,m,α −∆2
0)

sn,m,α
.

The asymptotic p-value curve, P (∆0), is defined as follows,

P (∆0) := sup
{(F,G):(F,G)∈H0}

lim
n,m→∞

PF,G (Zn,m,α ≤ z0) = Φ
(√

nm
n+m

Tn,m,α−∆2
0

sn,m,α

)
,

where z0 is the observed value of the test statistic Zn,m,α for two given samples (note that
the supremum is attained when the distance between both distributions is exactly ∆0).
These asymptotic p-value curves can be used in two ways. On one hand, given a fixed value
of ∆0 which controls the degree of dissimilarity, it is possible to find the p-value associated to
the corresponding null hypothesis and then, to decide whether the distributions are similar
or not. On the other hand, given a fixed test level (p-value), we can find the value of ∆0

such that for every ∆ ≥ ∆0 we should reject the hypothesis H0 : τα(F,G) ≥ ∆2. In other
words, we can get a sound idea of the degree of dissimilarity between the distributions. To
handle the values of ∆0 the experimenter should take into account how to interpret the
Wasserstein distance recalling that in the case that F and G belong to the same location
family, their Wasserstein distance equals to the absolute difference of their locations.

Figure 4 displays the p-value curves using impartial trimming and symmetrical trimming
for both comparisons for different trimming levels (α = 0.05, 0.1 and 0.2). For each plot,
a horizontal line has been drawn to mark a reference level for the test (0.05). The GPA
points of males and females show similarity up to ∆0 ranging from 0.32 to 0.36 (depending
on the trimming size) when impartial trimmings are used. These values represent between
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100×0.32/2.815 = 11.4% and 12.8% of the average of the medians of the samples. However,
when using symmetrical trimmings the horizontal line cuts the p-value curves for ∆0 ranging
from 0.56 to 0.59. This means between 20% and 21% of the average of the medians. A
similar analysis in the comparison of the GPA value by major lead us to values of ∆0

ranging from 0.29 to 0.36, which represent between a 9.6% and a 11.9% of the average of
the medians when using impartial trimming. Instead, when using symmetrical trimming
these percentages ranges from 16.6% to 19.5%.

This figure illustrates that when the dissimilarities are not in the tails of the distribution
the assessment obtained using the Munk and Czado methodologies can be improved by the
impartial trimmings. The computational analysis have been done with R statistical software

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

GPA by Gender

∆0

p−
va

lu
e

α = 0.051
α = 0.051 (MC)
α = 0.102
α = 0.102 (MC)
α = 0.205
α = 0.205 (MC)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

GPA by Major

∆0

p−
va

lu
e

α = 0.051
α = 0.051 (MC)
α = 0.102
α = 0.102 (MC)
α = 0.205
α = 0.205 (MC)

Fig. 4. p-values curves using impartial trimming and Munk & Czado (MC) methodologies.

(see R Development Core Team (2006)). The R programs and functions used to analyze the
examples considered in this work are available at http://www.eio.uva.es/∼pedroc/R/.

Appendix.

In this Appendix we write ρn(t) =
√

nf(F−1(t))(F−1
n (t)−F−1(t)) for the weighted quantile

process, where f is the density function of F .

Proof (of Theorem 2.3). We can (and do) work in a sufficiently rich probability
space in which there exist versions of {Xn}n and Brownian bridges Bn satisfying

n1/2−ν sup
1
n≤t≤1− 1

n

|ρn(t)−Bn(t)|
(t(1− t))ν

=
{

OP (log n), if ν = 0
OP (1), if 0 < ν ≤ 1/2 . (12)

The existence of such a probability space is a consequence of (9), see, for instance, Theorem
6.2.1 in Csörgö and Horváth (1993).

Now we set Mn(h) =
√

n
∫ 1

0
(F−1

n (t)−G−1(t))2h′(t)dt and

Nn(h) = 2
∫ 1− 1

n

1
n

Bn(t)
f(F−1(t))

(G−1(t)−F−1(t))h′(t)dt+
√

n

∫ 1− 1
n

1
n

(G−1(t)−F−1(t))2h′(t)dt.
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Observe that

sup
h∈Cα

|Mn(h)−Nn(h)| ≤
√

n

∫ 1
n

0

(F−1
n (t)−G−1(t))2dt +

√
n

∫ 1

1− 1
n

(F−1
n (t)−G−1(t))2dt

+
1√
n

∫ 1− 1
n

1
n

|ρn(t)−Bn(t)|2

f2(F−1(t))
dt +

1√
n

∫ 1− 1
n

1
n

Bn(t)2

f2(F−1(t))
dt

+2
∫ 1− 1

n

1
n

|ρn(t)−Bn(t)|
f(F−1(t))

|G−1(t)− F−1(t)|dt

=: An,1 + An,2 + An,3 + An,4 + An,5.

