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Abstract

We say that two probabilities are similar at level α if they are contaminated

versions (up to an α fraction) of the same common probability. We show how

this model is related to minimal distances between sets of trimmed probabili-

ties. Empirical versions turn out to present an over�tting e�ect in the sense

that trimming beyond the similarity level results in trimmed samples which are

closer than expected to each other. We show how this can be combined with a

bootstrap approach to assess similarity from two data samples.
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1 Similarity vs. Homogeneity

Classical goodness of �t deals with the problem of assessing whether the unknown
random generator, P , of a data object, X, belongs to a given class F . This includes
two-sample problems in which two di�erent random objects are observed and we
focus on checking whether a certain feature of the corresponding random generators

∗Research partially supported by the Spanish Ministerio de Ciencia e Innovación, grant
MTM2008-06067-C02-01, and 02 and by the Consejería de Educación y Cultura de la Junta de
Castilla y León, GR150.

†Dept. de Estadística e Investigación Operativa, Universidad de Valladolid. Prado de la Mag-
dalena s.n., 47005 Valladolid. Spain.

‡Dept. Matemáticas, Estadística y Computación, Universidad de Cantabria. Avda. los Castros
s.n. 39005 Santander, Spain.

1



coincides. The case in which X1 is a collection of i.i.d. random variables X1
1 , . . . , X

1
n

with common distribution P1, X2 is another sequence of i.i.d. r.v.'s X2
1 , . . . , X

2
m

with law P2 and the goal is to assess whether θ(P1) = θ(P2) for some function θ(·)
(including, for instance, θ(P ) = P ) is a homogeneity problem, to which a large
amount of literature has been devoted. Our starting point is that it is often the case
that the researcher is not really interested in checking whether P ∈ F or whether
P1 = P2. Imagine the case of a pharmaceutical company trying to introduce a new
(and cheaper) alternative to some reference drug. The regulatory authorities will
approve the new drug if its performance with respect to a certain biological magnitude
does not di�er from that of the standard drug. Both drugs could produce a similar
outcome on most patients. Though, if there is a fraction of them for which the
results are clearly di�erent, then the new drug is very likely to be rejected by a
homogeneity test, while, in fact, the cheap alternative has a similar performance
for most individuals. As another example, consider the comparison of two human
populations which were initially equal but have received inmigration with di�erent
patterns. In these situations the relevant assumption to check is not homogeneity,
but rather similarity in the following sense.

De�nition 1. Two probability measures P1 and P2 on the same sample space are
α-similar if there exist probability measures P0, P ′

1, P ′
2 such that





P1 = (1− ε1)P0 + ε1P
′
1

P2 = (1− ε2)P0 + ε2P
′
2

(1)

with 0 ≤ εi ≤ α, i = 1, 2.

De�nition 1 measures the overlap between P1 and P2, in agreement with other
possible measures of similarity (see, e.g., the section �Similarity between Populations�
in Gower, 2006). Our goal in this work is to present a method for assessing similarity
of the unknown random generators P1, P2 of two independent i.i.d. samples. Our
procedure yields also an estimate of the common core of the two distributions.

Our approach is based on trimming. Trimming procedures are of frequent use
in Robust Statistics as a way of downplaying the in�uence of contaminating data
in our inferences. The introduction of data-dependent versions of trimming, often
called impartial trimming, allows to overcome some limitations of earlier versions of
trimming which simply removed extreme observations at tails. Generally, impartial
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trimming is based on some optimization criterion, keeping the fraction of the sam-
ple (of a prescribed size) which yields the least possible deviation with respect to a
theoretical model. Today, impartial trimming constitutes one of the main tools in
the robust approach to a variety of statistical settings (see e.g. Cuesta et al, 1997;
García-Escudero et al, 2008; Maronna, 2005; Rousseeuw, 1985). The �rst approach to
model validation based on impartial trimming is (to our best knowledge) the one in
Álvarez-Esteban et al (2008, 2010b). The problem considered there can be rephrased
as follows. Given two independent i.i.d. samples of univariate data with unknown
random generators P1, P2, we want to assess whether Pi = L(ϕi(Z)), i = 1, 2, for
some random variable Z de�ned on a probability space (Ω,F ,P) and nondecreasing
functions, ϕ1, ϕ2, such that

P(ϕ1(Z) 6= ϕ2(Z)) ≤ α

(see Subsection 2.2 for further discussion). Despite the interest of this approach, we
believe that the similarity model given by De�nition 1 is often more natural and
useful in applications. Some technical related results and the connection with the
optimal transportation problem have been reported in Álvarez-Esteban et al (2010a).
A somehow related approach based on density estimation can be found in Martínez-
Camblor et al (2008).

