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Abstract

The paper introduces a robust estimation procedure, in the multivariate normal mixture model,

based on the choice of a representative trimmed subsample through an initial robust clustering proce-

dure and subsequent improvements based on maximum likelihood. To obtain the initial trimming we

resort to the trimmed k-means, a simple procedure designed for finding the core of the clusters under

appropriate configurations. Maximum likelihood estimation, handling the trimmed data as censored,

provides in each step the location and shape of the next trimming. Data-driven restrictions on the

parameters, requiring that every distribution in the mixture must be sufficiently represented in the

initial clusterized region, allow to avoid singularities and to guarantee the existence of the estimator.

Our analisis includes robustness properties and asymptotic results as well as worked examples.
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1 Introduction

Estimation in mixture models has caught the interest of many researchers due to their multiple statistical
applications. McLachlan and Peel [17], for example, offers an updated account of the development and
state of the art in this topic. In this paper we will assume the so called multivariate normal mixture
model (MNMM) which is given by {IP θ : θ ∈ Θ} , where IP θ is the distribution on IRd with density

fθ :=
k∑
i=1

πigφi
,

where k is known, gφi
, φi = (µi,Σi), denotes the density function on IRd of the Gaussian distribution

Qφi
with mean µi and covariance matrix Σi, and πi is the mixing proportion of Qφi

in the mixture. θ
includes all the parameters in the model. Thus, θ varies in the set

Θ :=

{
(π1, ..., πk, φ1, ..., φk) : πi > 0,

k∑
i=1

πi = 1, φi ∈ Φ, φi 6= φj if i 6= j

}
, (1)

where Φ := IRd ×M+
d×d and M+

d×d is the set of (strictly) positive definite d× d matrices.
The necessity to employ robust estimation procedures is patent. On the first hand, the reported

difficulties in the clustering setting (see e.g. Cuesta-Albertos, Gordaliza and Matrán [3], Banfield and
Raftery [1], Hardin and Rocke [10], Gallegos [6] or Hennig [12]) are here in force. On the other hand, we
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shall also face a great instability of the classical estimators and of the available algorithms to compute
them.

The main computable approaches to the problem in this multivariate setting with a robust motivation
seem to be reduced to the one proposed by Fraley and Raftery [5] through the addition of a mixture
component accounting for noise modeled as a uniform distribution, and the based on a mixture of t
distributions by McLachlan and Peel (see e.g. [18] and Section 7 in [17] for other references). However, as
noted by Hennig in [12], “while a clear gain of stability can be demonstrated for these methods in various
examples ..., there is a lack of theoretical justification of their robustness.” In this work we introduce a
new methodology to obtain a robust estimator in the MNMM and we include a sound theoretical analysis
of its properties.

Our approach is based on a m-step procedure beginning with a robust initial estimator whose effi-
ciency is improved through several iterations of a suitable maximum likelihood (ML) step. This method
constitutes a natural generalization of that analyzed in Cuesta-Albertos, Matrán and Mayo [4] in the mul-
tivariate elliptical model. A similar approach was adopted by Marazzi and Yohai [15] in the univariate
regression model. Also Markatou [16] considered a related weighted likelihood procedure for mixtures,
but based on a preliminary nonparametric density estimation procedure, which could made the procedure
undesirable for the multivariate setting due to the curse of the dimensionality.

The procedure initially searches a small (purportedly) uncontaminated core of the data, consisting of
k well separated clusters, each one associated to one distribution in the mixture. Then, ML estimation
(obtained through a variant of the EM algorithm) of θ based on this trimmed data subset, treating
the removed data as censored, produces the first estimation. This process is repeated by updating the
trimmed sample in accordance with the present estimation in such a way that in every step the information
in the current trimmed sample is used to produce a larger and better-shaped trimmed set. Hence the
procedure gradually increases the representative clusters, decreasing the trimming size, and re-estimating
θ in each step. The process is repeated until some maximal uncontaminated trimmed set is reached,
based on which the final estimate is obtained.

The scheme is similar to that employed in the elliptical model in [4] although here it involves more
steps. Practice shows that a gradual enlargement of the regions is useful to avoid masking effects between
the populations. However there are other additional problems associated to this scheme in our framework.

The choice of the initial clustering method can be carried through different nonparametric procedures
(e.g. the Hardin and Rocke [10], Gallegos [6] or Garćıa-Escudero and Gordaliza [8] proposals). To
simplify the exposition focusing in the adaptiveness of the methodology, our choice is based on the
perhaps simplest one, the impartial trimmed k-means introduced by Cuesta-Albertos, Gordaliza and
Matrán in [3]. This procedure involves a trimming of the data and it is intended to look for spherical
clusters with similar weights. However, we will see (in Subsection 2.2.1) that, in practice, if in the
iteration steps we gradually reduce the trimming sizes, then the proposed procedure often produces a
good estimation of the parameters in general mixtures.

On the other hand, as it is well known, in this setup the likelihood function is usually unbounded and
can present multiple local maxima, leading to ad hoc procedures to eliminate spurious solutions. The use
of restrictions on the parameter space to circumvent this difficulty was pioneered by Hathaway [11], in
the setting of the mixture of univariate normal distributions. Here, we introduce a data-driven proposal,
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the impartial restriction on the parameter which only requires that each distribution in the mixture has
enough representation in the initial trimmed sample.

Although we will develop the method in the general framework of (possibly) different covariance
matrices and unclassified data, we want to point out that the method can easily be adapted to work with
additional information concerning, say, partially classified data or the same covariance structure for the
distributions in the mixture.

The details of the procedure are given in Section 2. In Section 3 we show the performance of the
procedure in several examples where our method is compared with other robust procedures. Section 4
is devoted to the theoretical justification of the procedure, including asymptotic results and robustness
properties. The paper ends with a section containing a discussion of the proposed procedure and an
appendix containing the proofs of our results.

2 Assumptions and description of the procedure

Throughout we will handle probability measures defined on βd, the Borel sets in the euclidean space
IRd, d ≥ 1, whose usual norm will be denoted by ‖ − ‖. Given m ∈ IRd and r > 0, B(m, r) will denote
the open ball centered at m with radius r. Given A ⊂ IRd, A will denote the topological closure of A, Ac

its complement and if h > 0, then Ah := {x : infa∈A ‖x− a‖ ≤ h}.
Unless otherwise stated, we will assume that all random vectors (r.v.’s) are defined on the same rich

enough probability space (Ω, σ, ν). The notation IPf will denote integration of the random variable f
with respect to the probability IP . {IPn}n will denote the associated sequence of empirical distributions
associated to a random sample {Xn}n of a distribution IP which generally will be assumed to be absolutely
continuous.

To circumvent the problem of the identifiability of the mixture models due to possible permutations of
the weights and the distributions in the mixture, we will assume as equivalent θ := (π1, ..., πk, φ1, ..., φk) ∈
Θ and every (πi1 , ..., πik , φi1 , ..., φik) such that (i1, i2, ..., ik) is a permutation of (1, 2, ..., k).

2.1 Initial estimator

Given a random sample, we begin by choosing a set Â based on our data, using a robust clustering
criterion. Roughly speaking, we are assuming that the population is composed of k clusters and that
some contamination could be present in the sample as outliers or, also, as bridge points between clusters.
Then, Â should be the union of k bounded sets which are located well inside the data set. This choice
is directed at having a specialized region for each sub-population in the mixture with low influence from
any other.

To choose Â, we follow the impartial trimmed k-means (from now on trimmed k-means) approach.
This solution is quite simple and it is designed to accomplish our goals when the data set is composed by
k approximately spherical groups with similar weights and sizes. This can be considered as a limitation
of the procedure but in Subsection 2.2.1 we will analyze the improvement of this initial estimator through
one or several additional steps to cover a wider framework, and, in any case we emphasize that other
alternative initial estimators (more reliable for a particular situation) are possible and covered by our
theoretical results.
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The trimmed k-means were introduced in [3] (the TRIMCLUSTER package includes an R-code to
compute them). Broadly speaking, this procedure first trims the sample and then splits the remaining
data into k spherical components in order to minimize the within sums of squares of the distances to the
center of the group:

For every γ := (r,m1, ...,mk) ∈ Γ := IR+ ×
(
IRd
)k

, let Aγ = ∪ki=1B(mi, r). Let us consider a

fixed value α ∈ (0, 1) and let IP be any probability on IRd. It is shown in [3] that there exists γP :=
(rP ,mP

1 , ...,m
P
k ) ∈ Γ such that the set AγP

= ∪ki=1B(mP
i , rP ) verifies IP [AγP

] ≥ 1 − α and for every
union of closed balls A := ∪ki=1B(mi, ri) verifying IP [A] ≥ 1− α

1
IP [AγP

]

∫
AγP

inf
i=1,...,k

‖x−mP
i ‖2IP (dx) ≤ 1

IP [A]

∫
A

inf
i=1,...,k

‖x−mi‖2IP (dx). (2)

The vector (mP
1 , ...,m

P
k ) ∈

(
IRd
)k

is called an α-trimmed k-mean of IP , and the associated region is

AγP
. Note that the right hand side term in (2) includes every union of k balls in IRd, but the minimum

is attained by a union of balls with the same radius. This is a peculiarity of the trimmed k-means
because the obtained region AγP

(and the sample version Â = AγPn
) gives identical treatment to each

distribution composing the mixture. As already announced, the improvement of this region will be
analyzed in Subsection 2.2.1.

