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Abstract

We consider a k-sample problem, k > 2, where samples have been obtained from k (random)
generators, and we are interested in identifying those samples, if any, that exhibit substantial
deviations from a pattern given by most of the samples. This main pattern would consist of
component samples which should exhibit some internal degree of similarity. To handle similarity,
can be of interest in a variety of situations. As an example, imagine a nation-wide evaluation
test in which several markers evaluate exams coming from all the country. The interest focuses
on analyzing if there are markers whose grades exhibit significant deviations from a generalized
pattern. A null hypothesis of homogeneity is too strong to be considered as a realistic one
because of the differences in the backgrounds of the involved students and similarity seems more
appropriate. To detect deviations we need to use some pattern as a reference, that in our setup
is a hidden pattern.

In this paper we develop a statistical procedure designed to search for a main pattern, detecting
the samples that are significantly less similar with respect to (a pooled version of) the others.
This is done through a probability metric, a bootstrap approach and a stepwise search algorithm.
Moreover, the procedure also allows to identify which part of each sample makes it different of
the others.

Keywords: Trimmed distributions, similarity, pooled distribution, pooling pattern, stepwise backward-search,
Wasserstein distance, impartial trimming, bootstrap, pooled sample.

1 Introduction.

This paper was suggested by the following real problem. In Spain, students that want to go to
university must pass a global accessing exam called Selectividad. This exam consists of several
exams on different topics. Each topic in each university has a coordinator who is charged, among
others, with the task of distributing the hundreds of exams among several, say k, graders and, more
important, to avoid significant discrepancies among graders in the process. The coordinator has to
take into account that there are several major sources of heterogeneity. The most relevant are that
students come from different schools which follow their own (different) syllabus, and graders have
different profiles (there are university professors and high-school teachers, their background is related
to the topic but may not be an exact match, e.g., a physics teacher can grade a math exam).

One of these coordinators approached us with the goal of assessing whether the different graders
were performing homogeneously. However, given the above mentioned sources of hetereogenity, even
if all graders make their best effort to apply some common grading criteria, we cannot expect the
samples of grades to come from the same distribution.

k-sample problems are one of the classical topics in Statistics. Usually, they focus on testing
whether k samples share the same random generator (the hypothesis of homogeneity). Among the
different approaches designed to handle this problem we recall, in the non-parametric setting, the
classical Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling k-sample tests (Kiefer, 1959;
Scholz and Stephens, 1987), those based on rank procedures such as the Kruskal-Wallis, Fisher-Yates
or Mood tests (see, e.g., Hájek and Šidák , 1999), on the likelihood (see, e.g., Zhang and Wu, 2007),
or, more recently, the data-driven k-sample tests introduced in Wy lupek (2010). We refer to the
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last paper for an updated list of references on the topic. In all these cases there exists a simpler, two-
sample version and the formulation of the null hypothesis for the k-sample case is straightforward.

As an alternative to the homogeneity hypothesis, similarity of two samples was introduced in
Álvarez-Esteban et al. (2011b) with the aim of assessing whether, perhaps not fully, but a funda-
mental part of the corresponding random generators coincides. More precisely, we say that two
probabilities, P1 and P2 are α-similar if they are (slightly) contaminated versions of a common
pattern, namely, if {

P1 = (1− α)P0 + αP ′1
P2 = (1− α)P0 + αP ′2

(1)

for some probabilities P0, P ′1 and P ′2. The similarity problem, that is, assessing whether model (1)
holds, is of interest in a variety of practical situations. In particular, in order to compare the grades
given by two Selectividad graders, we could fix an acceptable value for α and try to assess whether
the given grades fit model (1).

In this paper we are concerned with a more general problem where k > 2 samples have been
obtained from k (random) generators, and we are interested in identifying those samples, if any,
that exhibit substantial deviation from a general pattern given by most of the other samples. This
main pattern would be given by component samples which should exhibit some internal degree of
similarity. Turning back to the Selectividad example, we would be interested in detecting whether
there are graders whose grades exhibit significant deviation from a generalized pattern. As stated,
a homogeneous common pattern is too strong to be considered as a realistic one and it seems more
appropriate to define the general pattern in terms of similarity.

To decide that the sample coming from one grader deviates from the majority, we should establish,
beyond the way of measuring deviations, what the majority is. The complexity of this task shows
up in Figure 1, displaying the box-plots of the results reported by 10 grader on a particular topic in
a Selectividad exam. The analysis of this dataset will be carried out in Section 4.
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Figure 1: Box-plots corresponding to grades reported by 10 graders on a topic in a Selectividad exam.

