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Abstract

The use of trimming procedures constitutes a natural approach to robustifying sta-
tistical methods. This is the case of goodness-of-fit tests based on a distance, which
can be modified by choosing trimmed versions of the distributions minimizing that
distance. In this paper we consider the L2-Wasserstein distance and introduce the
trimming methodology for assessing when a data sample can be considered mostly
normal. The method can be extended to other location and scale models, intro-
ducing a robust approach to model validation, and allows an additional descriptive
analysis by determining the subset of the data with the best improved fit to the
model. This is a consequence of our use of data-driven trimming methods instead
of more classical symmetric trimming procedures.

Key words: Model Assessment, Asymptotics, Impartial Trimming, Wasserstein
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1 Introduction.

Trimming methods are a main tool in the design of robust statistical proce-
dures. For univariate data a classical way of trimming is based on deleting the
same proportion of observations in each tail of the distribution. This approach
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has some drawbacks. First, the implicit assumption that the possible contam-
ination is only due to outliers. Second, the lack of “a priori” directions to trim
in the multivariate setting. Several alternatives to the symmetric trimming
have been proposed in the statistical literature. Among the proposed alter-
natives to overcome these difficulties we focus on those minimizing some dis-
tance criterium, leading to the “impartial” trimming introduced by Rousseeuw
(1985) and in greater generality in Gordaliza (1991). This impartial trimming
methodology is based on the idea that the trimming zone should be determined
by the data themselves and has been successfully applied to different statistical
problems including location estimation, (Rousseeuw, 1985; Gordaliza, 1991),
regression problems (Rousseeuw, 1985), cluster analysis (Cuesta-Albertos et
al., 1997; Garćıa-Escudero et al., 2003, 2008), and principal component anal-
ysis (Maronna, 2005).

This approach looks very appropriate for the goodness-of-fit framework, where
the procedures are often based on minimizing distances. However, only some
timid attempts have been reported in this sense so far. In fact, to our best
knowledge, the only related approach is that of Munk and Czado (1998), where
a symmetric trimming is introduced to robustify an analysis of similarity based
on the Wasserstein distance. In our setting, the questionable fact about this
approach, would be why should two distributions largely different at their tails
be considered similar but they should be considered as non-similar if they are
slightly different in their central parts?

This observation led to a new proposal in Alvarez-Esteban et al. (2008a),
where similarity of distributions is assessed on the basis of the comparison of
their trimmed versions. The approach was based on considering that two dis-
tributions are similar at level α whenever suitable chosen α-trimmed versions
of such distributions coincide. This key idea is naturally related to Robust-
ness, and can be combined with the use of a distance between probabilities
to measure their degree of dissimilarity. The L2-Wasserstein distance was the
choice in Alvarez-Esteban et al. (2008a) to introduce a nonparametric test of
similarity that can be considered as a robust version of a goodness-of-fit test
to a completely specified distribution or, rather, a way to assess whether the
core of the distribution underlying the data fits a fixed distribution.

In this work we show how these ideas can be used to assess whether the
core of the distribution underlying the data can be assumed to follow a given
location-scale model. For the sake of simplicity and its relevance, we consider
the normal model, but it will become apparent that the methodology can be
extended to cover other patterns. More precisely, we measure the minimal
distance between trimmed versions of the empirical distribution and trimmed
normal distributions and provide the necessary distributional theory to make it
usable for inferences about its population counterpart. Our procedure involves
the computation of a best trimming and it can be considered not only as a
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way to robustify a statistical procedure but also as a method to discard a part
of the data to achieve the best possible fit to normality of the remaining data.
Thus, this kind of robustification provides an added value as a descriptive tool
for the analysis of the data.

On the real line, the L2-Wasserstein distance between two probability measures
can be obtained as the L2 distance between their quantile functions, so it has
an easy interpretation in terms of probability plots. In the particular case of
testing for normality its use leads to a version of the omnibus Shapiro-Wilks
test (see e.g. del Barrio et al., 1999, 2000, 2005). The L2-Wasserstein distance
is also well behaved with respect to trimmings (see Alvarez-Esteban et al.
(2008a)) and will also be our choice here to introduce a robust approach to
model validation.

This paper is organized as follows. In Section 2 we give the necessary back-
ground on trimmed distributions and Wasserstein distance and use it to intro-
duce an estimator for the trimmed distance to normality. We show how to use
it to assess whether a sufficiently large fraction of the distribution underlying
the data can be assumed to be normal. We include in this section some asymp-
totic results that justify our approach. We describe the algorithm involved in
the computation of our estimators and discuss further implementation details.
In Section 3 we provide empirical evidence of the performance of our proposal.
This will be made through real and simulated examples giving support to the
procedure. Finally, an Appendix is devoted to the proof of the results.

2 Trimmed distributions in testing for normality.

2.1 Trimmed distance to normality.

Trimmed probabilities can be defined in general spaces, but for the application
presented in this paper we will restrict to the real line. Let P be a probability
on R and 0 ≤ α < 1, we say that a probability P ∗ is an α-trimming of P if
P ∗ is absolutely continuous with respect to P and dP ∗

dP
≤ 1

1−α
. We will denote

by Tα(P ) the set of α-trimmings of P ,

Tα(P ) =
{
P ∗ ∈ P : P ∗ ¿ P, dP ∗

dP
≤ 1

1−α
P -a.s.