The choice of this initial trimming set has two main consequences in our setup. First, if we choose
an high trimming value, this choice should eliminate possible outliers and masking effects. On the other
hand, once a sub-sample has been chosen we try to estimate θ using the EM algorithm and it is very well
known that this algorithm is very sensitive to wrong selections of the initial value. Our proposal consists
of initialize the means of the distributions composing the mixture with the trimmed k-means, while the
initial values for the covariance matrices and the weights of the distributions are those based on the data
in the clusters corresponding to each one of the k balls obtained in the trimming process.

Obviously, other choices (for instance, using some additional information) could lead to improvements
but, by the same reason, it should not be very difficult to show situations where this particular choice
produces bad behaved solutions. This observation can be extended also to principles that are consid-
ered as unquestionable in other settings. For example, a largely used principle in robust estimation is
that affine equivariance. However (as pointed out by Hampel in [9]), it is still far from being obvious
that contamination and right data must share the same behavior under affine transformations, and this
consideration is much more patent in presence of several groups of right data.

For a better understanding of the procedure we will apply it to an example, similar to that included
in Section 2.12.4 of [17], attributed to Ueda and Nakano.

Example 2.1 Let us consider a random sample of size 600 of the mixture given by

πi = 1/3, i = 1, 2, 3;µT1 = (−2, 0), µT2 = (0, 0), µT3 = (2, 0); Σi =
(

0.2
0

0
2

)
, i = 1, 2, 3.

To analyze the behavior of the procedure in the presence of contaminated data we added 20 data
simulated from the uniform distribution on the set

{(x, y) ∈ [−5, 5]× [−8, 8] : x < −4 or x > 4 or y < −5 or y > 5}.

4



-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

-5 -4 -3 -2 -1 0 1 2 3 4 5

B1
B2

B3

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 1: Realizations of 3-means, trimmed 3-means, associated (and iterated) regions and different
estimations (represented by the 95% level curves of the weighted estimated normal distributions in the
mixture).

The graph on the left in Figure 1 shows the trimmed region, Â = B̂1 ∪ B̂2 ∪ B̂3, associated to the
trimmed 3-means for a trimming level of 0.7 (the union of the three yellow balls), as well as the (non-
trimmed) 3-means (marked as bold squares). The only thing to be stressed here is the scarce influence
that the contaminated data have on the trimmed 3-mean. On the contrary, the 3-means are badly located
within the clusters because they are greatly influenced by the contamination. The remaining features of
this graphic and the graphic in the right hand side will be explained later. •

2.2 Trimmed sets and the censored likelihood function

In [4] we consider several likelihood functions associated to a subsample constituted by the points be-
longing to a bounded set A ∈ βd. As stated in the final discussion there, between the natural possibilities
associated to this situation, the censored point of view improves the convergence of the algorithms and
under the hypothesized model is the best choice. Therefore we will assume here this setup which we
briefly explain now.

Given a fixed set A ∈ βd the (artificial) censoring leads to consider the censored log-likelihood function:

Lθ/A(x) := IA(x) log fθ(x) + IAc(x) log IP θ(Ac), x ∈ IRd, (3)

where 0×∞ is taken as 0 and IA denotes the indicator function of the set A.
The empirical censored log-likelihood based on a sample of size n is

IPnLθ/A = IPnIA log fθ + IPn(Ac) log IP θ(Ac).
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We recall that, under this model, the information we handle is not only the sample points belonging
to A, but we are also assuming as known the number of points in Ac. Also, as soon as we guarantee the
identifiability of the model on A (see Theorem 4.1 below) we have the uniqueness of the maximization of
the likelihood under the model: If A ∈ βd has a nonempty interior, then

IP θ0Lθ0/A > IP θ0Lθ/A, if θ 6= θ0. (4)

However, the sample optimization problem has multiple local maxima and singularity points even in
the non-censored case. Therefore, to avoid degenerated or undesirable solutions, we need to impose some
kind of restriction to guarantee the existence of the estimator arising from the sample maximization. We
propose restrictions based on our assumption on the presence of k populations. So, assuming that the
initial procedure is successful in deleting the contaminated data and searching for a representative subset
of the sample data, the set Â should contain sufficient evidence of every population. Therefore, once a
threshold value, u ∈ (0, 1), has been chosen, we consider the restricted set

Θ̂n
u :=

θ ∈ Θ :
1

]
{
r : xr ∈ Â

} ∑
xr∈Â

IP θ(i/xr) ≥ u, for every i = 1, ..., k

 , (5)

where
IP θ(i/x) =

πigφi
(x)

fθ(x)
=

πigφi
(x)∑k

j=1 πjgφj
(x)

(6)

denotes the a posteriori probability of a point x arising from density gφi
. Thus, the whole quotient in (5)

is the sample conditional mean: IPn[IP θ(i/·)/Â].
In defining the set Θ̂n

u the only man-made selection is that of u. Thus, this set is mostly data-driven
and we call it impartial restricted parameter set.

Now we are in position to define the (one step) estimator of θ

θ̂n := arg max
θ∈Θ̂n

u

IPnLθ/Â. (7)

At this level our proposal to solve (7) is based on the EM algorithm (or the Monte Carlo EM when
the involved integrals make the EM infeasible).

Back to Example 2.1. It is not actually necessary to fix very accurate values in the threshold
value u in order to define the constrained parameter space. Let us consider a light one, u = 0.1, and the
trimmed set Â already obtained in Example 2.1.

We applied the EM algorithm to solve (7) with Θ̂n
u given by (5), for the set Â, and u = 0.1. In the

graph on the left in Figure 1 the thin (resp. thick) ellipses show the 95%-level curves of the weighted
true (resp. estimated) normal distributions in the mixture. The solution given by the EM starting from
the 3-means initial solution is shown in the graph on the right in violet. As already shown in [17] the
poor choice of initial value leads to a very bad solution. However, even with good initial solutions, the
EM algorithm would exhibit a bad behavior in this case due to contamination. •
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2.2.1 Iterations: Improving the trimming regions

We still have some problems which will be eased with the iterative procedure developed in this subsection.
The noted drawback of the k-means should be corrected to better reflect the structure of the mixture
through a union of k ellipsoids with different shapes and sizes. We should also improve the use of the
information incorporating into the active data set as many (good) data as possible. These facts are patent
in the yet unsatisfactory solution provided for our example (as to be expected taking into account the
relative size of the set on which we based the estimation).

On the other hand, it would be desirable to recover the principle of affine equivariance of the estima-
tors, once we discarded the possible contaminating data.

In order to advance in the aforementioned directions we mimic the EM-algorithm in the following
way. As a result of the already described step 1, we have a value of the trimming parameter α1 = α,
an estimated active trimming set A1

n = Â and an estimate θ1n = θn of the parameter. We will denote
θ1n = (πn,11 , ..., πn,1k , φn,11 , ..., φn,1k ).

Let m ∈ IN and let α2, ..., αm ∈ (0, 1), α1 > α2 > ... > αm. Step 2 consists in replacing the trimming
set A1

n by the set A2
n composed of the union of the ellipsoids given by the 1 − α2 level curves of the

density functions gφn,1
1
, ..., gφn,1

k
.

Obviously, IP θ1n [A2
n] ≥ 1 − α2 and the equality is not satisfied in general. In order to achieve this,

we should have taken the α2-level curve of fθ1n . The chosen procedure leads to every distribution in the
mixture to be equally well represented, thus improving the estimation of the φ’s parameters. If we were
mostly interested in the estimation of the π’s parameters, the α2-level curve of fθ1n would be our proposal.
This precise selection is not too important, and we have chosen the proposed one just to fix ideas.

Now, we can obtain θ2n, the MLE associated to the censored likelihood function Lθ/A2
n

with the same
impartial restrictions as those used in step 1. Then we repeat the process using the trimming sizes
α3, ..., αm and, for every αi, the last estimation θi−1

n as the initial value for the EM algorithm, the active
trimming set Ain constructed as in step 2 from θi−1

n and the new trimming level. The process continues
until a stopping criteria is met (maybe penalizing the censored likelihood) or until the value m is reached.

We keep the initial restrictions, based on the trimmed k-means, to avoid the possibility of a slow,
step by step, degeneration of the estimated parameters of some distribution in the mixture. The good
performance of the trimmed k-means, with a high trimming level to select representative zones of the
clusters, and the nature of our restrictions justify the adequacy of keeping this choice as fixed.

We wish to remark on the different kinds of initial solutions used to start the EM algorithm in
step 1 and successive steps. From step 2 on, the initial values are the previous estimations given by
the procedure for the whole parameter. This should provide a more representative subsample, with a
proportional presence of sample points of every distribution making up the mixture.

In relation with the equivariance properties of the procedure we must point out that

• The procedure based on the trimmed k-means is equivariant with respect to isometries up to
constants (i.e. transformations T verifying that for some λ, λT is an isometry).