The similarity model (1) could suggest that we consider the following definition. For α ∈ (0, 1),
we say that probabilities P1, . . . , Pk share a core pattern of level 1−α, P0, if there exist probabilities
P ′1, . . . , P

′
k such that

Pi = (1− α)P0 + αP ′i , i = 1, . . . , k. (2)

We could then refer to P0 as a (common) core pattern. However, this definition is not optimal
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because an object that is not similar to any of several others can be similar to a pooled version of
them. For instance, it may happen that P1 and P2 are non-similar, while the inclusion of a new
probability P3 could lead to a set {P1, P2, P3} such that every probability is similar to the mean of
the other two.

With these cautions in mind and with the goal of detecting if one or several samples are (signif-
icantly) non-similar to the sample given by the others, that is, to the pooled sample, we introduce
the following definition.

Definition 1.1 Given α ∈ [0, 1), a set of probabilities {P1, · · · , Pr} such that Pl is α-similar (in
the sense of (1)) to 1

r−1

∑
j 6=l Pj, l = 1, · · · , r, will be called α-similarly pooled. We will refer to the

pooled probability P̄1,··· ,r := 1
r

∑r
j=1 Pj as the pooling pattern.

Note that if the probabilities P1, · · · , Pr share a core pattern of level 1 − α then they are α-
similarly pooled, but the converse is not true. This phenomenon resembles the effect that the inclu-
sion/exclusion of some auxiliary variables can produce on variable selection in regression problems.
As in that setting, our ideal goal would be to select the best set, in our case a maximal similarly
pooled set with the greatest possible number of probabilities.

We can introduce in Definition 1.1 a vector of weights (w1, . . . , wr) (we assume wi ≥ 0, w1 + · · ·+
wr = 1) to allow the different probabilities to have different relative importance (then {P1, · · · , Pr}
would be α-similarly pooled if Pl is α-similar to 1

1−wl
∑

j 6=l wjPj , l = 1, · · · , r). This is natural and
convenient in the case of empirical probabilities. For example, if Xi,j , j = 1, . . . , ni are independent
random variables with the same law Pi = L(Xi,j), for every i = 1, . . . , k, the choice of weights
(n1, . . . , nk)/n, with n =

∑k
i=1 ni, means that we will compare the empirical distribution on the

i-th sample to the empirical distribution on the pooled sample (the combination of the other k − 1
samples).

In this paper we will develop a statistical procedure designed to search for a main pooling sample.
In fact, our procedure is based on detecting samples that are significantly less similar with respect
to the pool of the others. This is achieved through the use of a probability metric -the Wasserstein
distance- and a bootstrap approach developed in Álvarez-Esteban et al. (2011b). The procedure is
completed with a stepwise search argument, looking for a maximal set of α-similarly pooled samples,
corresponding to a maximal pooled pattern for the k-samples. To our best knowledge this problem
has not been considered before.

An important feature of our method is that it allows to identify which fraction of a given sample
accounts for the possible deviation from the main pooling pattern. More precisely, if a sample does
not contribute to the maximal pooled sample, the procedure allows to identify the subsample which
is closest to the main pooling pattern, providing a better insight into the essential deviations between
the sample and the main trend.

The remaining sections of this paper are organized as follows. In Section 2 we give some back-
ground on trimmed distributions, similarity and technical tools involved in the analysis of the method
in order to make this paper self-contained. This material is extracted or easily deduced from the works
Álvarez-Esteban et al. (2008, 2011a,b). In Section 2.2 we introduce our stepwise search methodology
for the problem. Section 3 explores the performance of our procedure through a simulation study. In
Section 4 we apply the procedure to the Selectividad data and explore some features of our approach
for data analysis purposes.

2 A trimming based procedure for finding α-similarly pooled sets.

2.1 Similarity and trimming.

Our procedure for finding a (maximal) α-similarly pooled set of samples relies on the connection
between the similarity model (1) and the sets of trimmings of a probability. This connection was
explored in Álvarez-Esteban et al. (2011b), where a test for the similarity model (1) in a two sample
setup was introduced. For the sake of readability we summarize here the main facts about trimmings
and the similarity model.

3



Definition 2.1 Given α ∈ [0, 1) and a probability measure, P , an α-trimming of P is any probability
measure P̃ such that P̃ (B) =

∫
B wdP, for some weight function, w, such that 0 ≤ w ≤ 1/(1 − α).