}
.

An equivalent characterization, useful to gain some insight about the meaning
of an α-trimming is that P ∗ ∈ Tα(P ) if P ∗ ¿ P and there exists a function f
such that dP ∗

dP
= 1

1−α
f where 0 ≤ f ≤ 1 P -a.s. Here, f(x) gives the fraction of

density not trimmed at a point x in the support of P . If f(x) = 0, the point x
is completely removed, while if f(x) = 1 there is no trimming at x. For those
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points in the support of P where 0 < f < 1 their weight after trimming is
decreased. Note that this is a natural generalization of the common practice of
trimming observations, which amounts to replacing the empirical distribution
by a new version with new weights on the data: 0 for the points removed
and 1/(n(1 − α)) for the points kept in the sample (if we remove k = nα
observations).

Interesting properties of α-trimmings can be found in Alvarez-Esteban et al.
(2008a,b). We mention here one which is essential for the proposal in this
paper. General α-trimmings can be parametrized in terms of the α-trimmings
of the uniform distribution on (0, 1). More precisely, if Cα is the class of ab-
solutely continuous functions h : [0, 1] → [0, 1] such that, h(0) = 0, h(1) = 1,
with derivative h′ such that 0 ≤ h′ ≤ 1

1−α
and we write Ph for the proba-

bility with distribution function h(P (−∞, t]), then, for any real probability
measure, P , we have,

Tα(P ) = {Ph : h ∈ Cα} .

We note that Cα is the set of distribution functions of α-trimmings of the
uniform distributions on (0, 1). As a consequence, if P has distribution function
F and quantile function F−1, the set of α-trimmings of P equals the set of
probability measures with quantile functions of type F−1(h−1(t)), t ∈ (0, 1)
with h ∈ Cα.

Let F2 be the set of univariate distributions with finite second moments. Take
P , Q ∈ F2 with quantile functions F−1, G−1, respectively. The L2-Wasserstein
distance between these two distributions is defined as

W2(P,Q) := inf
{(

E(X − Y )2
)1/2

: L(X) = P, L(Y ) = Q
}

,

where X and Y are random variables defined on some arbitrary probability
space. The fact that W2 metrizes weak convergence of probability measures
plus convergence of moments of order two (see Bickel and Freedman (1981)),
makes this distance specially convenient for statistical purposes. Moreover, on
the real line, it equals the L2-distance between the quantile functions, namely,

W2(P,Q) =
[∫ 1

0

(
F−1(t)−G−1(t)

)2
dt

]1/2

.

It could be the case, when trying to assess normality of a data sample,
X1, . . . , Xn, that some significant deviation is found but, in fact, this devi-
ation is caused only by some small fraction of the data. It seems natural to
remove or downplay the importance of the disturbing range of observations
and measure the distance between the trimmed versions of the empirical mea-
sure and the normal distributions, with a trimming pattern chosen in order to
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optimize fit. If we measure distance by W2 this amounts to considering

Tn,α := inf
h∈Cα, Q∈N

W2
2 ((Pn)h, Qh), (1)

where Pn denotes the empirical distribution and N stands for the family of
normal distributions on the line. We assume that X1, . . . , Xn are i.i.d. obser-
vations with common distribution P . The population version of (1),

τα(P,N ) := inf
h∈Cα, Q∈N

W2
2 (Ph, Qh), (2)

measures how far from normality is the core of the underlying distribution
P . We refer to τα(P,N ) as the (squared) trimmed distance to normality. If
τα(P,N ) = 0 then there is some normal distribution Q which is equal to P
after removing a fraction of mass, of size at most α, on P and Q. A small
value of τα(P,N ) indicates that most of the distribution underlying the data
is not far from normality, which might be enough for the validity of some
inferences. Assessment of this small deviation from normality means, in more
formal terms, fixing a threshold ∆2

0 and testing

H0 : τα(P,N ) ≥ ∆2
0 vs. τα(P,N ) < ∆2

0. (3)

Given the sample X1, . . . , Xn we compute Tn,α, defined in (1), and reject H0

for small values of it.

Note that the choice of the null and the alternative hypotheses is in agreement
to the fact that, as in other goodness-of-fit problems, the consequences of
assuming (approximate) normality when it is not true are worse than those of
the other possible error. Thus, rejecting H0 can be done at a controlled error
rate. We refer to Munk and Czado (1998) for further discussion on this issue.
The difficulty posed by the arbitrary choice of the threshold ∆2

0 can be dealt
with by the consideration of the p-value curve, as in Munk and Czado (1998)
or Alvarez-Esteban et al. (2008a). We turn to this point in Subsection 2.3.