• The iterations allow much of the affine equivariance of ML to be recovered, because the effect of
our initial choice gradually disappears through the sequence of estimations.
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Back to Example 2.1. In both graphs in Figure 1 the thin ellipses show the 95%-level curves of the
weighted true normal distributions in the mixture; while the thick ellipses show the estimated 95%-level
curves of the normal distributions in the mixture given by the method when based on one step (graph
on the left) and on several steps (graph on the right).

The three inside (resp. outside) yellow ellipses show the intermediate adaptive regions corresponding
to 50% (resp. 25%) trimming size. The thick ellipses show the 95%-level curves corresponding to the
final estimation obtained on the basis of the adaptive region with a 5% trimming size. •

3 The method in action

In this section we present the method acting in several examples. Examples 3.1 and 3.2 are based on
simulated data, while Example 3.3 is based on a real data set analyzed in [17]. In Example 3.4 we present
a real data set which has been already analyzed by Jorgensen in [14] and later by Markatou in [16] and
permits to illustrate the performance of our method from the data analysis point of view. Example 3.5
exhibits the behaviour of the process involved in the obtention of the estimator paying special attention
to the behaviour of the cells. It is also based on simulated data. The graphs are sufficiently eloquent so
we will usually not provide the explicit values for the data or for the estimations.

We will compare our method with two approaches: with the classical MLE and with the estimation
based on a mixture of multivariate t distributions. The MLE will be obtained with the EM algorithm
employing the k-means as the initial solution.

The mixture of t distributions was proposed as a robust alternative for estimation in the mixture
normal model (see Section 7.3 in [17]). It is based on the use of a variant of the EM algorithm (the
ECM algorithm) to estimate the parameters assuming a mixture of multivariate t distributions, including
the estimation of the degrees of freedom (which we assume to be the same for every distribution in the
mixture) and scale matrices. We carry out he computations with the EMMIX algorithm of McLachlan,
Peel, Basford and Adams, using the k-means as an initial solution, but also starting from 100 initial
randomly chosen solutions, choosing between the results the one that provides the maximum of the
likelihood function associated with the mixture of t distributions.

Note that for large values of the degrees of freedom there are no practical differences between the
multivariate t and the normal distributions. Therefore, the multivariate normal mixture could be consid-
ered as a particular case of the t mixture and often the estimations obtained from both models are very
similar.

As a general background for the presented graphics, the different colors or symbols show the assign-
ment of the points to the clusters given by the procedure used to produce the initial solution (i.e. the
k-means or the trimmed k-means procedure). Since we use multiple initial solutions to compute the
multivariate t mixture solutions, when provided, these solutions are considered as the best ones that the
method can achieve, but we do not give the initial solutions from which they arose. The cross symbol is
always assigned to the trimmed data. The thin (resp. thick) ellipses shows the 95%-level curves of the
weighted true (resp. estimated) normal distributions in the mixture.

With respect to the estimations produced through our proposal, in order to show the scarce influence
of using very accurate values in the separation threshold to define the constrained parameter space, we
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have used a light one (u = 0.1) in the examples in this section. Moreover, unless otherwise stated, we
start with an initial trim of 50% of the data and the final region contains 95% of the points in the sample.

We want to remark that the solution provided to Example 2.1 by the t mixture model is similar to
that obtained with our method. This often happens for symmetrical contamination, where both methods
generally show a good performance.

Example 3.1 The first example is a variation of Example 2.1 obtained by changing the 20 contaminating
data for another 20 points which constitute a well concentrated contamination arising from a uniform
distribution on the square [0.5, 1.5]× [−8,−7].

Figure 2: Plots of the 95% ellipses of the true distribution (thin ones) and the estimated distributions
for Example 3.1.

Figure 2 shows the behavior of the different methods applied to the new contaminated data set.
The graph on the right provides the solution obtained through our method, while the plot on the left
side shows the behavior of the estimations provided by the EM algorithm for the normal mixture and t
mixture models (which in fact almost coincide).

In this example, the (bad) behavior of EM for the t mixture model is similar to that EM for the
normal mixture model. In fact, it is the MLE procedure which is unable to handle the problems arising
from the presence of some concentration of outliers. •

Example 3.2 Here we analyze the behavior of the methods in a 10-dimensional problem. The mixture
is composed of the product measure of a 8-variate normal distribution with zero mean and covariance
matrix equal to 8 times the identity matrix on IR8 and a mixture of three bivariate normal distributions
with parameters

πi = 1/3, i = 1, 2, 3;µT1 = (−9, 0), µT2 = (1, 5), µT3 = (3.5,−3.5);
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Σ1 =
(

16
0

0
16

)
,Σ2 =

(
8.5
−7.5

−7.5
8.5

)
,Σ3 =

(
1
0

0
1

)
.

Figure 3: Plots of the two last components of the 95% level ellipsoids of the true distribution (thin ones)
and the estimated distributions of Example 3.2.

The analysis has been carried out over a sample of size 600, slightly contaminated by 10 additional
data obtained from a uniform distribution on the parallelepiped [−4, 4]8× [6, 10]× [11, 19]. The graphs in
Figure 3 show the plots of the last two dimensions of the solutions. The graph on the left corresponds to
the solution given by the EM algorithm starting from the 3-means as the initial solution (violet) and to
the solution provided by the t mixture model (yellow). We should note that the violet solution is nearly
equivalent to a local maximum found by the EMMIX algorithm for the t mixture model. Also note the
bad behavior of both methods in this problem due to the curse of dimensionality. The graph on the right
shows the solution obtained with our method. •

Example 3.3 This example uses the crab data set in Campbell and Mahon [2]. We analyze the subset
corresponding to the blue crab species, which includes 50 males and 50 females. The fit, by a mixture
of two normal distributions, to the bivariate data provided by the RW and CL variates is studied in
Peel and McLachlan [18] and in [17]. That analysis mainly addresses the fitness and robustness of the t
mixture model in the classification framework. The analysis includes detailed comments on the influence
of the homocedasticity hypothesis on the estimation, showing a better performance of the estimator
without such restriction. In fact this constraint produces an unnecessary overlapping of the estimated
distributions, so we do not consider it in our analysis.

Here we give a comparative solution for these data with a contamination, provided by three outliers
included in the left upper corner in the plot of Figure 4 which even cause the t mixture model approach to
break down. To ease the comparisons the graph shows the true sex group of the crabs through different
marks.

The solutions provided by the EM algorithm starting from the 2-means as initial solution (violet) and
the solution provided by the t mixture model (yellow) coincide. Our solution is obtained using the 0.7-
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Figure 4: Plots showing the 95% ellipses for the estimated distributions and sex of the Blue Crab Data
set of Example 3.3.

trimmed 2-means as the initial region (leading to the colored points), a separation threshold of u = 0.1,
and a final trimming size of 5%. This time we have chosen a higher initial trimming level than usually
because, if not, the very elongated shapes of the groups could make impossible to choose a representative
region of both populations based on two balls of the same radius. •

Example 3.4 This example differs from the precedent ones by three main facts: It is based on a real
data set, the data are univariate and the number of components in the mixture is unknown. Moreover
in previous analysis it has been assumed as a simplification of the model that the subyacent populations
have the same variance, a fact that enormously simplifies the problem by avoiding singular solutions. In
consequence, under such assumption, the use of restrictions is not necessary to obtain the estimators.
The data, represented by the bars in Figure 5, are constituted by the lenght of 222 scallops caught in an
area of 79 m2 in Mercury Bay, New Zealand, and present a clear component of smaller shellfish containing
the bulk of the observations and a more confused and spread out tail of larger animals. An additional
trouble for the analysis is the scarce precission of the measurements, leading to many repetitions.

This data set was first treated by Jorgensen, in [14], to introduce some diagnostic statistics that
permit the analysis of the influence of data in the estimation of a finite mixture. Jorgensen, arguing
from the fact that individual scallops have a diminishing rate of linear growht, considers unlikely a great
heterogeneity within a cohort. Thus, if the data within the range 62-82 mm constitutes one component,
the remaining data must constitute at least two. In the absence of other information, Jorgensen opted
by fitting a mixture of three normal distributions with the same variance π1N(µ1, σ

2) + π2N(µ2, σ
2) +

(1 − π1 − π2)N(µ3, σ
2), noting the excesive influence of the value 126 mm as well as the very scarce

representation of the third (in importance) distribution.
Later, in [16], Markatou introduced the weighted likelihood approach in the framework of the esti-

mation of finite mixtures, and worked two examples of mixtures of normal distributions in the real line
with same variance. The weighted likelihood approach is based on weighting the terms in the likelihood
equation according with a measure of discrepancy of the data with respect to the model. This procedure
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involves the use of a previous estimation based on kernel density estimation, the choice of an adequate
discrepancy measure and the use of the method of moment estimates on multiple bootstrap subsam-
ples to identify the important data substructures. The paper also provides a stopping rule to terminate
the weighted likelihood algorithm. In the analysis, with two normal components in the mixture, the
weighted likelihood method produced the values (0.804, 71.643, 95.287, 4.856) for (π, µ1, µ2, σ) while
the non-robust maximum likelihood method (through the EM algorithm) gave (0.799, 72.243, 100.163,
6.295). Moreover in two cases from the 100 initial bootstrap root searches, a root corresponding to the
third component was identified. By fitting a mixture based on three normal distributions the maximum
likelihood estimator gave the estimate (0.764, 0.163, 71.557, 92.830, 110.514, 4.540), while the weighted
likelihood procedure gave the values (0.768, 0.156, 71.533, 92.265, 108.554, 4.38). Markatou also reported
that, in agreement with Jorgensen, the only value which obtained a remarkable low weight in the weighted
likelihood equation was that of the scallop of lenght 126 mm.