As we will show in Section 2, the similarity model of De�nition 1 can be expressed
in terms of a minimal distance between the sets of trimmings of the probabilities
Pi, i = 1, 2. These are the sets of probabilities that one obtains from a �xed one
by removing or downplaying (up to some degree) the weight assigned by the original
probability. When we look for the minimal distance between trimmings of the em-
pirical measures based on two samples we are highlighting the part of the data that,
hopefully, comes from the common core P0. From a descriptive point of view, this
gives an interesting tool for the comparison of data samples.

A distinctive feature of our proposal concerns the rates of convergence. If Pn,
Qn are the empirical distributions based on two samples of univariate data (of equal
size for simplicity), we will trim up to an α-fraction of data from both samples in
order to minimize some distance, d(·, ·), and if we write Pn,α, Qn,α for the opti-
mally trimmed empirical distributions we will have d(Pn,α, Qn,α) ≤ d(Pn, Qn). Trim-
ming procedures generally give a balanced compromise between e�ciency and ro-
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bustness, and increasing the level of trimming has a moderate e�ect on the e�ciency.
Thus, for univariate i.i.d. data coming from equal random generators we typically
have d(Pn, Qn) = OP (n−1/2) and d(Pn,α, Qn,α) = OP (n−1/2), but it is not true that
d(Pn,α, Qn,α) = oP (n−1/2) (see, for instance, Theorem A.1 in Álvarez-Esteban et al,
2008). However, for our procedure over-trimming (i.e. trimming beyond the similarity
level) will produce an over-�tting e�ect, namely, d(Pn,α, Qn,α) = oP (n−1/2). That will
be the key for the statistical application of the procedure. Roughly speaking, if two
random samples are trimmed more than required to delete contamination then two
samples far more similar than expected are obtained, and, it is feasible to distinguish
this pair of trimmed samples from any other pair of non-trimmed non-contaminated
samples. We formalize this idea in Section 2. As in Álvarez-Esteban et al (2008) our
choice for the metric d is the L2-Wasserstein distance.

This over�tting e�ect can be combined with a bootstrap procedure to consistently
decide if the underlying distributions of two i.i.d. samples are similar in the sense
of De�nition 1 as we show in Section 3. This statistical procedure should be also
useful in other frameworks of model validation. The consistency of our procedure is
independent of the kind of contaminations. However, as expected, inliers are harder to
detect than outliers. In this proposal this is re�ected in the fact that in the presence
of inliers we have to consider small resampling sizes. This is discussed in Section
4, where we present some simulations showing the performance of our bootstrap
procedure over �nite samples. We also include the analysis of a real data set.

For the sake of readability we have moved to an Appendix most of the proofs,
together with some additional results on rates of convergence.

Throughout the paper P will be the set of Borel probability measures on the real
line, R, while Fp will denote the set of distributions in P with �nite p−th absolute
moment. If F is a distribution function, F−1 will denote its generalized inverse or
quantile function. Given P, Q ∈ P , by P ¿ Q we will denote absolute continuity of
P with respect to Q, and by dP

dQ
the corresponding Radon-Nikodym derivative. Unless

otherwise stated, the random variables will be assumed to be de�ned on the same
probability space (Ω, σ, ν). Weak convergence of probabilities will be denoted by →w

and L(X) (resp. EX) will denote the law (resp. the mean) of the variable X. The
indicator function of a set A will be IA and ` will denote the Lebesgue measure.

4



2 Trimming and over�tting

2.1 Trimmings of a distribution

Trimming an α-fraction of data in a sample of size n can be understood as replacing
the empirical measure by a new one in which the data are reweighted so that the
trimmed points have now zero probability while the remaining points will have weight
1/n(1− α). By analogy we can de�ne the trimming of a distribution as follows.