It can be easily checked that τα(P,N ) is location invariant, but not scale
invariant. In order to avoid this dependence on scale, and as usual in assessing
fit to location-scale models (see, e.g., del Barrio et al. (1999)), we consider a
location and scale invariant modification of τα(P,N ). It is convenient to think
of F−1(h−1(y)) =: (F−1 ◦ h−1)(y) as a random variable defined on (0, 1) and
similarly for other expressions of this type. We note then that if Q = N(µ, σ2),
Φ denotes the standard normal distribution function and h ∈ Cα, we have
W2

2 (Ph, Qh) = E(F−1 ◦ h−1 − µ− σΦ−1 ◦ h−1)2. Thus, for a fixed h,

v(h) := min
Q∈N

W2
2 (Ph, Qh) = Var(F−1◦h−1)−Cov2(F−1 ◦ h−1, Φ−1 ◦ h−1)

Var(Φ−1 ◦ h−1)
, (4)
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the min being attained at Q = N(µ(h), σ2(h)), where

σ(h) =
Cov(F−1 ◦ h−1, Φ−1 ◦ h−1)

Var(Φ−1 ◦ h−1)
, µ(h) = E(F−1◦h−1−σ(h)Φ−1◦h−1). (5)

With this notation we have τα(P,N ) = infh∈Cα v(h). It can be shown that this
inf is attained (see Lemma A.1 in the Appendix). To simplify our exposition
we make the following technical assumption:

v(h) admits a unique minimizer, h0. (6)

Now, under (6), we define

τ̃α(P,N ) :=
τα(P,N )

rα(P )
,

with rα(P ) = Var(F−1◦h−1
0 ). Note that τ̃α(P,N ) = 1−Corr2(F−1◦h−1

0 , Φ−1◦
h−1

0 ). Hence, τ̃α(P,N ) is location scale invariant and satisfies 0 ≤ τ̃α(P,N ) ≤
1. We refer to it as the standardized trimmed distance to normality. We can
see in Figure 1 how τα(P,N ) and τ̃α(P,N ) change with α for two choices of
P : the mixture 0.9N(0, 1)+0.1∗N(4, 1/4) (left) and the mixture 0.5N(0, 1)+
0.5 ∗ N(3, 1/4). We can appreciate how after trimming a bit more than the
level of ‘contamination’ we achieve almost perfect fit to normality.
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Figure 1: Trimmed distance to normality.

If we admit that our assessment about the normality of the core of the dis-
tribution should not depend on the scale of measurement of the data then we
should replace the testing problem (3) by

H0 : τ̃α(P,N ) ≥ ∆2
0 vs. τ̃α(P,N ) < ∆2

0. (7)
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The threshold is now to be chosen in (0, 1) but, again, this arbitrary choice
can be avoided with the use of the p-value curve.

2.2 Asymptotic theory.

In order to make Tn,α usable in pratice for testing (3) (or (7)) we include this
Subsection with a result giving its asymptotic normality as well as providing
a consistent estimator of the corresponding asymptotic variance. The com-
putations involve the use of empirical versions of µ(h), σ(h), defined in (5),
evaluated at a empirical version of h0. To be precise we define

vn(h) := min
Q∈N

W2
2 ((Pn)h, Qh), h ∈ Cα. (8)

Now, Tn,α = infh∈Cα vn(h) and, as for v(h), we have that the inf is attained
(Lemma A.1). We denote hn := argminh∈Cα

vn(h) and

σn =

∫ 1
0 F−1

n Φ−1h′n −
∫ 1
0 F−1

n h′n
∫ 1
0 Φ−1h′n∫ 1

0 (Φ−1)2h′n − (
∫ 1
0 Φ−1)h′n)2

, µn =
∫ 1

0
(F−1

n − σnΦ−1)h′n. (9)

We refer to Subsection 2.3 below for details on the practical computation of
Tn,α, hn and related estimators. Now we can state the main result in this
Section.

Theorem 2.1 If P satisfies (6), has absolute moments of order 4 + δ, for
some δ > 0, and a distribution function F with continuously differentiable
density F ′ = f such that

sup
x∈R

∣∣∣∣∣
F (x)(1− F (x))f ′(x)

f 2(x)

∣∣∣∣∣ < ∞, (10)

then √
n(Tn,α − τα(P,N )) →

w
N(0, σ2

α(P,N ))

where

σ2
α(P,N ) = 4

(∫ 1

0
l2(t)dt−

(∫ 1

0
l(t)dt

)2
)

,

l(t) =
∫ F−1(t)

F−1(1/2)
(x− µ(h0)− σ(h0)Φ

−1(F (x)))h′0(F (x))dx,

µ(h0), σ(h0) are as in (5) and h0 is the minimizer defined in (6).

If S2
n,α := 4

(∫ 1
0 l2n(t)dt−

(∫ 1
0 ln(t)dt

)2
)

, where

ln(t) =
∫ F−1

n (t)

F−1
n (1/2)

(x− µn − σnΦ−1(Fn(x)))h′n(Fn(x))dx
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and µn, σn are given in (9), then S2
n,α → σ2

α(P,N ) in probability.

The proof of Theorem 2.1 can be found in the Appendix.