The set of α-trimmings of P will be denoted by Rα(P ).

This obviously generalizes the simplest version of trimming, namely the conditional probability
given a set (of probability at least 1 − α). With this definition, for every point in the support
of the probability, partial trimming is allowed. This results in some smooth behavior of the sets of
trimmings (see Proposition 2.1 in Álvarez-Esteban et al. (2011a) or Proposition 1 in Álvarez-Esteban
et al. (2008)). Trimming a sample of size n will mean reweighting the empirical distribution giving
a new weight less than or equal to 1

n(1−α) to every point in the sample.
We will measure dissimilarity between two probabilities P and Q in terms of the L2-Wasserstein

distance, denoted in the sequel by W2. We consider the case of probabilities on the real line and, in
this case, W2 is just the L2-distance between the quantile functions, namely,

W2(P,Q) :=
(∫ 1

0

(
F−1(t)−G−1(t)

)2
dt

)1/2

, (3)

if F−1 and G−1 denote the quantile functions of P and Q, respectively. For further details about
W2 we refer, for instance, to Section 8 of Bickel and Freedman (1981).

The connection between trimmings and the similarity model (1) is given by the next result
(see Proposition 2 in Álvarez-Esteban et al., 2011b). Here dTV denotes the distance in total varia-
tion, namely, the largest difference in absolute value between probabilities assigned by P1 and P2:
dTV (P1, P2) = supB |P1(B)− P2(B)|, with B ranging among Borel sets.

Proposition 2.1 For α ∈ [0, 1) the following are equivalent:

(a) P1 and P2 are α-similar. (b) Rα(P1) ∩Rα(P2) 6= ∅. (c) dTV (P1, P2) ≤ α.

If P1, P2 have finite second moments then any of them is equivalent to

(d) W2(Rα(P1),Rα(P2)) = 0.

Note that (d) in Proposition 2.1 can be expressed in terms of different metrics (not constrained, in
fact, to dTV or W2). However, there is a fundamental reason supporting the choice of W2 instead of
dTV . If Pn and Qm are the sample distributions obtained from continuous probability distributions,
P and Q, then dTV (Pn, Qm) = 1 a.s., regardless the true value of dTV (P,Q). On the contrary, in
Álvarez-Esteban et al. (2011a,b) it is shown that W2(Rα(Pn),Rα(Qm)) is a consistent estimator of
W2(Rα(P ),Rα(Q)).

Let P1, . . . , Pk be probability measures. Assume that we observe independent random samples
from each of them (for simplicity we assume at this point that the sample sizes are equal). If we
try to assess α-similarity between Pi and (

∑
j 6=i Pj)/(k − 1) from the observed samples we should

compare the empirical measure of the i-th sample, Pi,n, to the empirical distribution on the pooled
sample (

∑
j 6=i Pj,n)/(k− 1). A look at the arguments in Álvarez-Esteban et al. (2011a,b) shows that

their results still hold in this new setup and we have the following consistency result.

Theorem 2.2 (Consistency) Let P1, . . . , Pk be probability measures, k > 1. Let X1,1, . . . , X1,n1,
. . . , Xk,1, . . . , Xk,nk be independent i.i.d. random samples from P1, . . . , Pk, respectively. Let Pi,n
and Qi,n be the empirical distributions associated to the samples {Xi,1, . . . , Xi,ni} and {Xj,l, 1 ≤ l ≤
nl, j 6= i}, respectively. Denote n = n1 + · · · + nk and assume ni/n → wi > 0, i = 1, . . . , k. If
Qi = (

∑
j 6=iwjPj)/(1− wi), then

W2(Rα(Pi,n),Rα(Qi,n))→W2(Rα(Pi),Rα(Qi)), a.s., i = 1, . . . , k.

As a consequence of Theorem 2.2, if Pi and Qi are not similar at level α then

W2(Rα(Pi,n),Rα(Qi,n))→W2(Rα(Pi),Rα(Qi)) > 0,
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while, if they are similar, W2(Rα(Pi,n),Rα(Qi,n)) → 0 a.s. This suggests rejecting that Pi and Qi
are α-similar for large values of W2(Rα(Pi,n),Rα(Qi,n)). A refinement of this idea, combined with a
bootstrap scheme, was shown to work in Álvarez-Esteban et al. (2011b) for the comparison between
two distributions. This method is essential to the procedure that we introduce here. We summarize
it briefly, with some modifications to make it suitable to our setting.