De�nition 2. Given α ∈ (0, 1), we de�ne the set of α−trimmed versions of P by

Rα(P ) :=

{
Q ∈ P : Q ¿ P,

dQ

dP
≤ 1

1− α
, P -a.s.

}
. (2)

This de�nition has been considered by several authors (see e.g. Gordaliza, 1991;
Cascos and López-Díaz, 2008; Álvarez-Esteban et al, 2008). It allows the considera-
tion of partial removing of the points in the support of the probability. This �exibility
results in nice properties of the sets of trimmings, making Rα(P ) a convex set, com-
pact for the topology of weak convergence (see Proposition 2.1 in Álvarez-Esteban et
al, 2010a).

In this paper we use the quadratic Wasserstein distance,W2, namely, the minimal
quadratic transportation cost between probabilities with �nite second moment. W2

metrizes weak convergence plus convergence of second moments. We refer to Section
8 of Bickel and Freedman (1981) for further details on W2. On the real line W2 is
simply the L2 distance between quantile functions, that is W2

2 (P1, P2) =
∫ 1

0
(F−1

1 (t)−
F−1

2 (t))2dt if F−1
i is the quantile function of Pi. Trimmings are also well behaved with

respect to W2, as shown in Álvarez-Esteban et al (2010a). For instance, for P ∈ F2,
Rα(P ) is a compact subset of F2 for W2 (see Proposition 2.8 in Álvarez-Esteban et
al, 2010a). A simple consequence is that in

W2(Rα(P1),Rα(P2)) := min
Ri∈Rα(Pi)

W2(R1, R2) (3)

the minimum is indeed attained. A remarkable result is that the minimizer is unique
under mild assumptions. We refer again to Álvarez-Esteban et al (2010a) for a proof.

Proposition 1. If P1, P2 ∈ F2, 0 < α < 1 and P1 or P2 has a density then there
exists a unique pair (P1,α, P2,α) ∈ Rα(P1)×Rα(P2) such that

W2(P1,α, P2,α) = W2(Rα(P1),Rα(P2)),
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provided W2(Rα(P1),Rα(P2)) > 0.

The connection between trimmings and the similarity model of De�nition 1 is
given by the next result. Here dTV denotes the distance in total variation, namely,
dTV (P1, P2) = supB |P1(B)− P2(B)|, where B ranges among all Borel sets.

Proposition 2. For α ∈ [0, 1) the following are equivalent:

(a) P1 and P2 are α-similar.

(b) Rα(P1) ∩Rα(P2) 6= ∅.

(c) dTV (P1, P2) ≤ α.

If P1, P2 ∈ F2 then (a) or (b) are equivalent to

(d) W2(Rα(P1),Rα(P2)) = 0.

Proof. If (a) holds then P0(A) ≤ 1
1−α

Pi(A) for all Borel A. In particular P0 ¿ Pi and,
if Ai = {dP0

dPi
> (1− α)−1}, obviously P0(Ai) = 0 and P0 ∈ Rα(P1)∩Rα(P2), showing

(b). Assume now (b) and take P0 ∈ Rα(P1) ∩ Rα(P2). Then (1 − α)P0(A) ≤ Pi(A)

for all A. If α = 0 then (c) holds trivially. Otherwise de�ne P ′
i (A) = (Pi(A) − (1 −

α)P0(A))/α. Then P ′
i is a probability and dTV (P1, P2) = αdTV (P ′

1, P
′
2) ≤ α, that

is, (c) holds. Finally, we assume that (c) holds and take µ to be a common σ-�nite
dominating measure for P1 and P2 and write f1 and f2 for the corresponding densities.
Then (see, e.g., Lemma 2.20 in Massart, 2007) dTV (P1, P2) = 1− ∫

(f1∧ f2)dµ (where
a ∧ b means min(a, b)). Write ε = dTV (P1, P2) and assume ε > 0 (the case ε = 0 is
trivial). We set f ′i = (fi− f1 ∧ f2)/ε, i = 1, 2 and f0 = (f1 ∧ f2)/(1− ε). f0, f