The fact that F,G ∈ P̄4 and Lemma 3.1 below imply An,1 → 0 and An,2 → 0 in probability.
From (12) we get

An,3 ≤ OP (1)
1√
n

∫ 1−1/n

1/n

t(1− t)
f2(F−1(t))

dt

and the last integral tends to 0 by Lemma 3.1. Hence An,3 → 0 in probability. Similarly,
An,4 → 0 in probability. Finally, (12) yields

An,5 ≤ OP (1)nν−1/2

∫ 1− 1
n

1
n

(t(1− t))ν

f(F−1(t))
|G−1(t)− F−1(t)|dt

for some ν ∈ (0, 1/2). Lemma 3.1 shows that
∫ 1

0
(t(1−t))1/2

f(F−1(t)) |G
−1(t) − F−1(t)|dt < ∞. This

and the dominated convergence theorem imply that the right-hand side of the last display
tends to 0 in probability. Collecting the above estimates we see that suph∈Cα

|Mn(h)−Nn(h)|
→ 0 in probability and, consequently,

√
n(Tn,α−Sn,α) → 0 in probability, where

√
nSn,α =

infh∈Cα
Nn(h). Thus, the proof will be complete if we show that

√
n(S̃n,α − τα(F,G)) is

asymptotically N(0, σ2
α(F,G)), where

√
nS̃n,α = inf

h∈Cα

[
2
∫ 1

0

B(t)
G−1(t)− F−1(t)

f(F−1(t))
h′(t)dt +

√
n

∫ 1

0

(G−1(t)− F−1(t))2h′(t)dt

]
.

(13)
Let us denote

hn = argminh∈Cα

∫ 1

0

(F−1(t)−G−1(t))2h′(t)dt +
2√
n

∫ 1

0

B(t)
G−1(t)− F−1(t)

f(F−1(t))
h′(t)dt.

Clearly h′n(t) → h′0(t) for almost every t. Furthermore, optimality of hn shows Bn ≤ 0,
where,

Bn :=
√

nS̃n,α−
(

2
∫ 1

0

B(t)
G−1(t)− F−1(t)

f(F−1(t))
h′0(t)dt +

√
n

∫ 1

0

(G−1(t)− F−1(t))2h′0(t)dt

)
,

but, on the other hand,

Bn =
√

n

(∫ 1

0

(F−1(t)−G−1(t))2h′n(t)dt−
∫ 1

0

(F−1(t)−G−1(t))2h′0(t)dt

)
+2
∫ 1

0

B(t)
G−1(t)− F−1(t)

f(F−1(t))
(h′n(t)− h′0(t))dt =: Bn,1 + Bn,2
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and Bn,1 ≥ 0 by optimality of h0, while Bn,2 = oP (1) by the dominated convergence
theorem. Therefore, Bn → 0 in probability, which shows that

√
n(Tn,α − τα(F,G)) →w 2

∫ 1

0

B(t)
G−1(t)− F−1(t)

f(F−1(t))
h′0(t)dt. (14)

Integrating by parts we obtain∫ 1

0

B(t)
G−1(t)− F−1(t)

f(F−1(t))
h′0(t)dt = −

∫ 1

0

l(t)dB(t)

and this proves the asymptotic normality and the expression (10) for the variance. The
claim about the variance estimator follows by noting, after some algebra, that

s2
n,α = 4

(∫ 1

0

l2n(t)dt−
(∫ 1

0

ln(t)dt

)2
)

,

where ln(t) =
∫ F−1

n (t)

F−1
n (1/2)

(x − G−1(Fn(x)))h′n(Fn(x))dx and hn(t) = argminh∈Cα

∫
(F−1

n −
G−1)h′. It can be shown that, with probability 1, ln(t) → l(t) for almost every t ∈ (0, 1).
A standard uniform integrability argument completes the proof. 2

Lemma 3.1. If F,G ∈ P̄4 then

(i)
√

n
∫ 1/n

0
(F−1(t))2dt → 0;

√
n
∫ 1

1−1/n
(F−1(t))2dt → 0.