We employ the notation in Theorem 2.2 and, given i = 1, . . . , k and αn ∈ (0, 1), we set

(Pi,n,αn , Qi,n,αn) = arg min
R1∈Rαn (Pi,n),R2∈Rαn (Qi,n)

W2(R1, R2),

so that W2(Pi,n,αn , Qi,n,αn) =W2(Rαn(Pn,i),Rαn(Qn,i)).
We consider now the pooled probability

Ri,n =
ni
n
Pi,n,αn +

n− ni
n

Qi,n,αn .

Ri,n is a random probability measure concentrated on X1,1, . . . , X1,n1 , . . . , Xk,1, . . . , Xk,nk .
Conditionally given the data, we generate new random variables, X∗1 , ..., X

∗
n′ , Y ∗1 , ..., Y

∗
m′ i.i.d.

with distribution Ri,n, with m′ = [n−nini
n′] and n′ to be specified later. We write P∗ for the bootstrap

probability, that is, the conditional probability given the original data {Xi,l}. Finally, P ∗i,n′ and Q∗i,m′

denote the empirical measures based on X∗1 , ..., X
∗
n′ and Y ∗1 , ..., Y

∗
m′ , respectively. Now, we define

p∗i,n := P∗
{√

n′m′

n′ +m′
W2(P ∗i,n′ , Q∗i,m′) >

√
ni(n− ni)

n

√
1− αW2(Pi,n,αn , Qi,n,αn)

}
. (4)

Thus, p∗i,n is the bootstrap p-value for the similarity model (1), with rejection for small values of
it. In practice p∗i,n is approximated by Monte Carlo simulation. With this notation the same proof
provided for Theorem 3 in Álvarez-Esteban et al. (2011b) gives that

Theorem 2.3 Assume P1, . . . , Pk are supported in a common bounded interval and have densities
bounded away from zero and with bounded derivatives. Assume ni/n → wi > 0, i = 1, . . . , k. Take
αn = α+K/

√
ni ∧ (n− ni) with K > 0. Then, if n′ →∞ and n′ = O(n),

(i) if dTV (Pi, Qi) < α then p∗i,n → 1 in probability.

(ii) if dTV (Pi, Qi) > α then p∗i,n → 0 in probability.

Theorem 2.3 is stated for distributions with bounded support, but this is enough for applications,
since a monotonic transformation of the data could achieve boundedness while preserving the distance
in total variation. The important consequence is that a test of the similarity model (1) between Pi
and Qi that rejects α-similarity for values of p∗i,n below a fixed threshhold L ∈ (0, 1) is a consistent
rule. Under some additional regularity assumptions it is also possible to control the type I error (see
the discussion on these conditions in Álvarez-Esteban et al. (2011b)). Taking n′ = o(ni4/5) and

αn = α+

√
α(1− α)√

ni ∧ (n− ni)
Φ−1(

√
1− γ), (5)

where Φ is the distribution function of the standard normal law and γ ∈ (0, 1), then, if dTV (Pi, Qi) ≤
α,

lim sup
n

P∗(p∗i,n ≤ β) ≤ β + γ. (6)

The main consequence is that we can test the similarity model (1) at a given level β + γ ∈ (0, 1) in
a conservative way. The procedure has asymptotic level at most β + γ and consistently rejects the
similarity model if it fails.
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2.2 A stepwise algorithm to search for α-similarly pooled sets.

Here we present an algorithm to detect if one or several samples are significantly non-similar to
the main trend given by the others. In terms of Definition 1.1 this amounts to finding a maximal
α-similarly pooled subset, {Pi,1, . . . , Pi,r}, of the set {P1, . . . , Pk} of underlying distributions of the
k-samples, identifying in the process those distributions which deviate from the main pooling pattern.

With the notation of Subsection 2.1, we assume that we have k independent random samples
of i.i.d. r.v.’s, Xi,j , j = 1, . . . , ni, with distribution Pi, i = 1, . . . , k. We consider a fixed similarity
level α ∈ (0, 1). Moreover, following Theorem 2.3 and the subsequent comments we fix β > 0 and
γ > 0 (so that β + γ would be a conservative error level for the similarity model (1)). In esence,
our algorithm compares each sample to the pool of the others. If one of the samples is found not to
be α-similar to the pool of the others, then the sample is discarded. This process is iterated until
no sample can be discarded. Then it is checked whether some of the previously discarded samples
is similar to the pool of remaining samples. If that is the case, the sample is aggregated to the set.
The aggregation process is iterated until no further aggregation is possible,

This simple idea has to deal in practice with the possibility that in one of the above iterations
there is more than one sample that can be discarded/aggregated. In this case we discard first the
sample which is least similar (the one needing a higher value of α to achieve similarty) and aggregate
first the sample which is more similar (the one for which similarity is achieved with a smaller value
of α). We return to this issue below, in our comments after the description of the algorithm.