′
1, f

′
2 are

densities with respect to µ. We write P0, P
′
1, P

′
2 for the associated probabilities. Then

(1) holds with ε1 = ε2 = ε ≤ α. Equivalence of (b) and (d) follows from compactness
of the sets of trimmings. ¤

Remark 1. It follows from Proposition 2 that W2(Rα(P1),Rα(P2)) > 0 if and only
if dTV (P1, P2) > α, that is, dTV (P1, P2) is the minimal level of trimming required to
make P1 and P2 equal. Also, if dTV (P1, P2) = α, then the probability P0 with density
f0 = (f1 ∧ f2)/(1−α) with respect to µ (as in the proof above) is the unique element
in Rα(P1)∩Rα(P2). This means that, as in Proposition 1, there is also a unique pair,
namely, (P0, P0) ∈ Rα(P1)×Rα(P2) such that

W2(P0, P0) = W2(Rα(P1),Rα(P2)) = 0.
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This extends the result in Proposition 1 to the case dTV (P1, P2) ≥ α.

Proposition 2 shows that the similarity model (1) can be expressed in terms of dif-
ferent metrics. In fact, (d) would remain true ifW2 were replaced by any other metric
for which the sets of trimmings are compact. With applications in mind, W2 turns
out to be a more convenient choice. In order to assess (1) from two samples of i.i.d.
data with empirical distributions P1,n and P2,m, say, we will have dTV (P1,n, P2,m) = 1

almost surely (provided P1 and P2 have densities) and we cannot use (at least in a
naïve fashion) formulation (c). On the other hand, W2 is well behaved in this respect
and empirical versions of both the minimal distances and the minimizers are consis-
tent estimators of their theoretical counterparts. This is the content of the following
result.

Theorem 1 (Consistency). Let {Xn}n, {Yn}n be two sequences of i.i.d. random
variables with L(Xn) = P , L(Yn) = Q, P, Q ∈ F2, and write Pn, Qm for the empirical
distributions based on the samples X1, . . . , Xn and Y1, . . . , Ym, respectively. Then, if
min(m, n) →∞,

W2(Rα(Pn),Rα(Qm)) →W2(Rα(P ),Rα(Q)) a.s.

Further, if P or Q ¿ ` and dTV (P, Q) ≥ α then

W2(Pn,α, Pα) → 0 and W2(Qm,α, Qα) → 0 a.s.,

where (Pα, Qα) = argminR1∈Rα(P ),R2∈Rα(Q)W2(R1, R2) and (Pn,α, Qm,α) are de�ned
similarly from Pn, Qm.

2.2 Similarity vs. common trimming.

In Álvarez-Esteban et al (2008) it is shown that Rα(P ) can be expressed in terms of
the trimmings of the uniform law on (0, 1), U(0, 1). This set can be identi�ed with
the set Cα of absolutely continuous functions h : [0, 1] → [0, 1] such that, h(0) = 0,
h(1) = 1, with derivative h′ such that 0 ≤ h′ ≤ 1

1−α
. For a such function h, it is useful

to write Ph for the probability measure with distribution function h(P (−∞, t]). Then

Rα(P ) = {Ph : h ∈ Cα}. (4)
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Hence, we can measure the deviation between the sets of trimmings of P and Q

through
Tα(P, Q) := min

h∈Cα

W2(Ph, Qh).

We call Tα(P,Q) the common-trimming distance between P and Q. If P and Q have
quantile functions F−1 and G−1 then a simple change of variable shows

W2(Ph, Qh) =

∫ 1

0

(F−1(h−1(x))−G−1(h−1(x)))2dx

=

∫ 1

0

(F−1(y)−G−1(y))2h′(y)dy.