(ii)
√

n
∫ 1/n

0
(F−1

n (t))2dt → 0;
√

n
∫ 1

1−1/n
(F−1

n (t))2dt → 0.

(iii)
∫ 1

0

√
t(1−t)

g(G−1(t)) |F
−1(t)−G−1(t)|dt < ∞.

Further, if G satisfies (9), then

(iv) 1√
n

∫ 1−1/n

1/n
t(1−t)

g2(G−1(t))dt → 0.

Proof. (i) For the first integral Schwarz’s inequality gives

√
n
∫ 1

n
0 (F−1(t))2dt ≤

√
n

(∫ 1
n

0 (F−1(t))4dt

)1/2(∫ 1
n

0 1dt

)1/2

=
(∫ 1

n
0 (F−1(t))4dt

)1/2

→ 0;

the second convergence is completely similar.

(ii) We consider now the second expression. We can assume w.l.o.g. that G is concentrated
on the positive real line. We have to show that n−1/4 max1≤i≤n Xi → 0 in probability, or,
equivalently, that G(εn1/4)n → 1 for all ε > 0. Taking logarithms we see, using that G has
finite fourth moment,

n log(G(εn1/4)) ' n(1−G(εn1/4)) → 0.

(iii) We assume again that G is concentrated on the positive real line. A change of variable
shows that it suffices to prove that

∫∞
0

√
1−G(y)|F−1(G(y))|dy is finite. Fix r > 4 such
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that F,G have finite r-th moment. Then limt→1(1 − t)|F−1(t)|r = 0. Hence, for large
y we have |F−1(G(y))| ≤ (1 − G(y))−1/r and, consequently,

√
1−G(y)|F−1(G(y))| ≤

(1 − G(y))(r−2)/2r. Denote by µr the r-th moment of G. Then, by Markov’s inequality
(1−G(y))(r−2)/2r ≤ µr

ry
−(r−2)/2. This proves (iii) since (r − 2)/2 > 1.

(iv) We assume for simplicity that G has support (0,∞). With the change of variable
y = G−1(t) we can reduce the proof to showing that

√
1−G(x)

∫ x

0
(1−G(y))

g(y) dy → 0 as

x → ∞. Observe now that (1−G(y))
g(y) has derivative −1 − (1−G(y))g′(y)

g(y) which, by (9), is
uniformly bounded. Hence,

lim sup
x→∞

√
1−G(x)

∫ x

0

(1−G(y))
g2(y)

dy → 0 ≤ K lim sup
x→∞

√
1−G(x)x2 = 0,

since G has finite fourth moment. 2

Lemma 3.2. The set Cα of all absolutely continuous functions h : [0, 1] → [0, 1] such
that, h(0) = 0, h(1) = 1, with derivative h′ such that 0 ≤ h′ ≤ 1

1−α is compact for the ‖ · ‖∞
topology.

Proof. The set Cα is uniformly bounded at 0 (h(0) = 0 for every h ∈ Cα) and uniformly
equicontinuous (|h(y)− h(x)| ≤ 1

1−α |y − x| for every h ∈ Cα). Hence, by the Arzelá-Ascoli
Theorem, Cα is relatively compact for ‖ · ‖∞ and it suffices to show that Cα is closed. Let
us assume then that {hn}n are such that hn ∈ Cα and ‖hn − h‖∞ → 0. Then

0 ≤ h(y)− h(x) = lim
n→∞

hn(y)− hn(x) ≤ 1
1− α

(y − x), if 0 ≤ x ≤ y ≤ 1.

This implies that h is absolutely continuous and 0 ≤ h′ ≤ 1
1−α almost everywhere. Therefore

h ∈ Cα, which completes the proof. 2

Lemma 3.3. If F,G ∈ P2 then the set

Cα(F,G) =
{

h ∈ Cα :
∫ 1

0

(F−1(t)−G−1(t))2h′(t)dt = 0
}

is compact for the ‖ · ‖∞ topology.