2.3 Practical issues, p-value curves, algorithms.

As we noted before, the testing problem (3) involves the choice of a threshold,
∆2

0. Rather than choosing it in an arbitrary way we consider, as in Munk and
Czado (1998) or Alvarez-Esteban et al. (2008a), the p-value curves. These
curves are built using the asymptotic p-value computed from the test statistic
Zn,α := (Tn,α−∆2

0)/Sn,α. Note that from Theorem 2.1 we have Zn,α → N(0, 1)
in distribution if ∆2

0 = τα(P,N ) (hence, Zn,α → +∞ for ∆ < τα(P,N ) and
Zn,α → −∞ for ∆ > τα(P,N )).

For each threshold value ∆0 we compute

p(∆0) := sup
F∈H0

lim
n→∞PF (Zn,α ≤ z0) = Φ

(√
n

tn,α−∆2
0

sn,α

)
,

where z0 =
√

n
tn,α−∆2

0

sn,α
is the observed value of Zn,α. Then, we plot p(∆0) versus

∆0. These p-value curves can be used in two ways. On one hand, fixing ∆0,
which controls the degree of dissimilarity, we can find the level of significance
at which F cannot be considered essentially normal (at trimming level α). On
the other hand, for a fixed test level (p-value), we can find the value of ∆0 such
that for every ∆ ≥ ∆0 we should reject the hypothesis H0 : τα(P,N ) ≥ ∆2.

In practice we will be interested in testing (7) rather than (3). We can rewrite
(7) as

H0 : τα(P,N ) ≥ ∆2
0rα(P ) vs. τα(P,N ) < ∆2

0rα(P ),

a family of testing problems that could be analysed using the p-value curve
p(∆0r

1/2
α (P )). Since rα(P ) is unknown we replace it by the consistent estimator

Rn,α =
∫ 1
0 (F−1

n )2h′n −
(∫ 1

0 F−1
n h′n

)2
and obtain the estimated p-value curve for

(7):
p̃(∆0) := p(∆0R

1/2
n,α), 0 < ∆0 < 1.

The values of ∆0 should be interpreted taking into account that τ̃α(P,N ) takes
values in [0, 1]. τ̃α(P,N ) = 0 means perfect fit to normality after trimming,
while large values of τ̃α(P,N ) (close to 1) mean severe nonnormality even after
trimming.

We turn now to computational details. First, to compute the value of Tn,α we
observe that

Tn,α = min
h∈Cα,µ∈R,σ≥0

∫ 1

0
(F−1

n − µ− σΦ−1)2h′ = min
µ∈R,σ≥0

Vn(µ, σ),
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where

Vn(µ, σ) = min
h∈Cα

∫ 1

0
(F−1

n − µ− σΦ−1)2h′.

If σ > 0 then Vn(µ, σ) =
∫ 1
0 (F−1

n − µ− σΦ−1)2h′n,µ,σ, where

h′n,µ,σ =
1

1− α
I|F−1

n −µ−σΦ−1|≤kn,µ,σ

and kn,µ,σ is the (unique) k such that the set {t ∈ (0, 1) : |F−1
n (t) − µ −

σΦ−1(t)| ≤ k} has Lebesgue measure 1−α. We use this to compute numerically
Vn(µ, σ) as follows

(1) Compute the values of |F−1
n (t)− µ− σΦ−1(t)| in a (fine) grid of [0, 1].

(2) Approximate kn,µ,σ as the (1− α)-quantile of these values.
(3) Approximate Vn(µ, σ) as the average of (F−1

n (t)− µ− σΦ−1(t))2h′n,µ,σ(t)
over the grid.

Now, minimization of Vn(µ, σ) yields Tn,α. We carry out this step through a
simple search-in-a-grid of (µ, σ), although this could be replaced by an opti-
mization procedure based in gradient methods avalaible in R (see e.g. nlm,
optim), using the sample values as initial values.

If µn and σn are the minimizers of Vn(µ, σ) obtained with the above algorithm,
then take

hn = hn,µn,σn .

Finally, aproximate

S2
n,α = 4

[∫ 1

0
ln(t)2dt−

(∫ 1

0
ln(t)dt

)2
]

computing numerically the integrals, where

ln(t) :=
∫ F−1

n (t)

F−1
n (1/n)

(
x− µn − σnΦ−1(Fn(x))

)
h′n(Fn(x))dx

is evaluated numerically by averaging in the grid in (0, 1) as above. Similarly
we compute Rn,α.

All these procedures have been implemented in an R program avalaible at
http:// www.eio.uva.es/ ∼pedroc/R. These computations have been coded
in a vectorized way and the result is that for moderate sizes of n (100-500)
the time required in a PC is just a few seconds, while for big sizes (5000) is a
couple of minutes, depending on the grid for (µ, σ). The grid in [0, 1] for the
computation of Vn(µ, σ) was obtained splitting [0, 1] into 105 intervals of equal
length.