Thus, Tα(P, Q) = 0 if and only if `({y ∈ (0, 1) : F−1(y) 6= G−1(y)}) ≤ α. It follows
easily from this that Tα(P, Q) = 0 if and only if there is a random variable Z de�ned
on a probability space (Ω,F ,P) and nondecreasing, left continuous functions, ϕ1, ϕ2,
with L(ϕ1(Z)) = P , L(ϕ2(Z)) = Q such that

P(ϕ1(Z) 6= ϕ2(Z)) ≤ α. (5)

In contrast, since dTV (P, Q) = min{P(X 6= Y ) : L(X) = P,L(Y ) = Q} (see, e.g.,
Lemma 2.20 in Massart, 2007), we see that W2(Rα(P ),Rα(Q)) = 0 if and only
L(ϕ1(Z)) = P , L(ϕ2(Z)) = Q for some random variable Z and measurable (not
necessarily monotonic) ϕi such that (5) holds. In summary, two random objects
are α-similar i� they are di�erent transforms of a common random signal and the
transforms di�er from each other with probability at most α; they are equivalent in
terms of common-trimming i� they are di�erent monotonic transforms of a common
random signal and the transforms di�er from each other with probability at most α.
In the, somewhat arti�cial, event that we believe that our two samples come from
a monotonic, possibly di�erent transform of some original signal, then the common-
trimming similarity model is reasonable. Otherwise, the similarity model (1) is the
natural choice. For a less technical illustration of this idea we show in Figure 1 the
di�erent e�ect of independent and common trimming. We have taken P = N(0, 1),
Q = 0.8N(0, 1) + 0.2N(4, 1) and three values of the trimming level, α. In the �rst
row we show the densities of Pα (blue line) and Qα (red line), with (Pα, Qα) =

argmin R1∈Rα(P ),R2∈Rα(Q)W2(R1, R2). In this case, trimming α = 0.2 results in Pα =

Qα, that is, trimming removes contamination. The second row shows the densities of
Phα (blue line) and Qhα (red line), with hα = argmin h∈Cα

W2(Ph, Qh). Clearly, Phα
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and Qhα are di�erent and this remains true no matter how close to 1 we choose α.
If trimming is used with the goal of removing contamination and assessing that the
core of the two distributions are equal, then it is clear that the common trimming
approach fails to do so.

2.3 The over�tting e�ect of trimming

In this subsection we keep the notation of Theorem 1 and assume that we deal with
two independent samples, X1, . . . , Xn i.i.d. P ; Y1, . . . , Ym i.i.d. Q. We write Pn, Qm

for the empirical measures and Pn,α, Qm,α are minimizers of theW2 distance between
trimmings of the empirical distributions Pn, Qm.

It follows from Theorem 1 thatW2(Pn,α, Qm,α) → 0 a.s. when the similarity model
(1) holds true and we may wonder about the rate of convergence in this limit. Note
that under homogeneity, that is, if P = Q and taking n = m for simplicity, we have
under integrability assumptions

√
nW2(Pn, Qn) →w

(
2

∫ 1

0

B2(t)

f 2(F−1(t))
dt

)1/2

, (6)

where B is a Brownian bridge and f and F−1 are the density and quantile functions
of P (this follows easily, for instance, from Theorem 4.6 in del Barrio et al, 2005).
Thus, random samples from homogeneous generators have empirical distributions
at W2-distance of exact order n−1/2, while, for nonhomogeneous random generators
W2(Pn, Qn) → W2(P, Q), a positive constant. Likewise, in the common-trimming
model of Subsection 2.2, if hn,α is such that Tα(Pn, Qn) = W2((Pn)hn,α , (Qn)hn,α) and
we write P̃n,α = (Pn)hn,α , Q̃n,α = (Qn)hn,α (the optimal trimmings of the empirical
measures), then under Tα(P, Q) = 0 we have that √nW2(P̃n,α, Q̃n,α) converges in
law to a non-null limit (Theorem A.1 in Álvarez-Esteban et al, 2008) whereas if
Tα(P, Q) > 0 then W2(P̃n,α, Q̃n,α) converges a.s. to a positive constant.

In the similarity model (1) the gap between the null and the alternative is of higher
order. If P and Q are not similar at level α then W2(Pn,α, Qm,α) →W2(Pα, Qα) > 0

(Theorem 1). On the other hand, if dTV (P, Q) < α then our next result shows that
√

nW2(Pn,α, Qn,α) → 0 in probability.