In a more precise way, our search algorithm carries out the following steps.

Step 1: Set n = n1 + · · ·+ nk and select a grid of points α = a1 < a2 < . . . < ar < 1. Set i = 1.

Step 2: Set δi = 0 and j = 0. Write Pi,n for the sample distribution based on Xi,j , j = 1, . . . , ni and
Qi,n for the sample distribution based on Xl,j , j = 1, . . . , nl, l 6= i.

Step 3: Let j = j + 1 and αj = aj +
√
aj(1−aj)√
ni∧(n−ni)

Φ−1(
√

1− γ).

– Compute W2(Pi,n,αj , Qi,n,αj ), where

(Pi,n,αj , Qi,n,αj ) = argmin
R1∈Rαj (Pi,n),R2∈Rαj (Qi,n)

W2(R1, R2). (7)

– Consider the pooled probability

Ri,j,n =
ni
n
Pi,n,αj +

n − ni
n

Qi,n,αj

– Generate B (a large number, say B = 1000) bootstrap pairs of samples drawn from
Ri,j,n, with sizes n′ = [ni4/5] and m′ = [ (n−ni)ni

n′]. For every pair of these samples, say,
X∗1 , ..., X

∗
n′ and Y ∗1 , ..., Y

∗
m′ , let P ∗n′ and Q∗m′ denote the empirical measures and compute

W2(P ∗n′ , Q∗m′).

– Evaluate the proportion, p∗i,j,n, of pairs satisfying√
n′m′

n′ +m′
W2(P ∗n′ , Q∗m′) >

√
ni(n − ni)

n

√
1− αW2(Pi,n,αj , Qi,n,αj ).

Step 4: If p∗i,j,n ≤ β and j < r, set δi = aj and go to Step 3.

Else, if i < k set i = i+ 1 and go to Step 2. If i = k go to Step 5.

Step 5: If there exists i such that δi 6= 0, take i0 := argmaxi δi, discard sample i0, fix k = k − 1 and
iterate the process, starting from Step 1 for the k − 1 remaining samples.

Else go to Step 6.
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Step 6: The remaining set of samples can be considered to be α−similarly pooled (at the confidence
level η). Since it is possible that a sample discarded in the process is α-similar to this pooled
sample, compare every discarded sample to this and aggregate it, when similarity is accepted.
Iterate this process until no sample can be aggregated to the pooled sample.

The final set of samples can be considered as the mainstream, namely, a maximal set of α-similarly
pooled samples.

Some comments are convenient at this point. Since our goal is to find a maximal set of α-
similarly pooled samples for a fixed value of α it may seem unnatural at first to introduce in the
algorithm a grid of values of α in order to look for α-similarly pooled sets. In fact, the grid could
be limited to the value α. With steps 2-3 the algorithm is looking for samples, Pi,n which are not
similar to the pooled sample Qi,n. If this is not the case for any i, then the samples are considered
α-similarly pooled. If there is only one sample for which Pi,n and Qi,n are not similar, then sample i
is discarded. If dissimilarity is detected for more than one sample then the set of samples that could
be discarded (which equals C = {i : δi 6= 0}) contains more than one point and it is necessary to
have a procedure to select the sample to be discarded. A simple choice would be to select the index
i0 giving the smallest p-value, that is, to select i0 = argmin p∗i,1,n, this being the sample which shows
more evidence against α-similarity. However, the p-values in the similarity test are affected not only
by the fraction of contamination in model (1) but also by the nature of that contamination. Two
samples can be not similar at level α just because their common core accounts for a bit less than
1− α of their mass but then, if the different contaminations are far away from each other, this can
result in very low p-values while, in fact, the two samples are not too far from α-similarity. For this
reason, in our algorithm we prefer to discard the sample that exhibits α-dissimilarity with respect
to the others for the highest value of α.

Although the grid fixed in Step 1 could change every time a sample is discarded, we recommend
to keep it fixed during the whole process.