With respect to our method we must remark that the scarce presence of some cohortes in the data
avoids the use of high initial trimming levels. This would completely eliminate the presence of some
sub-populations in the sample. In fact the first analysis should be to answer what is the minimum size of
a subsample to be considered as a subjacent population in the data or simply as contamination. Taking
into account the observation of Jorgensen about the heterogeneity within a cohort in our opinion there
are two possibilities for the analysis:

• To fit a mixture with three components and same standard deviation and a final small trimming
size. In this way we want to elliminate only the troublesome data that could be not well explained
by the mixture. This final trimming size permits to mantain the assumption on equal variances for
the components that, in other case, could not be justified taking into account that the spread tail
of larger animals could be constituted by three or more cohorts of scallops.

• To fit a mixture with two components and same standard deviation with a final moderate trimming
size. This would reduce the contamination effects of a third (and may be more) component in the
estimation, giving more precission to the estimates of the parameters of the two main components
in the sample.

The graphics in Figure 5 show in a comparative way the estimated weighted densities corresponding
to every component in the mixture, according to the estimation method employed and the number of
components assumed.

For the estimation in the three components setup we used an initial trimming size of 2%, that produced
an initial 3-cell given by the interval (61.9526, 113), thus the trimming data were the four data with greater
lenght. The final trimming size was 0.5% and the only discarded value was 126, which agrees with its
more influential character in Jorgensen and Markatou reports. Our final estimation was (0.7672, 0.1573,
71.4723, 92.3579, 108.7987, 4.4640).

In the two components setup we used 20% as the initial trimming size, leading to the 2-cell given
by [65, 77.3221)∪(85.0113, 97.3335). The final trimming size was 10%, which produced the final 2-cell:
(62.1197, 80,5475)∪(83.9271, 102.3549) and the estimation (0.8229, 71.3183, 93.1549, 5.2690).

As a remarkable (and distinguishible) fact we want to point out that under both models our method
produced coherent estimations for the two main components in the mixture. This would be also coherent
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with the observations of Jorgensen and could explain the excesive spread of the tail of larger animals by
the presence of a third not well defined cohort, that could be also considered as a noise effect.

Figure 5: The bars represent the number of scallops with same lenght corresponding to the abscises
axis. In each graph the curves of same colour give the estimated weighted densities for the distributions
composing the mixture. To make more apparent the graphics the curves are scaled according to the total
number of scallops. In the upper graph the estimations based on the assumption of three components
are represented, while the lower graph show those based in two components. Blue curves correspond
to the maximum likelihood estimators and green curves are those reported by Markatou. Red curves
correspond to our estimations based on initial trimming sizes of 2% (upper) and 20% (lower) and final
trimming sizes of 0.5% and 10% respectively.

Example 3.5 This example is included to exhibit the process of enlargement and adaptation of the cells
and the corresponding estimations based on these (illustrated by their 95% level curves) through the
successive iterations which compose the procedure. The model is a mixture of three bivariate normal
distributions with parameters

πi = 1/3, i = 1, 2, 3;µT1 = (−8, 0), µT2 = (−4, 10), µT3 = (10, 0);
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Σ1 =
(

16
0

0
16

)
,Σ2 =

(
16
−10

−10
16

)
,Σ3 =

(
16
10

10
16

)
.

The analysis is based on a sample of size 3000 contaminated by the additional inclusion of 90 data
obtained from a uniform distribution on the set

{(x, y) ∈ [−30, 30]× [−30, 30] : x < −15 or x > 15 or y < −10 or y > 10}.

The graphics in Figure 6 show the evolution of the cells corresponding to trimming sizes of 80%, 50%,
25% and 5% (marked in red) as well as the corresponding estimated ellipses. As in the other examples
the restricted parameter set remained fixed in the process. It is based on the 80%-trimmed 3-means with
a separation threshold given by u = 0.1.

The final estimates are:

π̂1 = 0.3668, π̂2 = 0.2973, π̂3 = 0.3359,

µ̂T1 = (−7.1778, 0.5706), µ̂T2 = (−4.5442, 10.5898), µ̂T3 = (10.0608,−0.0382);

Σ̂1 =
(

23.9378
5.9790

5.9790
23.1718

)
, Σ̂2 =

(
18.7432
−9.3451

−9.3451
15.8172

)
, Σ̂3 =

(
14.1699
7.5683

7.5683
17.6247

)
.

4 Theoretical framework

The following theorem contains the property that constitutes the mathematical justification for the ap-
plicability of the proposed methodology. The proof is an immediate consequence of the characterizations
of identifiability in Yakowitz and Spragins [23] and Proposition 6.1 in the Appendix. Although obvi-
ous, it can be appropriate mentioning that this result could be useless in the applications for specially
unfortunate choices of A.

Theorem 4.1 Let θ1, θ2 ∈ Θ and let A be a d-dimensional open set. If fθ1(x) = fθ2(x), for every x ∈ A,
then θ1 = θ2.

This theorem leads to the validation of the classical argument that justifies the use of MLE in this
framework, given in the next proposition. The classical proof, based on the use of Jensen’s (strict)
inequality, works here.

Proposition 4.2 Let θ0 ∈ Θ. If A ∈ βd has a nonempty interior, then

IP θ0Lθ0/A > IP θ0Lθ/A, (8)

for every θ ∈ Θ such that θ 6= θ0.

The restrictions considered is Section 2.2 are the sample version of the following general framework:
Given γ ∈ Γ and the threshold value u ∈ (0, 1), take

Θγ,u :=
{
θ ∈ Θ :

1
IP [Aγ ]

IP [IAγ
IPθ(i/·)] ≥ u, for every i = 1, ..., k

}
, (9)
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Figure 6: Simulation of 3000 points of a mixture of three 2-dimensional Gaussian distributions plus 90
contaminated observations generated as described in Example 3.3. Thin curves represent the 95% level
ellipses of the true distribution. From left to right and from above to below, thick curves represent the
evolution of the estimated 95% level ellipses by using the cell device when the trimming size takes the
values 80%, 50%, 25% and 5%.
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where IP θ(i/x) was defined in (6).
Thus, Θγ,u is the family of parameters which give to every population an expected probability, con-

ditioned by Aγ , greater or equal than u. We will assume that there exists θ(γ, u; IP ) ∈ Θγ,u such that
θ(γ, u; IP ) := arg maxθ∈Θγ,u

IPLθ/γ , where Lθ/γ denotes Lθ/Aγ
. Of course, as soon as θ0 belongs to Θγ,u

we will have θ(γ, u; IP θ0) = θ0.
If we replace IP in (9) by the empirical distribution IPn, we obtain the restricted set Θn

γ,u (which, for
a general set Â was defined in (5)) and the natural estimate of θ(γ, u; IP )

θ̂n(γ, u; IPn) := arg max
θ∈Θn

γ,u

IPnLθ/γ . (10)

Then, we construct the estimate, firstly, by selecting α ∈ (0, 1), which leads to the parameters γP ≡
γ

P
(α) and γPn

≡ γ
Pn

(α), n ∈ IN , which in turn determine the restricted sets ΘγP ,u and Θn
γPn ,u

in which
we maximize the censored likelihood function. In order to keep the notation as simple as possible, we
will also write θP instead of θ(γ

P
(α), u; IP ) and γn and θ̂n instead of γ

Pn
(α) and θ̂n(γn(α), u; IPn) . We

will also often employ the notation θP = (πP1 , ..., π
P
k , φ

P
1 , ..., φ

P
k ) and θ̂n = (πn1 , ..., π

n
k , φ

n
1 , ..., φ

n
k ).

From now on we will assume that the value u which determines the restricted parametric set is fixed.

Remark 4.3 The impartial restrictions contribute towards allowing the existence of the estimator and
assuring convergence of the EM algorithm to stationary points of the likelihood function. This is a
consequence of Theorem 2 in [22], taking into account that in this setup the likelihood corresponding
to the complete data belongs to the curved exponential family and that the restrictions make the sets{
θ ∈ Θn

γ,u : IPnLθ/γ ≥ IPnLη/γ
}

compact for every η ∈ Θn
γ,u.

For the first statement note that in the model of complete data we assume every value xi to be known
as well as the vector zi = (zi1, ...zik) that explains the subpopulation j from which such xi arises (i.e.
zij = 1 or 0 respectively means that xi arises or not from the j-th distribution in the mixture). Therefore,
the corresponding likelihood function is

n∏
i=1

exp

 k∑
j=1

zij

(
log (πj)−

1
2

log (|Σj |)−
1
2
µjΣ−1

j µj −
1
2
xiΣ−1

j xi + µjΣ−1
j xi

) .