Theorem 2. Assume P, Q ∈ F2 are supported in a common interval and have strictly
positive densities with bounded derivatives. Assume further that n/(n + m) → λ ∈
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(0, 1). If αn ∈ (0, 1) satis�es αn ≥ dTV (P, Q) + rn√
n
for some rn →∞, then

√
nW2(Pn,αn , Qm,αn) → 0 in probability. (7)

We give a proof of Theorem 2 in the Appendix. A similar over�tting e�ect is
observed if a sample is overtrimmed to optimally �t a given model: if X1, . . . , Xn are
i.i.d. P , Pn,α = argminR∈Rα(Pn)W2(R,Q) and W2(Rα0(P ), Q) = 0 for some α0 < α

then (see Theorem 5 in the Appendix)

√
nW2(Pn,α, Q) → 0 in probability.

Empirical evidence of this over-�tting e�ect is shown in Figure 2. A random sample
of size n = 1000 from a U(0, 1) distribution was taken. This sample was trimmed
using the proportions α = 0, 0.1, 0.3 in order to obtain a sample as close to the U(0, 1)

as possible. We denote by Fα
n the distribution function of Pn,α and in Figure 2, we

represent the empirical processes Dα
n(t) = n1/2(Fα

n (t)− t), t ∈ [0, 1] for α = 0, 0.1, 0.3.
Since the true random generator and the target are the same, no trimming is

required in this case to remove contamination and for α > 0 we are over-trimming.
Observe that D0.1

n and D0.3
n do not di�er too much from each other, while they are

quite far from the untrimmed version.

3 A bootstrap assessment of similarity

We show in this section how we can use the over�ting e�ect of trimming for the
assessment of the similarity model (1). Theorem 2 says that trimming beyond the
similarity level kills randomness and results in (trimmed) samples that are more
similar to each other than random samples coming from the same generator. We
will use a bootstrap approach to generate suitable random samples from a common
generator and compare the optimally trimmed distance to the distance computed on
the bootstrap replicates.

Again, we will assume that we observe two independent random samples X1, . . . , Xn

i.i.d. P , Y1, . . . , Ym i.i.d. Q, write Pn, Qm for the empirical distributions and, given
αn ∈ (0, 1),

(Pn,αn , Qm,αn) = arg min
R1∈Rαn(Pn),R2∈Rαn(Qm)

W2(R1, R2),

so that W2(Pn,αn , Qm,αn) = W2(Rαn(Pn),Rαn(Qm)).
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We consider now the pooled probability

Rn,m =
n

n + m
Pn,αn +

m

n + m
Qm,αn .

Rn,m is a random probability measure concentrated on {Z1, ...., Zn+m}, where Zj = Xj

for j = 1, ..., n, and Zj = Yj−n for j = n + 1, ..., n + m.
Conditionally given the data, we draw new random variables, X∗

1 , ..., X
∗
n′ , Y

∗
1 , ..., Y ∗

m′

i.i.d. Rn,m, with m′ = [n′m/n] and n′ to be chosen later. We will use the notation P∗

for the bootstrap probability, that is, the conditional probability given the original
data {Xn}n, {Ym}m. Finally, by P ∗

n′ and Q∗
m′ we will denote the empirical measures

based on X∗
1 , ..., X

∗
n′ and Y ∗

1 , ..., Y ∗
m′ , respectively. Now, we de�ne

p∗n,m := P∗
{√

n′m′

n′ + m′W2(P
∗
n′ , Q

∗
m′) >

√
nm

n + m
W2(Pn,αn , Qm,αn)

}
. (8)

p∗n,m is the bootstrap p-value for the similarity model (1), with rejection for small
values of it. In practice p∗n,m can be approximated by Monte Carlo simulation. We
note that if nαn and mαn are integer, typically the trimming process will not produce
partially trimmed points and Pn,αn and Qm,αn will be the empirical measures on the
sets of non-trimmed data. If we take αn → α, then if the similarity model fails
W2(Pn,αn , Qm,αn) will be large, whileW2(P

∗
n′ , Q

∗
m′) will vanish. On the other hand, for

similar distributions W2(Pn,αn , Qm,αn) will vanish at a faster rate than W2(P
∗
n′ , Q

∗
m′)

and rejection for small bootstrap p-values will result in a consistent rule. We make
this precise in our next result.