Concerning the computations involved in the algorithm, the minimization in (7) can be done using
a simplex algorithm. In fact, if P and Q are finitely supported probabilities with P{xi} = pi > 0,
i = 1, . . . , n, Q{yj} = qj > 0, j = 1, . . . ,m,

∑n
i=1 pi =

∑m
j=1 qj = 1 then

W2
2 (Rα(P ),Rα(Q)) =



min
π

n∑
i=1

m∑
j=1

πi,jci,j

s.t. (1− α)
m∑
j=1

πi,j ≤ pi, i = 1, . . . , n

(1− α)
n∑
i=1

πi,j ≤ qj , j = 1, . . . ,m

n∑
i=1

m∑
j=1

πi,j = 1, πi,j ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

,

where ci,j = |xi − yj |2. Furthermore, if π̂ is a minimizer in the linear program above, Pα is the
trimming of P which gives probability

∑m
j=1 πi,j to xi, i = 1, . . . , n and Qα is the trimming of Q which

gives probability
∑n

i=1 πi,j to yj , j = 1, . . . ,m, then (Pα, Qα) = argminR1∈Rα(P ),R2∈Rα(Q)W2(R1, R2).
We refer to Álvarez-Esteban et al. (2011a) for details and to Álvarez-Esteban et al. (2011b) for an
implementation of the algorithm in R.

3 Simulation study.

In order to illustrate the behaviour of the algorithm described in Subsection 2.2 we have randomly
generated samples of size n, for different values of n(= 30, 100, 300) from 10 distributions: P1, P2 and
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P3 ∼ N(0, 1); P4 ∼ 0.95N(0, 1) + 0.05N(3, 1); P5 ∼ 0.90N(0, 1) + 0.10N(3, 1); P6 ∼ 0.80N(0, 1) +
0.20N(3, 1); P7 ∼ 0.60N(0, 1) + 0.40N(3, 1); P8 ∼ 0.90N(0, 1) + 0.10N(0, 3); P9 ∼ N(2, 1) and
P10 ∼ N(3, 1). Figure 2 shows the corresponding densities.
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Figure 2: Densities of the distributions used in the simulated example.

We try to find and discard those samples, if any, that are not similar to the others. In this
simulation we have chosen to find an α-similarly pooled subset of samples, with α = 0.10. At the
population level, it is easy to see that, if we write fi for the density of Pi, the smallest α for which
P1, . . . , P10 share a core pattern of level 1− α, in the sense of (2), equals 1−

∫
R min1≤i≤10 fi(x)dx '

0.8664. If we remove P9 and P10 then P1, . . . , P8 share a core pattern of level 1 − α for α '
0.3466. Removing also P7 we see that P1, P2, P3, P4, P5, P6, P8 share a core pattern of level 1 − α
for α ' 0.1733. Finally, P1, P2, P3, P4, P5, P8 share a core pattern of level 1 − α for α ' 0.0866 <
0.1, hence P1, P2, P3, P4, P5, P8 are 0.10-similarly pooled. We note also that P6 is not 0.10-similar
to (P1 + P2 + P3 + P4 + P5 + P8)/6 and we need α ' 0.1393 to achieve similarity here. Thus,
{P1, P2, P3, P4, P5, P8} is a maximal 0.10-similarly pooled subset of distributions in this example,
while {P1, P2, P3, P4, P5, P6, P8} is a maximal 0.1393-similarly pooled subset.

Our choice for the grid of α’s in Step 1 is {0.1 + j ∗ 0.01 : j = 0, . . . , 10}. Moreover, in order
to have a more complete picture, we have also included bootstrap p-values for trimming proportions
below 0.1. By linear interpolation of these p−values we construct the p-value curves shown in Figures
3-5. The parameters β and γ in (6) have been set to 0.10 and 0.05, respectively. Horizontal and
vertical reference lines have been drawn in these figures at β = 0.10 and α = 0.10, respectively.

Figure 3 shows the output of the procedure for n = 30. The upper-left corner corresponds to
Iteration 1, the initial situation in which we compare each sample against the pool of the nine others.
We see that the samples that most contribute to these samples not being 0.10-similarly pooled are
the ones drawn from P9 (p = 0.004) and P10 (p = 0.000). However, while the sample drawn from P10

has a bootstrap p-value close to 0 from α = 0.10 to 0.20, the one drawn from P9 can be considered
similarly pooled to the others at level α = 0.16. Hence, in Step 5, we exclude the sample from P10

from the group, set k = 9 and move to Iteration 2. We recompute the bootstrap p-values obtaining
the plot shown in the upper right corner. This graph shows that the next sample to be excluded
is the one drawn from P9. Observe the changes in the p-value curves from the plot corresponding
to k = 10. For example, the curve corresponding to P9 shows that in this step, after removing P10,
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Figure 3: Bootstrap p-value curves for n = 30. Two reference lines have been drawn: horizontal
dash-dotted line for β = 0.10 and vertical dashed line for α = 0.10.

the sample drawn from P9, is not similarly pooled with the others even at level 0.20. On the other
hand, the rest of curves show a higher degree of similarity than before, as they cross the horizontal
reference line at lower levels of α. This changing behaviour shows up again in the next plots, and it
is related to the comments before Definition 1.1.