We end this Section with a remark on the computational convenience of the
normalization chosen here for the standardized trimmed distance to normality,
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τ̃α(P,N ). Other alternatives could be chosen, the most natural being perhaps
τ ∗α(P,N ) = minh∈Cα w(h) with

w(h) =
v(h)

Var(F−1 ◦ h−1)
= 1− Cov2(F−1 ◦ h−1, Φ−1 ◦ h−1)

Var(F−1 ◦ h−1)Var(Φ−1 ◦ h−1)
,

(recall the notation in (4)). Now w(h) is location-scale free for every h ∈ Cα and
so is τ ∗α(P,N ). Using the method of proof of Theorem 2.1 we could prove also
asymptotic normality of an empirical version of τ ∗α(P,N ). Its use in practice,
however, is rather troublesome. If we try to mimick the algorithm that we
used to evaluate Tn,α we should be able to compute

Wn(µ, σ) = min
h∈Cα

W2
2 ((Pn)h, N(µ, σ2)h)

Var(Ph)

for fixed µ and σ. Unfortunalety there is no easy expression for the optimal
h in this minimisation problem. We could rewrite it as an optimal control
problem and use appropriate numerical methods but, yet, the computational
burden required for a single evaluation of Wn(µ, σ) discourages its use.

3 Examples and Simulations

3.1 Example 1, real data.
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Figure 2: Histogram for variables Cholesterol and Triglycerides.

We use the variables concentration of plasma cholesterol and plasma triglyc-
erides (mg/dl) collected from n = 371 patients (see Hand et al., 1994) to
illustrate the application of our procedure to investigate whether these sam-
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ples can be considered normal at some reasonable trimming level. Figure 2
shows the histograms for both samples. The cholesterol sample shows a slight
positive skewness with two possible outliers. The triglycerides sample exhibits
a clear positive skewness and a clear outlier at the right tail. Using classical
procedures such as the Shapiro-Wilks test would reject the hypothesis of nor-
mality, even if we remove the mentioned outliers (p = .0306 and p < .0000,
respectively).

Cholesterol Triglycerides

α µn σn τ̃α(Pn,N ) µn σn τ̃α(Pn,N )

0 213.31 42.07 0.026 173.94 88.90 0.193

0.05 212.08 39.64 0.005 165.92 71.27 0.112

0.10 211.75 39.88 0.004 161.16 63.87 0.089

0.20 211.02 41.68 0.002 153.15 53.04 0.048

Table 1: Distances, means and standard deviations of the best α-trimmed normal
distribution.

We use instead our data-driven trimming method to obtain the best α-trimmed
Gaussian approximation to each sample. Table 1 shows the means and stan-
dard deviations of the best normal approximation as well as the standardized
trimmed distances to normality, τ̃α(Pn,N ), for both samples and different
trimming sizes.
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Figure 3: Optimal trimming functions for both Cholesterol and Triglycerides
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samples, for different trimming sizes (α = 0.05, 0.1 and 0.2).

Figure 3 shows the optimal trimming functions for Cholesterol and Triglyc-
erides samples for different values of α (0.05, 0.1 and 0.2). In each graph we
plot the value of Jn(t) := |F−1

n (t) − µn − σnΦ−1(t)| and the cutting values
kn,µn,σn , where µn and σn are the mean and the standard deviation of the
closest normal distribution (see Table 1) estimated using the algorithm de-
scribed in Subsection 2.3. These plots show that trimming should be made
mostly at the tails of the distributions to make them as normal as possible.
This optimal trimming, though, is not symmetric, and not always removing
all the observations at the tails. The plot corresponding to the Cholesterol
sample and α = 0.2 suggests that if we increase the trimming size then some
observations in the center of the distribution would be trimmed.
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Figure 4: P-value curves for Cholesterol, Tryglicerides and the reference case. The
dotted line is a reference line (p = 0.05).

In order to assess the degree of normality of the samples we use the p-value
curves, p̃(∆), introduced in Subsection 2.3. Figure 4 shows these curves for
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Cholesterol and Triglycerides samples for different trimming sizes and the “No
trimming” case. Note that although the asymptotic distribution has not been
explicitly given for this case in this paper, it can be easily derived following the
same arguments as for Theorem 2.1 and coincides with the limit case α = 0
in this theorem. The third graph corresponds to a random sample of the same
size (n = 371) drawn from the standard normal distribution. This graph has
been included as a reference to simplify the assessment of the normality of the
previous samples.

Although in both cases there is a significant improvement after trimming the
initial 5% (fixing p = 0.05, from ∆0 = 0.24 when α = 0 to ∆0 = 0.11 when
α = 0.05 for Cholesterol sample; and from ∆0 = 0.57 to ∆0 = 0.41 for
Triglycerides sample), both samples exhibit a different behaviour. While in
the first sample the trimmed distance to normality reaches similar values to
those of a normal distribution (see the third graph), it does not in the second
sample. In this last sample the trimmed distance to normality does not reach
the same levels even if the trimming size is α = 0.2 or α = 0.3 (not shown in
Figure 4). Thus, the Cholesterol sample can be considered normal after little
trimming (α = 0.05, then, mostly normal), however, the Triglycerides sample
can not be considered normal at reasonable levels of trimming.