Concerning the convergence of the EM algorithm, notice that

• with probability one, no sample of size n > d of an absolutely continuous distribution on IRd

contains more than d points in the same hyperplane,

• the sets Aγ used to determine the sample-based restrictions are Aγn
, which contain at least [α · n]

points.

From here, it is possible, by slightly modifying the proof of Proposition 4.4 below, to ensure that from
a fixed n, depending on α, d and u, the set Θn

γ,u allows us to define the estimator through (10) and even
more:

Let 0 < α, u < 1, γ ∈ Γ and IPn be the sample distribution based on a sample X1, ..., Xn of an
absolutely continuous distribution. Let us denote φmi = (µmi ,Σ

m
i ) and let λmi be the smallest eigenvalue

of Σmi . Assume that n > 2(d + 1)/(u(1 − α)), that IPn(Aγ) ≥ 1 − α, and that, for a sequence θ∗m =
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(πm1 , ..., π
m
k , φ

m
1 , ..., φ

m
k ) ∈ Θn

γ,u, m ∈ N there exists i ∈ {1, ..., k} such that one of the following conditions
is satisfied

1. limm λ
m
i = 0.

2. limm ‖φmi ‖ = ∞ and lim infm λmj > 0, j = 1, ..., d.

3. limm π
m
i = 0 and lim infm λmj > 0, j = 1, ..., d.

Then limm IPnLθ∗m/γ = −∞ a.s. holds.

Thus if, for some η ∈ Θn
γ,u, the set Sη =

{
θ ∈ Θn

γ,u : IPnLθ/γ ≥ IPnLη/γ
}

is not compact then there
would exist a sequence {θm} ⊂ Sη without accumulation points in Sη. But, Lθ/γ being continuous in θ,
Sη should be a closed subset of Θγ,u, so the sequence should verify any of the conditions (a), (b) or (c),
leading to IPnLη/γ ≤ limm IPnLθ∗m/γ = −∞. •

4.1 Asymptotics

To improve the readability we will not discuss the problem of uniqueness of the trimmed k-means but we
will suppose throughout that every theoretical probability has a unique trimmed k-mean (however, see
Remark 4.6).

The proof of the consistency of our procedure will be based on an usual compactness argument stated
in Proposition 4.4. We want to emphasize the interest of this proposition for providing arguments such
as those in Remark 4.3 on the robustness of the estimator.

Proposition 4.4 Let θ∗n = (δn1 , ..., δ
n
k , ψ

n
1 , ..., ψ

n
k ) ∈ Θn

γn ,u
, n ∈ IN , where ψni = (µni ,Σ

n
i ). Let us denote

by λni the smallest eigenvalue of Σni . Let us assume that there exist i ∈ {1, ..., k} and a subsequence {jn}n
which satisfy one of the following conditions

1. limn λ
jn
i = 0.

2. limn ‖ψjni ‖ = ∞ and lim infn λ
jn
j > 0, j = 1, ..., d.

3. limn δ
jn
i = 0 and lim infn λ

jn
j > 0, j = 1, ..., d.

If the random sample was generated from an absolutely continuous distribution, then limn IP jnLθ∗jn
/γjn

=
−∞ a.s.

Theorem 4.5 (Consistency) Let {Xn} be a random sample of an absolutely continuous distribution
IP . If θP is unique and there exists δ > 0 such that θP ∈ Θγ

P
,u+δ, then

lim
n
θ̂n = θP a.s. (11)

Remark 4.6 Theorem 4.5 holds without the uniqueness of the trimmed k-means assumption, because,
without this hypothesis, we should change the statement of Proposition 6.2 to say that there exists a
ν-probability one set Ω0 such that if ω ∈ Ω0, then every subsequence of trimmed k-means of {IPn}
contains a further subsequence which converges to a trimmed k-mean of IP .
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But, if we keep the uniqueness of θP and we apply the argument in Theorem 4.5 to each of the
subsequences for which the trimmed k-means converge, we would have that, if ω ∈ Ω0, then every
subsequence of {θ̂n} contains a further subsequence which converges to θP , and, in consequence, the
whole sequence converges to θP . •

The reasoning leading to the consistency of the procedure is only based on the (a.s.) weak convergence
of the sample probability measures to IP . Therefore, the same proof works to prove its continuity with
respect to the weak convergence:

Corollary 4.7 (Qualitative Robustness) Let IP = IP θ0 for some θ0 ∈ Θ and assume that θ0 ∈
Θγ

P
,u+δ, for some δ > 0. Let {Qn} be a sequence of probability measures that converges in distribution

to IP . Then limn θQn
= θ0.

To obtain the asymptotic law of the estimator we resort to the empirical processes theory, as developed
in Van der Waart and Wellner [21]. We will take advantage of the parametric nature of the trimmed sets

under consideration. To this end, let Γ̃ :=
(
IRd
)k

×
(
M+

d×d
)k × (IR+

)k
indexing the sets constituted

by the union of k ellipsoids. For γ = (m1, ...,mk,Σ1, ...,Σk, r1, ..., rk) ∈ Γ̃, let Aγ :=
⋃k
i=1{x ∈ IRd :

(x−mi)TΣ−1
i (x−mi) ≤ ri}.

We can use arguments of the Empirical Process Theory for the family of functions

GΛ :=
{
mθ,γ := IAγ log (fθ) + IAc

γ
log
(
IP θ

(
Acγ
))
, (θ, γ) ∈ Λ

}
, (12)

and their derivatives with respect to θ:

hθ,γ := IAγ

(
∂

∂θ
log (fθ)

)
+ IAc

γ

(
∂

∂θ
log
(
IP θ

(
Acγ
)))

where Λ is a suitable subset of Θ× Γ̃.
As noted in [4] the extension of the argmax arguments of the Empirical Processes Theory to this

semiparametric model is an easy fact through the extensions of the results of Section 3.2.4 in [21] given
by Theorem 5.2 and Lemma 5.3 in [4]. From these extended statements the results will arise from that
work after some algebra on Donsker classes based on the theory included in [21] as we will prove in
Lemma 6.5.

Theorem 4.8 (Asymptotic distribution) Let IP = IP θ0 , for some θ0 ∈ Θ, and γ0 ∈ Γ̃. If θ0 ∈
Θγ0,u+δ for some δ > 0 and {γn}n is a sequence (possibly random) in Γ̃ such that γn → γ0 a.s. then the

sequence
{
θ̂n(γn)

}
n

of estimators based on the sets Aγn
verifies

√
n
(
θ̂n(γn)− θ0

)
→w N

0,

(
∂

∂θ

∣∣∣∣
θ=θ0

IP θ0hθ,γ0

)−1
 .

The asymptotic covariance matrix can also be expressed as(
IP θ0

(
(hθ0,γ0) (hθ0,γ0)

T
))−1

.
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We want to remark an important (and somehow, surprising) fact already reported in [4]:

Corollary 4.9 Under the hypotheses in Theorem 4.8, the rate of convergence of θ̂n(γn) to θ0 is n1/2 and
does not depend on the rate of convergence of γn to γ0.

On the other hand, our proof of consistency can easily be modified to cover the m-step estimator,
obtained through the iteration of the procedure a fixed number of times, m > 1, as described in Subsection
2.2.1. Once we have the consistency for the first step we automatically have the consistency of the
trimming sets involved in the second step and so on up to those involved in the step m. Hence, we will
have the a.s. consistency of the final estimator as well as its asymptotic law, given in Theorem 4.8, but
with γ0 being the parameters which determine the (1 − αm)-level curves of the k normal laws involved
in the mixture defined by θ0.

4.2 Measures of robustness

Besides the qualitative robustness given in Corollary 4.7, the theoretical study of the robustness properties
of a method is usually carried out through the so-called quantitative approach. The influence function (IF)
and the breakdown point (BP) are the central concepts of Hampel’s infinitesimal approach to robustness.
However, as far as we know, the available proposals for robust estimation in mixtures did not include
this kind of analysis until Hennig’s work on the BP, [12].

The IF of the trimmed k-means method was obtained in [7], including a graphical analysis showing
its behavior for some variants of a mixture of normal univariate distributions. We resort to a similar
explanation that permits conclusions to be obtained from the visualization of the involved graphics.

In order to get the IF we will first assume that we have a fixed set A ≡ Aγ , γ ∈ Γ̃. In this case, the
IF of θ̂n(γ), IF (x, θ̂n(γ), θ0), can be obtained as the IF of a MLE, thus

IF (x, θ̂(γ), θ0) = −

(
IP θ0

(
∂

∂θ

∣∣∣∣
θ=θ0

hθ,γ

))−1

hθ0,γ(x). (13)

Because of the continuity of the estimator with respect to γ, if we apply the idea in the proof of
Theorem B.1 in [7] to the points that do not belong to the boundary of Aγ , it is easy to see that the IF
for the estimator θ̂n(γn) coincides with that of θ̂n(γ), if {γn}n ⊂ Γ̃ and γn → γ ∈ Γ̃. Therefore, the IF
for the one step estimator based on the α-trimmed k-means will be the one given by (13) with Aγ being
the union of the k balls associated to the α-trimmed k-means of IP θ0 . On the other hand, for the m-step
estimator, m > 1, the IF will be also (13) with Aγ being the union of the ellipsoids defined by the 1−αm
level curves of the k normal laws involved in the mixture determined by θ0.