After discarding sample 9 we turn to Iteration 3 with k = 8 and obtain the curves in the lower left
corner. No further sample should leave the group and sample 10 does not enter in the aggregation
step, so the algorithm stops. We could, however, use the algorithm in an interactive way and check
the effect of discarding the next candidate sample (in this case, P7, with p = 0.228 when α = 0.1).
After excluding this sample, the remaining samples can be clearly considered 0.10-similarly pooled.

Figures 4 and 5 show the result of the procedure for sample sizes n = 100 and n = 300, respec-
tively. The sequence of discarded samples is the same in both cases. First, the sample drawn from
P10 and then the sample from P9. The difference with the case n = 30 is that while there the sample
from P7 was not removed from the pool, here this sample is clearly not 0.10-similarly pooled with
the others. None of the other samples leaves the group and none of the deleted distributions can be
aggregated. The procedure ends.

Some issues deserve comment. First, it is important to observe that all the curves start at 0
when α = 0. In other words, the homogeneity assumption is rejected in every situation and for all
samples sizes. Next, we would like to remark the increase in power of the procedure as the sample
size increases. This can be seen in the way that the values p∗i,j,n decrease with n. Finally, given the
comments about the maximal α-similarly pooled subsets of samples we can say that procedure has
done a rater good job. With moderate sample sizes (n = 100, 300) the procedure ends up with a
subset of samples whose underlying distributions are α-similarly pooled for α = 0.1393. With our
choice α = 0.1 the maximal α-similarly pooled subset of underlying distributions excludes P6. The
algorithm has not deleted sample 6, but the procedure has detected (see Figures 4 and 5) that the
next sample candidate to leave the group would be the one drawn from P6. Our consistency results
show that P6 would be rejected for large enough sample sizes. On the other hand, our goal, as stated
in the Introduction, is to detect whether one or several samples deviates significantly from the main
trend given by the others. Our approach is conservative and we cannot reject, with the given sample
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Figure 4: Bootstrap p-value curves for n = 100. Two reference lines have been drawn: horizontal
dash-dotted line for β = 0.10 and vertical dashed line for α = 0.10.
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Figure 5: Bootstrap p-value curves for n = 300. Two reference lines have been drawn: horizontal
dash-dotted line for β = 0.10 and vertical dashed line for α = 0.10.
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sizes, that sample 6 is not consistent with the general trend at level α = 0.1, but we can be quite
certain that samples 7, 9 and 10 are not similar to that general trend.

4 Example: Selectividad graders.

In this section we return to the motivating Example in the Introduction, namely, the Selectividad
data. Our dataset corresponds to 1550 exams on a particular subject, received by the coordinator
who, in turn, distributed them among 10 graders. Each grader received roughly the same amount
of exams (a number between 152 and 156). The main aim here is to find the graders, if any, whose
grades deviate non-reasonably from the others.
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Figure 6: Histograms with the grades given by 10 graders on a subject in a Selectividad exam.

Perhaps the only conclusion which can be drawn from the box-plots in Figure 1 is that Grader
1 assigns grades that, on average, are clearly higher than those from other graders. Figure 6 shows
the histograms correspondnig to the ten graders. Beyond the differences in location, we observe
some differences in range or spread (grades from Grader 3 are more spread than those from Graders
9 or 10) and also differences in the shape of the distributions (most distributions are more or less
symmetric but grades from Graders 2 and 8 are skewed to the right). Now, the problem is to decide
which differences are more important, Which graders are deviating most from the general trend?
And, do the differences deviate enough to consider that a particular Grader is not applying the same
grading criteria?

Our data analysis follows previous exchange to the coordinator about upper bounds for the
expected proportion of exams that a given grader could get from non-standard schools and, also,
about a sensible bound for the influence that the different backgrounds of the graders could reasonably
have in the marking process. As a result, we concluded that those differences should not prevent the
distributions to be 0.10-similarly pooled if the recommended common grading guidelines were used.