3.2 Example 2, simulated data

To better illustrate the use of the p-value curves to assess essential normality
we have generated 100 random observations from six different models (two
different normal models, two normal models with a small contamination that
after trimming, are very close to the normality, a chi-square model and an
exponential model). Figure 5 shows the associated p-value curves. Graph (a)
corresponds to the N(0,1) model. The behaviour is clear, the standardized
distance before trimming is very close to 0, and there is a small decrease after
the initial 5% of trimming -probably due to some smoothing effect in the
randomness-. Finally, a stabilization of the standardized trimmed distance is
observed when α is increased. In other words, there is no improvement in
the degree of normality increasing the size of trimming. Graph (b) shows the
p-value curves for the N(10,4) model, quite similar to those of the previous
model, illustrating that the standardization introduced in (2) performs as
expected. Otherwise we would have noticed a scale effect that would affect
the scale in the horizontal axis.
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Figure 5: p−value curves for simulated data: (a) N(0,1); (b) N(10,4); (c) 0.9*N(0,1)
+ 0.1*N(-5,1); (d) 0.9*N(0,1) + 0.1*N(-3,1); (e) χ2

4; and (f) exp(1). The
dotted line is a reference line (p = 0.05).
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Graphs (c) and (d) correspond to the mixtures 0.9 ∗N(0, 1) + 0.1 ∗N(−5, 1)
and 0.9 ∗ N(0, 1) + 0.1 ∗ N(−3, 1), respectively. The behaviour is different.
In the first case the contamination is clearly detected, fixing p = 0.05 the
significant standardized distance is approximately ∆0 = 0.5 before trimming,
and this value decreases to ∆0 = 0.07 when α = 0.2, similar to the values
observed in the normal models. Then, this sample can be considered normal
at level α = 0.2. The crossings observed in the p-value curves when α = 0.05 or
0.1 are related to the variability in the estimation of the asymptotic variance
σ2(P,N ). In the second case, graph (d), the contamination is timidly detected
as the significant standardized distance when p = 0.05 is slightly greater than
those in the normal models (∆0 = 0.24 in (d), whereas ∆0 = 0.17 in (a) or
∆0 = 0.14 in (b) ). This distance decreases to values similar to those of the
normal models when α = 0.05 or 0.1.

The remaining graphs in Figure 5, (e) and (f), correspond to cases where
normality is not reached at reasonable levels of trimming, a χ2

4 model and
an exponential model, respectively. In both cases the significant standardized
distance after trimming is clearly far from that of the normal model (∆0 = 0.34
and ∆0 = 0.64 vs ∆0 = 0.17 in (a)). There is also a clear improvement in this
distance when the trimming size increases. However, in both cases this distance
does not reach similar values to those of the normal model, even if α = 0.2. In
the chi-square case the difference with respect to the normal model is lower
than in the exponential case where this standardized distance is quite far from
that of the normal model (∆0 = 0.41 in (f) vs ∆0 = 0.09 in (a)). Thus, these
samples can not be considered normal at any reasonable level of trimming.

3.3 Simulation study

We finish this section with a short simulation study of the power of the pro-
posed test to assess mostly normality for finite samples. We consider two
different population models: P1 = 0.9 ∗N(0, 1) + 0.1 ∗N(−3, 1) and P2 = χ2

2,
the first one mostly normal and the second one farther away from normality.

We want to test the null hypothesis H i
0 : τ̃α(Pi,N ) ≥ ∆2

0 vs H i
a : τ̃α(Pi,N ) <

∆2
0 for different values of ∆0 and two trimming sizes (α = 0.05 and α = 0.1).

To do that, for each situation we obtain 10000 replicas of the statistic p̃(∆0)
for several values of n, rejecting H0 when p̃(∆0) < 0.05. Tables 2 and 3 contain
the observed rejection frequencies for P1 and P2 respectively. τ̃α represents the
theoretical standardized trimmed distance and has been estimated in all cases
from ten samples of 100000 observations. In both cases the simulation study
shows that even for moderate sample sizes the performance of the test is quite
good. We observe that the rejection frequency is low when the threshold value
is smaller than the true distance and high otherwise. When the threshold
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value is near the (estimated) distance then the simulated power is close to the
nominal power.

α = 0.05, τ̃α(P1,N ) ' 0.0225 α = 0.1, τ̃α(P1,N ) ' 0.0079

∆2
0 = 0.001 0.01 0.0225 0.05 0.1 0.001 0.005 0.0079 0.025 0.05

n Frequency Frequency

100 0 0.0012 0.0478 0.3410 0.8298 0 0.0003 0.0058 0.2654 0.7048

200 0 0.0012 0.0484 0.5038 0.9732 0 0.0010 0.0206 0.4404 0.9182

500 0 0 0.0355 0.8114 1 0 0.0016 0.0266 0.8068 0.9988

1000 0 0 0.0392 0.9780 1 0 0.0010 0.0304 0.9748 1

5000 0 0 0.0445 1 1 0 0 0.0326 1 1

10000 0 0 0.0520 1 1 0 0 0.0460 1 1

Table 2: Observed rejection frequencies for P1 = 0.9 ∗N(0, 1) + 0.1 ∗N(−3, 1).