The use of this last region, better adapted to the underlying mixture, is not important if the parent
distribution is symmetrical. However, it becomes very useful in non-symmetrical situations. This can
be analyzed through the expressions in (14) and is made apparent in the graphs in Figure 7. This
figure shows, in the lower row, an asymmetric case in which the mixture is 1

4 (N(−3, 1.5) + N(0, 1.5) +
2N(3, 1.5)). The left-hand side graph shows the IF when the k-means are used and the right-hand side
one when employing the ellipsoids. In the upper row in Figure 7, we analyze the symmetric mixture
1
3 (N(−5, 1)+N(0, 1)+N(5, 1)). Since in this case there is no difference between both regions, to ease the
understanding of the figure, we show on the left-hand side the IF for the means and on the right-hand
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side the IF for the variances. To avoid excessive noise in the images we excluded the IF for the weights of
the component distributions. In all graphs the black curves represent the corresponding density functions
augmented 40 times.

Figure 7: IF’s for the means (blue, green and red) and the variances (cyan, yellow and magenta) of the
distributions making up a mixture of three normal distributions. The upper graphs correspond to the
mixture 1

3 (N(−5, 1) +N(0, 1) +N(5, 1)). The graph on the lower left (resp. lower right) presents the IF
for the one-step (resp. m-step) estimator for the mixture 1

4 (N(−3, 1.5) + N(0, 1.5) + 2N(3, 1.5)). The
black curves represent the corresponding density functions augmented 40 times.

To get a more accurate idea of the IF, we include the expression of the components (in πi, for i =
1, ..., k−1, and µi and Σi, for i = 1, ..., k) of hθ,γ(x) as a function of θ = (π1, ..., πk−1, µ1, ..., µk,Σ1, ...Σk)

(14)
∂

∂πi
Lθ/A(x) =

(
IP θ(i/x)

πi
− IP θ(k/x)

πk

)
IA(x) + IP θ

[
IP θ(i/x)

πi
− IP θ(k/x)

πk

/
Ac
]
IAc(x)

∂

∂µi
Lθ/A(x) = Σ−1

i (x− µi)IP θ(i/x) IA(x) + IP θ
[
Σ−1
i (x− µi)IP θ(i/x)/Ac

]
IAc(x),

∂

∂Σi
Lθ/A(x) =

1
2
(

Σ−1
i (x− µi)(x− µi)TΣ−1

i − Σ−1
i

)
IP θ(i/x) IA(x)

+
1
2
IP θ

[(
Σ−1
i (x− µi)(x− µi)TΣ−1

i − Σ−1
i

)
IP θ(i/x)/Ac

]
IAc(x).
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The study of the BP of the method is not as simple as that of the IF. Indeed, we do agree with Garćıa-
Escudero and Gordaliza [7] and Hennig [12] on the peculiarities of the BP in this setting. Pathological
constellations of data may break down even the trimmed k-means procedure through the substitution
of only one point by another. But more favorable configurations may have a BP equal to the trimming
level. Therefore, the BP of a procedure in this framework must be considered as data dependent. In any
case, we must stress the fact that, after the arguments in Remark 4.3, the impartial restrictions link the
estimations to the procedure used to obtain the initial clusterized region. Thus, the BP of our, one or
m-step, estimators for the location parameters is very related to that of the trimmed k-means.

In Donoho and Huber’s replacement sample version, some data are replaced by unfortunate data
points and the optimistic upper bound min {(dαne+ 1)/n,mini=1,...,k ni/n}, where ni is the size of the
i-th cluster, is realistic for the location parameters in most well-clusterized data sets (see [7]).

Alternatively the BP may be analyzed under a general assumption of well-clusterized data in an
idealized situation which permits comparisons between procedures under controlled assumptions in a
kind of ‘in vitro’ analysis. Hennig, in Section 4 in [12], introduces a such ideal model and analyzes several
estimators for mixtures using his addition r-components BP which is defined as follows:

If l is the minimum number of points to be added to the sample to break down r parameters in the
estimation, then, the addition r-components BP is l/(n+ l).

Let us assume that Xm = {x1,m, x2,m, ..., xn,m},m ∈ IN is a sequence of data sets clusterized in k ≥ 2
groups Aim, i = 1, ..., k; m ∈ IN :

A1
m = {x1,m, ..., xn1,m}, A2

m = {x(n1+1),m, ..., xn2,m}, ..., Akm = {x(nk−1+1),m, ..., xnk,m}.

Following the ideas in Section 4.1 in [12] we consider this sequence Xm as an ideal array of well
k-clusterized data sets whenever there exists b <∞ such that for every m ∈ IN ,

max
1≤i≤k

max{‖xjm − xlm‖ : xjm, xlm ∈ Aim} < b and (15)

lim
m→∞

min{‖xjm − xlm‖ : xjm ∈ Ahm, xlm ∈ Aim; i 6= h} = ∞. (16)

Under this idealized model the addition of r outliers must be analyzed under the assumption of a sequence
Ym = {y1.m, ....yr.m} added to Xm to constitute the new data sets Xm ∪ Ym verifying also that

lim
m→∞

min{‖yjm − xlm‖ : yjm ∈ Ym, xlm ∈ Xm} = ∞, and (17)

lim
m→∞

min{‖yjm − ylm‖ : yjm, ylm ∈ Ym, j 6= l} = ∞. (18)

Breakdown of an estimator En must be understood here in a relative fashion, relating the behavior of
the estimator acting over Xm and over Xm∪Ym for large values of m. In particular for estimators related
to location (including here the k-means) breakdown holds if for every rearrangement of the components
(if more than one) of the estimator it holds ‖En(Xm) − En(Xm ∪ Ym)‖ → ∞ as m → ∞. However, for
the estimator of the weights, components breakdown would happen if the minimum weight estimation
under Xm converges to zero while under Xm ∪ Ym remains bounded away from zero, or vice-versa. For
the covariance estimators, breakdown would happen, if the smallest eigenvalue of the estimated matrix
under Xm converges to zero while under Xm ∪ Ym remains bounded away from zero, or vice-versa, but
also if that is not the case but one of the sequence of matrices is bounded while the other is unbounded.
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Hennig handles this ideal model of data sets to show (Theorem 4.4 in [12]) that r < k added outliers
break down the estimation of r parameters through the ML estimation, as well as through robustified
versions like the t-procedure of McLachlan and Peel or the Fraley and Raftery proposal (also considered
in [17]). In particular, the addition of only 1 outlier breaks down the estimation of at least one parameter.

Note that this idealized model guarantees, in Hennig’s words, that “eventually there exists a mixture
component corresponding to each group, all mixture components correspond to one of the groups and the
maximum of the log-likelihood can be obtained from the maxima considering the groups alone; that is, all
groups are fitted separately”. Therefore it is easy to show that the α-trimmed k-means do not break
down unless we add more than dαne outliers. Thus the link constituted by the impartial restrictions (5)
and an argument similar to that arising from Lemmas 4.1 and 4.2 in [12] (Proposition 4.4 plays here an
analogous role) guarantee that our m-step procedure does not break down, if we add r ≤ dαne outliers,
at least whenever the number of points of every cluster Aim is greater or equal than dαne + d + 1 and
they are in general position. This means that every affine hyperplane H ⊂ IRd contains, at most, d points
of Aim and prevents against the degeneracy of some distribution in the mixture into a lower dimension,
which could happen if the data points contained in any of the balls associated to the trimmed k-means
can live in a space of lower dimension. This leads to the following, even pessimistic, result on the BP of
our procedure assuring the lower bound dαne/(n+dαne) for the addition BP of 1-component in Hennig’s
model.

Theorem 4.10 Let Xm = {x1,m, x2,m, ...xn,m},m ∈ IN be an ideal array of data sets in IRd well clus-
terized in k ≥ 2 groups Aim, i = 1, ..., k; m ∈ IN , verifying (15) and (16), such that the points in
every group Aim are in general position and their numbers verify ni − ni−1 ≥ dαne + d + 1, i = 1, ..., k
(n0 = 0). If r ≤ dαne, then the m-step estimator of the parameter θ ∈ Θ, corresponding to the mixture of
k multivariate normal distributions, does not break down by the addition of r outliers through a sequence
Ym = {y1,m, ..., yr,m} verifying (17) and (18).

5 Discussion

It is well known that there is a strong connection between the mixture and the clustering modellings.
This connection is often used to obtain a cluster configuration from an estimation of the parameters
in a mixture. Here we exploit this connection just in the opposite way. Our estimation objective is
understood as the improvement of a clustering process to estimate the parameters of every group as
well as in their respective weights in the mixture. This point of view allows to take advantage of robust
clustering methods to produce robust estimators in the MNMM estimation setup.

We assume the knowledge of the number of populations in the mixture. Although in some situations
this assumption can hinder the model, it is realistic for a very large amount of problems which involve a
priori information of the existence of a determined number of groups in a physical sense (corresponding
to say sex, species, kind of illness,...).