Theorem 3. With the above notation, assume that P, Q ∈ F2+δ for some δ > 0

and have densities satisfying the assumptions of Theorem 2. Assume further that
n/(n + m) → λ ∈ (0, 1) and take αn = α + K/

√
n ∧m with K > 0. Then, if n′ →∞

and n′ = O(n),

(i) if dTV (P, Q) < α then p∗n,m → 1 in probability.

(ii) if dTV (P, Q) > α then p∗n,m → 0 in probability.

A proof of Theorem 3 is given in the Appendix. In order to make this result
usable in practice for testing the similarity model (1) at a given level, we still need to
control the probability of rejection at the boundary of the null hypothesis, that is, in
the case dTV (P, Q) = α. In this case we write again P0 for the common part of P and
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Q in the canonical decomposition in Remark 1. If P̃n ∈ Rαn(P ) and Q̃n ∈ Rαn(Q),
with αn as in Theorem 3, are such that W2(P̃n, Q̃n) → 0 then, by uniqueness, we
have W2(P̃n, P0) → 0. We introduce the following assumption about rates in this
convergence: If P̃n ∈ Rαn(P ), Q̃n ∈ Rαn(Q) then, for some ρ ∈ (0, 1]

W2(P̃n, Q̃n) = O(n−1/2) ⇒W2(P̃n, P0) = O(n−ρ/2). (9)

Under this assumption we can control the type I error probability using our next
result.

Theorem 4. Under the assumptions and notation of Theorem 3, if P and Q are such
that dTV (P, Q) = α and satisfy (9), taking n′ →∞, n′ = o(nρ) and

αn = α +

√
α(1− α)√
n ∧m

Φ−1(
√

1− γ)

with γ ∈ (0, 1), then lim supn P(p∗n,m ≤ β) ≤ β + γ.

The main consequence is that we can test the similarity model (1) at a given level
β+γ ∈ (0, 1). If we reject for p∗n,m ≤ β then the procedure will be conservative, having
asymptotic level at most β + γ but, nevertheless, the test will consistently reject the
similarity model if it fails. We devote the next section to showing the performance of
this procedure.

Turning to the meaning of condition (9), rather than pursuing an involved, tech-
nical analysis we include a couple of illustrative examples that show that the best
possible rate ρ depends on the degree of separation between the contaminating distri-
butions P ′

1, P ′
2 in the canonical decomposition. In the well-separated case (when the

distance between the supports of P ′
1 and P ′

2 is positive), then (under additional tech-
nical conditions) we can take ρ = 1 and we have that the optimal trimming, Pn,αn ,
approaches the common part, P0, at the parametric rate: W2(Pn,αn , P0) = OP (n−1/2).
Without this separation we cannot take ρ greater than 4/5 and we have a nonpara-
metric rate of convergence: W2(Pn,αn , P0) = OP (n−2/5). In our examples we assume
P and Q to have bounded support; this is enough for applications, since a monotonic
transformation of the data could achieve boundedness while preserving the distance
in total variation.

Example 1. (The well-separated case.) Assume P and Q are probabilities on the real
line with quantile functions, F−1 and G−1 such that G−1(t) = F−1(t+α), 0 < t < 1−α
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and F−1 has a bounded derivative (as in Figure 3 (a)). Then dTV (P, Q) = α and,
taking αn = α + K√

n
for some K > 0 and writing P0 for the common part in the

canonical decomposition for P and Q, we have that if P̃n ∈ Rαn(P ), Q̃n ∈ Rαn(Q)

then,
W2(P̃n, Q̃n) = O(n−1/2) ⇒W2(P̃n, P0) = O(n−1/2).

Example 2. (The non-separated case.) We assume now that P and Q di�er only in
location and have a symmetric, unimodal density. Without loss of generality we write
F (·+µ/2) and F (·−µ/2) for the distribution functions of P and Q, respectively and
f for the density associated to F . We suposse that F has bounded support and f

is strictly positive on it. Further, we assume f to be continuously di�erentiable with
f ′ < 0 in (0, sup(supp(F ))). If µ and α satisfy 1 − α = 2(1 − F (µ/2)) = 2F (−µ/2)

then dTV (P, Q) = α (see Figure 3 (b)). Now, if P̃n ∈ Rαn(P ), Q̃n ∈ Rαn(Q) then,

W2(P̃n, Q̃n) = O(n−1/2) ⇒W2(P̃n, P0) = O(n−2/5).