α = 0.05, τ̃α(P2,N ) ' 0.1272 α = 0.1, τ̃α(P2,N ) ' 0.1022

∆2
0 = 0.05 0.1 0.1272 0.15 0.25 0.01 0.05 0.1022 0.15 0.25

n Frequency Frequency

100 0.0004 0.0274 0.0724 0.1296 0.5232 0 0.0014 0.0770 0.2724 0.7260

200 0 0.0122 0.0534 0.1594 0.8198 0 0.0008 0.0898 0.4378 0.9352

500 0 0.0028 0.0590 0.2528 0.9954 0 0 0.1042 0.6770 0.9996

1000 0 0 0.0570 0.3718 1 0 0 0.0886 0.8828 1

5000 0 0 0.0418 0.9196 1 0 0 0.0578 1 1

10000 0 0 0.0378 0.9953 1 0 0 0.0486 1 1

Table 3: Observed rejection frequencies for P2 = χ2
2.

A Appendix

To prove Theorem 2.1 the following technical lemma is needed,

Lemma A.1 Let v(h), µ(h) and σ(h) be defined as in (4)-(5). Then, assum-
ing F has finite second moment

(a) v(h), µ(h) and σ(h) are bounded and continuous in h ∈ Cα with respect
to the uniform norm.
(b) v(h) attains its minimum in Cα.

Proof. We show that given two square integrable quantile functions F−1, G−1

the functional a(h) =
∫ 1
0 F−1(h−1(t))G−1(h−1(t))dt is continuous in Cα for the

uniform norm. To check this, take {hn}n, h0 ∈ Cα such that ‖hn − h0‖ → 0.
This implies hn(F (x)) → h0(F (x)) for every x. The associated quantiles satisfy
F−1(h−1

n (t)) → F−1(h−1
0 (t)) at almost every t ∈ (0, 1) and similarly for G. To
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conclude that a(hn) → a(h0) it suffices to show that F−1 ◦ h−1G−1 ◦ h−1 is
uniformly integrable. But this follows from the fact that

sup
h∈Cα

∫ 1

0
|F−1(h−1(t))G−1(h−1(t))|I(|F−1(h−1(t))G−1(h−1(t))| > K)dt

= sup
h∈Cα

∫ 1

0
|F−1(y)G−1(y)|I(|F−1(y)G−1(y)| > K)h′(y)dy

≤ 1

1− α

∫ 1

0
|F−1(y)G−1(y)|I(|F−1(y)G−1(y)| > K)dy → 0

as K → ∞. This proves continuity of Var(F−1 ◦ h−1), Var(Φ−1 ◦ h−1) and
Cov(F−1 ◦ h−1, Φ−1 ◦ h−1). Since Cα is compact for the uniform topology (see
Alvarez-Esteban et al. (2008a)) we have that Var(Φ−1 ◦ h−1) attains its min-
imum value: minh∈Cα Var(Φ−1 ◦ h−1) = Var(Φ−1 ◦ h−1

opt). But this shows that
Var(Φ−1◦h−1) is bounded away from 0 in Cα (a distribution with a density can-
not have zero variance). This implies that v(h), µ(h) and σ(h) are continuous.
All the remaining claims follow from compactness of Cα.

To complete the proof of Theorem 2.1 we note that, similarly as in (4), we
can define

vn(h) := min
Q∈N

W2
2 ((Pn)h, Qh) = Var(F−1

n ◦ h−1)− Cov2(F−1
n ◦ h−1, Φ−1 ◦ h−1)

Var(Φ−1 ◦ h−1)

and then we have

√
n(Tn,α − τα(P,N )) =

√
n

(
min
h∈Cα

vn(h)− min
h∈Cα

v(h)
)

. (A.1)

We will obtain the conclusion in Theorem 2.1 from the study of the pro-
cess Mn(h) =

√
n(vn(h) − v(h)), h ∈ Cα. We note that, writing ρn(t) =√

n(F−1
n (t) − F−1(t))f(F−1(t)) (the quantile process) we can see after some

routine computations that

Mn(h) = 2
∫ 1

0

ρn(t)

f(F−1(t))
(F−1(t)− µ(h)− σ(h)Φ−1(t))h′(t)dt (A.2)

+
1√
n




∫ 1

0

ρ2
n(t)

f 2(F−1(t))
h′(t)dt−

(∫ 1

0

ρn(t)

f(F−1(t))
h′(t)dt

)2

+
1

σ2
Φ(h)

(∫ 1

0

ρn(t)

f(F−1(t))
Φ−1(t)h′(t)dt−

(∫ 1

0

ρn(t)

f(F−1(t))
h′(t)dt

)
µΦ(h)

)2

 ,
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where µΦ(h) =
∫ 1
0 Φ−1 ◦h−1 and σ2

Φ(h) =
∫ 1
0 (Φ−1 ◦h−1)2−µ2

Φ(h). We consider
a Brownian bridge, {B(t)}t∈(0,1), and define

M(h) := 2
∫ 1

0

B(t)

f(F−1(t))
(F−1(t)− µ(h)− σ(h)Φ−1(t))h′(t)dt.