The introduced procedure is based on making the estimation from a highly representative subset
of the data. The choice of such a set is adaptive and begins with a preliminary selection of a core of
the data through a clustering-based trimmed procedure. Subsequent improvements are based on ML
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estimations over increasing sub-sets of representative data obtained in each step by trimming according
to the estimated model in the previous step.

The additional tools for the estimation process are the EM algorithm, for the involved computations,
and impartial restrictions on the parameters, which aid to avoid singularities and spurious solutions.
These data-driven restrictions require that the sub-populations which constitute the mixture must be
sufficiently represented in the sample.

The proposed method shows a good performance not only under symmetrical contamination but also
under concentration of outliers or in the presence of bridge points which often cause other proposals to
break down. The estimators obtained are asymptotically gaussian and qualitatively robust. Moreover,
the analysis of the BP of the procedure under Hennig’s idealized model shows that it greatly improves
those of the available procedures. The IF shows finite gross error sensitivity for the estimators. Also,
as usually happens for the methods involving data trimming, the IF is discontinuous in the boundary of
the region used to trim. The influence of non-trimmed points on the estimation of the parameters of one
distribution are modulated by their a posteriori probability of arising from that distribution.

Mention should be made of the relevance of a good choice of the active data set in the initial step as
well as a controlled enlargement of the active set in the successive steps. Initial active data set can be
successfully selected through the trimmed k-means. In practice, even with this simple method, through
the improvement steps based on ML we shall often detect adequate shape and location parameters for
the groups as to try the final joint estimation in a successful way. Through a high trimming level this
robust method can give a good representation of each distribution in the mixture by providing a noise-
free data set focused on the uncontaminated cores of the k clusters of the data. When employing a
high trimming level, this procedure takes advantage of the fact that if the distributions in the mixture
are well separated and the trimmed mixture is composed by k clusters, it can serve to prevent masking
effects that hide the nature of the mixture. We recall that in the mixture model context, noise effect on
any distribution composing the mixture can arise not only from contaminating data due to an external
stream but also from the contiguous distributions living in the mixture. This choice is computationally
feasible and can be modulated through the initial trimming level to obtain, in well clusterized data sets,
our goal. However most of the asymptotic mathematical analysis of the estimators is valid for other more
elaborated clustering-based trimming procedures, as soon as they are consistent.

To conclude, we want to point out that the estimation in the mixture model inherits so many difficulties
as to make reliable no method when facing specifically designed unappropriated problems. Our proposal
shows a nice behavior under the analyzed conditions, where other methods show a poor one. Variations of
the presented method, adapted to more involved problems, can be also considered handling other initial
robust clustering methods. Therefore we consider that the methodology can be included in the toolbox
of applied statisticians as an alternative to other available methods.

6 Appendix

The following proposition leads to a simple proof of the identifiability of our model.

Proposition 6.1 Let Y be the set of density functions of non-singular multivariate normal distributions
on IRd. Let A ⊂ IRd be a non-empty open set and Ψ be the function defined by Ψ(f) = fIA on the set
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〈Y〉 of the linear combinations of elements of Y. Then Ψ is a linear isomorphism of 〈Y〉 on the image
space.

PROOF.- Obviously Ψ is linear. To show that Ψ is an injective map, let φ1 6= φ2 and assume that
gφ1(x) = gφ2(x) for every x ∈ A. Then, if x ∈ A,

(x− µ1)
T Σ−1

1 (x− µ1)− (x− µ2)
T Σ−1

2 (x− µ2)) = 2 log

(
|Σ2|

1
2

|Σ1|
1
2

)
.

Since the expression on the left hand side can be expanded in a power series, it must also be constant
on IRd, thus (µ1,Σ1) = (µ2,Σ2) , and both distributions are the same. •

For the proofs of the results on consistency we note that from the Glivenko-Cantelli theorem, the
sequence {IPn}n (a.s.) converges in distribution to the probability measure IP . In fact (from Skorohod’s
Representation Theorem for the weak convergence) we will assume that {IP , IP 1, ...} are the distributions
of some random vectors {Y0, Y1, ...} such that Yn → Y0 ν-a.s.

In the following proposition we enumerate some basic properties of the trimmed k-means which are
taken (or are easily deduced) from [7].

Proposition 6.2 If IP is absolutely continuous, then the sequence of trimmed k-means and associated
trimmed regions of IPn verify:

1. limn ‖γn − γP ‖ = 0.

2. limn IAγn
(Yn) = IAγ

P
(Y0), ν-a.s.

3. limn IPn

[
Aγ

n

]
= IP

[
Aγ

P

]
= 1− α.

4. limn IPn

[
IAγn

log fθP

]
= IP

[
IAγ

P
log fθP

]
.

5. limn IPnLθP /γn
= IPLθP /γP

.

PROOF OF PROPOSITION 4.4.- Given φ ∈ Φ, we denote M(φ) := sup{gφ(x) : x ∈ IRd}. Let us assume
first, that 1 holds. Let {j′n}n be a subsequence of {jn}. There exists a subsequence {j∗n}n of {j′n}n and
a non-empty set I ⊂ {1, ..., k} such that

if i ∈ I, then lim
n
λjni = 0

if i /∈ I, then lim inf
n

λjni > 0.

Moreover, we can also assume that there exists i0 ∈ I such that

M
(
ψ
j∗n
i0

)
= sup

{
M
(
ψ
j∗n
i

)
: i ∈ I

}
, n ∈ IN.

Obviously,
K1 := sup

i/∈I
sup
n
M
(
ψ
j∗n
i

)
<∞. (19)
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Without loss of generality, we can assume that i0 = 1 and, to avoid complications in the notation, we
will denote j∗n = n, n ∈ IN .

Given r > 0, let Hr :=
{
x ∈ IRd : 〈x− µn1 , vn〉2 ≤ r2

}
, where vn is the eigenvector associated to λn1 .

Let
rn := inf {r > 0 : IPn[Hr/Aγn

] > u/2} ,

where IPn[A/B] denotes the conditional IPn-probability of the set A given B. From the continuity of
IP , we have that limn IPn[Hrn

/Aγn
] = u/2 and, then, lim infn rn > 0 because, otherwise, it would be

lim infn IPn[Hrn
/Aγn

] = 0. Let

Cn :=
{
x ∈ Hc

rn
∩Aγn

: IP θ∗n(1/x) ≥ u

4

}
.

We have that,

u ≤ lim inf
n

1
IPn[Aγn

]
IPn

[
IAγn

IPθ∗n(1/·)
]

≤ lim
n
IPn[Hrn

/Aγn
] + lim inf

n

1
IPn[Aγn

]
IPn

[
IAγn

∩Hc
rn
IPθ∗n(1/·)

]
≤ u

2
+
u

4
+ lim inf

n
IPn[Cn/Aγn

],

and, as a consequence, lim infn IPn[Cn/Aγn
] ≥ u/4. From here and 3 in Proposition 6.2,

lim inf
n

IPn[Cn] ≥ u(1− α)/4 > 0. (20)

On the other hand, if i ∈ {2, ..., k} and x ∈ Cn, we have that

u

4
≤ IP θ∗n(1/x) ≤

δn1 gψn
1
(x)

δni gψn
i
(x)

.

Therefore, if x ∈ Cn,
sup

i=1,...,k
δni gψn

i
(x) ≤ 4

u
gψn

1
(x) ≤ 4

u
βn1 , (21)

where βn1 = supx/∈Hrn
gψn

1
(x). From here and (19), from an index onward, we have that

IPnLθ∗n/γn
≤ IPn

[
IAγn

∩Cc
n

log fθ∗n
]

+ IPn
[
ICn

log fθ∗n
]

≤ IPn[Aγn
∩ Ccn] log [sup(K1,M(ψn1 ))] + IPn[Cn] log [k4βn1 /u]

≤ log (k4/u) + log+(K1) + log
[
(βn1 )IPn[Cn]

M(ψn1 )
]
,

which converges to −∞ because of (20), M(φn) ≤ (2πλn)−d/2 and

βn1 =
1

(2πλn)d/2
exp

(
−r

2
n

2
(λn)−1

)
.

Thus, we have shown that every subsequence of {jn}n admits a new subsequence (which at the
beginning we called {j∗n}n) such that

lim
n
IP j∗nLθ∗j∗n

/γj∗n
= −∞. (22)
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But this property is only possible if the subsequence {jn}n satisfies (22).
Now, let us suppose that 2 or 3 hold. Let {j′n}n be a subsequence of {jn}n. Obviously, there exists a

subsequence {j∗n}n of {j′n}n which satisfies that for every i ∈ {1, ..., k},

lim inf
n

λ
j∗n
i > 0 and lim

n
‖ψj

∗
n
i ‖ = ∞ or lim

n
ψ
j∗n
i = ψi ∈ Φ,

and there also exists i0 such that limn ‖ψ
j∗n
i0
‖ = ∞, or limn δ

j∗n
i0

= 0. Without loss of generality we can
assume that i0 = 1. As before, we will denote j∗n = n, for n ∈ IN . Let

Dn :=
{
x ∈ Aγn

: IP θ∗n [1/x] > u/2
}
.