Proof. It suffices to show that Cα(F,G) is closed, since Cα(F,G) ⊂ Cα and Cα is
compact by Lemma 3.2. This can be reduced to showing that∫ 1

0

(F−1(t)−G−1(t))2h′n(t)dt →
∫ 1

0

(F−1(t)−G−1(t))2h′(t)dt

whenever hn ∈ Cα and ‖hn − h‖∞ → 0 or, equivalently, that∫ 1

0

(F−1(h−1
n (y))−G−1(h−1

n (y))2dy →
∫ 1

0

(F−1(h−1(y))−G−1(h−1(y))2dy. (15)

By continuity of F−1 and G−1 (except, perhaps, at a countable set) we have (F−1(h−1
n (y))

−G−1(h−1
n (y))2 → (F−1(h−1(y)) −G−1(h−1(y))2 at almost every t ∈ (0, 1). To prove (15)
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it only remains to show uniform integrability of (F−1(h−1
n (y)) − G−1(h−1

n (y))2. But this
follows from the next inequality.

sup
n

∫
{(F−1(h−1

n (y))−G−1(h−1
n (y))2>x}

(F−1(h−1
n (y))−G−1(h−1

n (y))2dy

= sup
n

∫
{(F−1(t)−G−1(t))2>x}

(F−1(t)−G−1(t))2h′n(t)dt

≤ 1
1− α

∫
{(F−1(t)−G−1(t))2>x}

(F−1(t)−G−1(t))2dt.

2

Proof (of Theorem 2.5). We define Dn(h) := n
∫ 1

0
(F−1

n (t) − G−1(t))2h′(t) dt and

D(h) :=
∫ 1

0
B2(t)

f2(F−1(t))h
′(t)dt for h ∈ Cα. Note that

Dn(h) =
∫ 1

0

ρ2
n(t)

f2(F−1(t))
h′(t) dt + n

∫ 1

0

(F−1(t)−G−1(t))2h′(t) dt

+2
√

n

∫ 1

0

ρn(t)
f(F−1(t))

(F−1(t)−G−1(t))h′(t)dt.

Observe also that nTn,α = Dn(hn) for some hn ∈ Cα If h ∈ Cα(F,G) then the second
and third summands in the right hand side vanish and Dn(h) =

∫ 1

0
ρ2

n(t)
f2(F−1(t))h

′(t) dt. By
(9) and (11) we have weak convergence of ρn(·)/f(F−1(·)) to B(·)/f(F−1(·)) as random
elements in L2(0, 1), see, e.g., Theorem 4.6 in del Barrio et al. (2005). By Skorohod’s
representation Theorem (see, e.g., Theorem 11.7.1 in Dudley (1989)) there are versions
of ρn(·)/f(F−1(·)) and B(·)/f(F−1(·)) (for which we keep the same notation) such that
‖ρn(·)/f(F−1(·))−B(·)/f(F−1(·))‖2 → 0 a.s. Now for this versions we have

sup
h∈Cα(F,G)

|Dn(h)−D(h)| ≤ 1
1− α

∫ 1

0

∣∣∣∣ ρ2
n(t)

f2(F−1(t))
− B2(t)

f2(F−1(t))

∣∣∣∣ dt → 0 a.s.,

while for h0 ∈ Cα−Cα(F,G) we have a.s. that Dn(h) →∞ uniformly in a sufficiently small
neighbourhood of h0. Furthermore, if hn → h ∈ Cα(F,G) then we can extract a subsequence
such that n

∫ 1

0
(F−1(t) − G−1(t))2h′n(t)dt → 0. The result follows from the next technical

Lemma. 2

Lemma 3.4. Let (X, d) be a compact metric space, A ⊂ X compact and {fn}, f real
valued, continuous functions on X such that

(i) supx∈A |fn(x)− f(x)| → 0, as n →∞,

(ii) for x ∈ X −A there exists εx > 0 such that infd(y,x)<εx
fn(y) →∞, as n →∞,

(iii) if xn → x ∈ A there exists a subsequence, {xm}, such that fm(xm) → f(x).

Then
min
x∈X

fn(x) → min
x∈A

f(x).
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Proof. Choose xn such that fn(xn) = minx∈X fn(x). Then there exists a converging
subsequence xm → x0 ∈ X. If x0 ∈ X −A then we fix ε > 0 such that infd(y,x0)<ε fn(y) →
∞. Since xm → x0 and minx∈A fn(x) → minx∈A f(x) we have that fm(xm) > 2 minx∈A

fm(x) for sufficiently large m, which contradicts the choice of xm. Hence, x0 ∈ A. Now,
taking a further subsequence (that we keep denoting xm we have that fm(xm) → f(x0).
Thus,

min
x∈A

f(x) ≤ f(x0) = lim
m

fm(xm) = lim
m

min
x∈X

fm(x) ≤ lim
m

min
x∈A

fm(x) = min
x∈A

f(x)

and all inequalities above are, in fact, equalities. This completes the proof. 2
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