Observe that {M(h)}h∈Cα is a centered Gaussian process with covariance func-
tion

K(h1, h2) = 4
∫ 1

0
l1(t)l2(t)dt− 4

∫ 1

0
l1(t)dt

∫ 1

0
l2(t)dt,

where

li(t) =
∫ F−1(t)

F−1(1/2)
(x− µ(hi)− σ(hi)Φ

−1(F (x)))h′i(F (x))dx, i = 1, 2.

This follows from noting that, integrating by parts, M(hi) = −2
∫ 1
0 li(t)dB(t).

The key result in this Appendix is the following.

Proposition A.2 Under the assumptions of Theorem 2.1 M is a tight Borel
measurable map and Mn converges weakly to M in `∞(Cα).

Proof. We assume w.l.o.g. that there exist Brownian bridges Bn satisfying

n1/2−ν sup
1
n
≤t≤1− 1

n

|ρn(t)−Bn(t)|
(t(1− t))ν

=





OP (log n), if ν = 0

OP (1), if 0 < ν ≤ 1/2
(A.3)

(this is guaranteed by (10), see Theorem 6.2.1 in Csörgö and Horváth (1993)).
Now we define.

Nn(h) := 2
∫ 1

0

Bn(t)

f(F−1(t))
(F−1(t)− µ(h)− σ(h)Φ−1(t))h′(t)dt

We claim that ‖Mn − Nn‖Cα := suph∈Cα
|Mn(h) − Nn(h)| → 0 in probability.

To check this we write

sup
h∈Cα

1√
n

∫ 1

0

ρ2
n(t)

f 2(F−1(t))
h′(t)dt ≤ 1

1− α

1√
n

∫ 1

0

ρ2
n(t)

f 2(F−1(t))
dt →Pr. 0, (A.4)

where the last convergence follows from the moment assumption on F (see
Lemma A.1 and the proof of Theorem 2 in Alvarez-Esteban et al. (2008a)).
Thus we can (uniformly) neglect the second term in expression (A.2) for Mn.
A similar bound and the fact that minh∈Cα σ2

Φ(h) > 0 is enough to control the
third term. Hence, it suffices to show that

sup
h∈Cα

∫ 1

0

|ρn(t)−Bn(t)|
f(F−1(t))

|F−1(t)− µ(h)− σ(h)Φ−1(t))|dt →Pr. 0.
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This can be done using boundedness of µ(h), σ(h) and arguing as in the proof
of Theorem 2 in Alvarez-Esteban et al. (2008a).

Since Nn and M are equally distributed, to complete the proof we have to
show that M is tight or, equivalently, that it is uniformly equicontinuous in
probability for some metric d for which Cα is totally bounded (see Theorems
1.5.7 and 1.10.2 in van der Vaart and Wellner (1996)). We take d to be the
uniform norm in Cα (then Cα is compact) and note that we have to prove that
for any given ε, η > 0 there exists δ > 0 such that

P

(
sup

‖h1−h2‖∞<δ
|M(h1)−M(h2)| > ε

)
< η.

From Markov’s inequality and compactness we see that it is enough to show
that the map h 7→ E|M(h)| is ‖ · ‖∞-continuous and this can done arguing as
in the proof of Lemma A.1

Proposition A.2 has the following simple, but important consequences

Corollary A.3 Under the assumptions of Theorem 2.1

sup
h∈Cα

|vn(h)− v(h)| →Pr. 0.

As a consequence ‖hn − h0‖ →Pr. 0.

Proof. Proposition A.2 implies that
√

n suph |vn(h) − v(h)| = suph |Mn(h)|
converges weakly to suph∈Cα

|M(h)|. This proves the first claim. To complete
the proof, observe that compactness allows to extract convergent subsequences
from hn: hn′ → ha and also to ensure that vn′(h) → v(h) uniformly. Since
vn′(hn′) ≤ v′n(h) we see, taking limits, that ha must be a minimizer of v.
Hence, by the uniqueness asumption (6) we have ha = h0. This completes the
proof.

Proof of Theorem 2.1. From (A.1) we see that
√

n(Tn,α − τα(P,N )) =√
n(vn(hn) − v(h0)) = Mn(h0) −

√
n(vn(h0) − vn(hn)). Optimality implies

v(hn)− v(h0) ≥ 0 and vn(h0)− vn(hn) ≥ 0. On the other hand

√
n(v(hn)− v(h0)) +

√
n(vn(h0)− vn(hn)) = Mn(h0)−Mn(hn) →Pr. 0,

the last convergence implied by Proposition A.2, Corollary A.3 and equicon-
tinuity. From this we get

√
n(vn(h0) − vn(hn)) →Pr. 0, hence

√
n(Tn,α −

τα(P,N )) converges in distribution to M(h0), proving the first part of Theo-
rem 2.1. The second claim can be proved with the aid of Corollary A.3 and
continuity arguments as in Lemma A.1. We skip details.
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Csörgö, M. and L. Horváth (1993). Weighted Approximations in Prob-
ability and Statistics. Wiley. New York.

Cuesta Albertos, J.A.; Gordaliza, A. and Matrán, C. (1997).
Trimmed k-means: An attempt to robustify quantizers. Ann. Statist., 25,
553–576.
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