Then IPn[Dn/Aγn
] > u/2, and arguing as in (20) and (21), we have that u(1−α)/2 ≤ lim infn IPn(Dn)

and, if x ∈ Dn, that
fθ∗n(x) ≤ k2δn1 gψn

1
(x)/u. (23)

On the other hand, in this case, we have that K2 := supn supiM(ψni ) < ∞. From here and (23) we
have that

IPnLθ∗n/γn
≤ IPn

[
IAγn

∩Dc
n

log fθ∗n
]

+ IPn
[
IDn

log fθ∗n
]

≤ log+(K2) + log (k2/u) + IPn
[
IDn

log(δn1 gψn
1
)
]
,

which converges to −∞ for the subsequence we are considering, and the proof ends as in the previous
case. •

Lemma 6.3 If IP is absolutely continuous and there exists δ > 0 such that θP ∈ Θγ
P
,u+δ, then there

exists N0 ∈ IN such that if n ≥ N0, then θP ∈ Θn
γn ,u

.

PROOF.- From the continuity of the map x :→ IP θP
(i/x) and 2 in Proposition 6.2, we have that

IP θP
(i/Yn)IAγn

(Yn) →a.s. IP θP
(i/Y0)IAγ

P
(Y0). (24)

Now, taking into account that IP θP
(i/·) ∈ [0, 1], we obtain that

IPn

[
IP θP

(i/·)IAγn

]
= ν

[
IP θP

(i/Yn)IAγn
(Yn)

]
→ ν

[
IP θP

(i/Y0)IAγ
P

(Y0)
]

= IP
[
IP θP

(i/·)IAγ
P

]
≥ (u+ δ)IP

[
Aγ

P

]
,

and the proof ends by applying 3 in Proposition 6.2. •

Corollary 6.4 follows from Lemma 6.3 and 5 in Proposition 6.2, taking into account that in Proposition
4.4 we can take the vectors θ∗n as close as desired to the optimum parameters.

Corollary 6.4 If IP is absolutely continuous and there exists δ > 0 such that θP ∈ Θγ
P
,u+δ, then, from

an index onward, the sequence {θ̂n}n belongs to a compact set contained in Θ.
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Now, we are ready to prove the consistency of the procedure.

PROOF OF THEOREM 4.5.- By Lemma 6.3 and the definition of θ̂n, if n ≥ N0, we have

IPn

[
Lθ̂n/γn

]
≥ IPn

[
LθP /γn

]
→ IP

[
LθP /γP

]
, (25)

where the last convergence was stated in 5 in Proposition 6.2.
Let us assume that (11) does not hold. By Corollary 6.4 the sequence {θ̂n}n contains a subsequence

such that
lim
n
θ̂jn = θ∗ = (π∗1 , ..., π

∗
k, φ

∗
1, ..., φ

∗
k) 6= θP ,

and θ∗ ∈ Θ. From 2 and 3 in Proposition 6.2, we have that

Lθ̂jn/γjn

(Yjn) →a.s. Lθ∗/γ
P

(Y0). (26)

However,
Lθ̂jn/γjn

(Yjn) ≤ IAγ
jn

(Yjn) log fθ̂jn
(Yjn),

which is a bounded function, and we can apply Fubini’s Theorem to conclude that

lim sup
n

IP jnLθ̂jn/γjn

= lim sup
n

ν
[
Lθ̂jn/γjn

(Yjn)
]
≤ ν

[
Lθ∗/γ

P
(Y0)

]
= IPLθ∗/γ

P
. (27)

Then, if we could prove that θ∗ ∈ Θγ
P
,u, we would have a contradiction between (27), (25) and the

uniqueness of θP . To prove this, first notice that

IP θ̂jn
(i/Yjn)IAγ

jn
(Yjn) →a.s. IP θ∗(i/Y0)IAγ

P
(Y0). (28)

As the functions IP θjn
(i/·) are bounded by 1, we can apply 3 in Proposition 6.2 to have

uIP
[
Aγ

P

]
= lim

n
uIP jn

[
Aγ

jn

]
≤ lim sup

n
IP jn

[
IP θjn

(i/·)IAγ
jn

]
= lim sup ν

[
IP θ̂jn

(i/Yjn)IAγ
jn

(Yjn)
]

≤ ν
[
IP θ∗(i/Y0)IAγP

(Y0)
]

= IP
[
IP θ∗(i/·)IAγP

]
,

so the proof is complete because Corollary 6.4 implies that π∗i > 0 for every i = 1, ..., k. •

PROOF OF THEOREM 4.8: After our consistency results, for the analysis of the asymptotic distribution,
we can assume that the γ-parameters belong to a compact subset K of Γ̃, as well as that the θ-parameters
verify the restrictions given by Θn

γ,u and belong to the set {θ : ‖θ− θ0‖ < δ} for some small enough δ > 0
and large n.

Now the proof parallels that given in [4] based on extended versions of the results in Section 3.2.4 in [21]
to this semiparametric framework. In our case, for mθ,γ defined as in (12) the components of ṁθ,γ := hθ,γ

are those given in (14) with Aγ as A. The result is then the consequence of Lemma 6.5 similar to Lemma
3.12 in [4]. From here, taking into account Proposition 4.2 and some easy computations, obtaining the
asymptotic distribution given in the theorem as well as its different expressions is straightforward. •
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Lemma 6.5 There exist δ > 0 and a compact neighborhood K of γ0 such that{
mθγ −mθ0γ − (θ − θ0)

T
ṁθ0γ

‖θ − θ0‖
: ‖θ − θ0‖ ≤ δ, γ ∈ K

}
(29)

is IP -Donsker and
IP
(
mθγ −mθ0γ − (θ − θ0)

T
ṁθ0γ

)2

= o (‖θ − θ0‖)2 , (30)

uniformly in γ ∈ K.

PROOF.- Let δ small enough to assure that the parameters in Vδ := {θ ∈ Θ : ‖θ − θ0‖ ≤ δ} do not lead
to degeneration of the mixture, and let K be any compact neighborhood of γ0. If we choose a compact
ball, B0, in IRp containing all the ellipsoids Aγ , γ ∈ K, the continuity of mθ,γ and ṁθ,γ with respect
to the argument and with respect to the parameters guarantee that the functions in the family (29) are
uniformly bounded by a constant over the set B0. This implies the uniform L2-Frechet derivability (30).

The first statement is then consequence of a chain of arguments beginning with:

- The class Mδ of density functions of mixtures of normal distributions with parameter in Vδ verifies
the uniform entropy condition (see Section 2.5.1 in [21]).

The class of functions given by

I :=
{

log
(
(2π)−

p
2 (det (Σ))−

1
2

)
− 1

2
(x− µ)′ Σ−1 (x− µ) : µ ∈ IRp, Σ ∈M+

p×p

}
defines a linear space of finite dimension, thus it is a V C-class of functions (see Lemma 2.6.15 in [21]).
The density functions of normal distributions are obtained by composing a function in the class I with
the exponential function, exp (I) , hence it is also a VC-class of functions (see Lemma 2.6.18 in [21]).
Now, we can assure that the finite mixtures of normal distributions are a VC-hull class and from Corollary
2.6.12 and the previous arguments in [21], a such class verifies the uniform entropy condition.

- The class of functions log(Mδ)IB0 := {log(f)IB0 : f ∈Mδ} verifies the uniform entropy condition.

The class of functions Mδ verifies the condition, so we can apply Theorem 2.10.20 in [21] to assure that
the transformed class log (Mδ) IB0 also verifies that condition. We only need to show that there exists a
constant, A, such that

(log (f (x)) IB0 (x)− log (g (x)) IB0 (x))2 ≤ A2 (f (x)− g (x))2 , ∀x ∈ IRp, ∀ f, g ∈Mδ,

but this is an easy consequence of the mean value theorem and the fact that we can obtain two constants
0 < c < C such that c < f(x) < C for all f ∈Mδ and x ∈ B0.

- The class of indicator functions of unions of k ellipsoids and the class of indicator functions of comple-
mentary of unions of k ellipsoids verify the condition of uniform entropy

- inf
{
IP θ

(
Acγ
)

: θ ∈ Θδ and γ ∈ K
}
> 0.

- The family
{
IAγ

log (fθ) + IAc
γ

log
(
IP θ

(
Acγ
))

: (θ, γ) ∈ Θδ ×K
}

verifies the uniform entropy condi-
tion.
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Theorem 2.10.20 in [21] leads to this statement, because this class of functions is constituted by sums of
functions verifying the uniform entropy condition.

- The class of the functions IAγ
(x) ∂

∂θ log (fθ (x)) + IAc
γ

(x) ∂
∂θ log

(
IP θ

(
Acγ
))

where θ ∈ Θδ and γ ∈ K is
a Donsker class.

This statement can be proved by a chain of arguments similar to the above, beginning with the fact that
the class of functions {IB0 (x) ∂

∂θ log (fθ (x)) : θ ∈ Θδ} is a Donsker class of functions. But this follows
from the fact that the components of these functions are products of IP θ(i/x)IB0 with functions of the
types 1

πi
,Σ−1

i (x− µi) and − 1
2Σ−1

i + 1
2Σ−1

i (x− µi) (x− µi)
′ Σ−1

i . •
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