With the aim of giving an answer to the previous questions as well as identifying which part of a
grader’s distribution contribute most to the deviation from the general grading pattern, we applied
the algorithm described in Subsection 2.2. Our choice β = 0.1 and γ = 0.05 in (6). We observe that
the precise choice of β is not so important for the output of the algorithm and, in fact, if we had
chosen β = .05 the result would have been the same.

Figure 7 shows the bootstrap p-value curves with two dotted lines at α = 0.10 and β = 0.10. The
initial candidates to leave the group are Graders 1, 3, 5, 6 and 10 as their p-value at α = 0.10 is less
than β = 0.10. Following Step 5 of the algorithm, Grader 1 is identified as not 0.1-similar. Hence,
sample 1 is discarded and we return to Step 1 with k = 9.

We obtain next the graph in the upper left corner of Figure 7, which shows that Grader 3 is the
next to leave. In the subsequent iterations of the procedure, Graders 5 and 6 are discarded. The
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Figure 7: Bootstrap p-value curves for the Selectividad problem. β = 0.10 (dash-dotted line),
α = 0.10 (dashed line).

graph in the lower left corner in Figure 7 shows the p-values curves obtained in the next iteration,
with k = 6. According to the algorithm, no further sample is discarder. Then, we apply Step 6,
which lead us to the curves in the lower left graph in Figure 7. These curves lead us to conclude
that the none of the discarded graders has to be aggregated. Hence, we conclude that the samples
coming from graders 2, 4, 7, 8, 9 and 10 make the general pattern, while graders 1, 3, 5 and 6 deviate
non-reasonably from this general pattern.

A closer look at the previous output yields some further insight into the features of the algorithm.
Let us pay attention to Grader 10. While the number of non-deleted graders was greater than six,
this grader was a candidate to leave the pool (because the value δ10 obtained in Step 5 is greater
than 0). Finally he/she does not leave the pool and remains in the main pattern. Obviously, the
deletion of other graders in former iterations has an impact, making the pooled sample of remaining
grades closer to that of Grader 10. This effect, already mentioned in the Introduction, parallels the
behaviour of partial correlation in variable selection in regression.

Further interesting output of the proposed algorithm are the histograms of Figure 8. These
histograms show which part of a grader’s distribution contributes most to the deviation from the
pooled-pattern formed for the others in each step. The white bar represents the observations trimmed
when the distribution of grader is compared to the pooled sample of the graders in the main group (at
the time when this grader leaves the group), and the trimming proportion is 5%. If we increase this
trimming proportion to 10% the additional trimmed observations are represented in yellow, while
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Figure 8: Histograms of Graders excluded from final group. White, yellow and orange bars show
trimmed observations when grader is compared to the main group in the iteration when the grader
leaves the group. Colors correspond to the trimmed proportion: 5% (white), 10% (white+yellow)
and 20% (white+yellow+orange).

orange corresponds to observations additionally trimmed if we increase the trimmed proportion to
20%. Looking at the location of these trimmed observations we discover that Grader 1 is removed
from the group because of the high proportion of grades in the interval [7.5, 10]. As noted above,
the sample from Grader 3 has more variance than the others. However, and far from obvious, the
grades that most contribute to make Grader 3 different other others are located in the lower range:
[0.5,3]. Similar behavior is exhibited by Grader 5. In contrast, Grader 6 differs from the others in
the high proportion of observations in the left-to-middle part of the range, specially in the interval
[4.5, 5].

Figures 9 and 10 show the comparisons of each grader and to the pooled-pattern of the final group
selected by the algorithm. Figure 9 contains the graders selected to be in the group while Figure
10 contains the graders excluded from the final group. In both cases, blue (+violet) bars represent
the histogram of the corresponding grader and red (+violet) bars the histogram of the distribution
of grades of the final group. Consequently, violet bars represent the intersection of both or common
part (P0 in (2)). Therefore, blue bars represent the observations that make a grader different from
the group (red bars represent the observations that make the final group different from each grader).
As the vertical axis are in the same scale for both figures, they are comparable. As expected, it is
apparent from both figures that the blue bars are clearly larger in the case of graders of Figure 10
than in the graders of Figure 9.
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Figure 9: Histograms for graders in the final group. Red (+violet) for the main group distribution,
blue (+violet) for grader distribution and violet for the intersection.
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Figure 10: Histograms for graders out of the final group. Red (+violet) for the main group distribu-
tion, blue (+violet) for grader distribution and violet for the intersection.
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