A proof of the claims in the last two examples is sketched in the Appendix.
We conclude this section presenting a simple upper bound for the transportation

cost between empirical measures. This result, together with Theorem 2, is the key in
our proofs of Theorems 3 and 4 and has some independent interest. The proof is also
included in the Appendix. Here X1,1, . . . , X1,n; X2,1, . . . , X2,m are i.i.d. Rk-valued
random vectors with common distribution P and Y1,1, . . . , Y1,n; Y2,1, . . . , Y2,m are i.i.d.
Q. We write Pn,1 and Pm,2 for the empirical measures based on X1,1, . . . , X1,n and
X2,1, . . . , X2,m, respectively and, similarly, Qn,1 and Qm,2 for the empirical measures
based on the Yi,j. Let us de�ne

Sn,m := Wp(Pn,1, Pm,2) and Tn,m := Wp(Qn,1, Qm,2).

Proposition 3. With the above notation, if p ≥ 1 then

Wp(L(Sn,m),L(Tn,m)) ≤ 2Wp(P, Q).

4 Empirical analysis of the procedure

In this section we explore the performance of the procedure for �nite samples. The
section is divided in two subsections that respectively address the analysis of a planned
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simulation study, and of a case study. To simplify our exposition we will assume equal
sizes in the two samples through the �rst subsection. All the computations have been
carried out with the programs available at http://www.eio.uva.es/∼pedroc/R

4.1 A simulation study

We consider �rst an example which illustrates the over�tting e�ect on the bootstrap
p-values. We generate 200 pairs of samples of size n = 1000 obtained from the N(0,1)
and the 0.9N(0,1)+0.1N(10,3) distributions. Then, for each pair of samples we carry
out the bootstrap procedure (1000 bootstrap replicates in each run) for trimming
levels α = 0.09 and 0.11. At this point an important caution when dealing with
mixtures should be made, namely the distinction between the level (0.1 in our case)
of the �contaminating� distribution in the mixture, and the similarity level between the
non-contaminated and the contaminated distributions. Of course both distributions
are similar at level 0.1, but they are in fact similar also at a lower level (recall the
canonical decomposition in Remark 1). For example, since the supports of the U(0, 1)

and U(1, 2) distributions are disjoint, then the minimum level of similarity between
the U(0, 1) and the 0.9U(0, 1)+0.1U(1, 2) distributions is 0.1, but between the N(0, 1)

and the 0.9N(0, 1) + 0.1N(µ, 3) is strictly lower for every µ. For instance, this level
is 0.0484 if µ = 0, 0.0653 for µ = 3; or 0.0989 when µ = 10.

Figure 4 shows the absolute frequencies of the bootstrap p-values, p∗n,n, obtained
in this example.

As stated above, the similarity level between the considered distributions is 0.0989.
Thus, the probability of obtaining an observation from the non-common part in the
mixture is 0.0989. Taking into account sample sizes and the number of samples con-
sidered, the expected number of times in which we obtain at most 110 `contaminating'
observations in both samples is 158.13. In these cases, after 0.11-trimming, we will
be comparing similar samples and should have no evidence against similarity. We
note that 158 is slightly below the observed frequency in the right bar of the right
histogram in Figure 4. On the other hand, the expected number of times in which
the amount of `contaminating' data exceeds 90 in both samples is 132.02. In this
event 0.09-trimming is unable to remove contamination and we should have strong
evidence against similarity. We can check that 132 is close to the observed frequency
in the left bar of the left histogram in Figure 4.
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The comments above suggest that the p-values are very sensitive to the e�ective
proportion of contamination in the data. This is further illustrated with the plots in
Figure 5 which show the curves of bootstrap p-values conditioned to di�erent ranges
of contaminating proportion in the second sample (the amount of data coming from
the N(10, 3) distribution). In this �gure we observe that the transition from p-values
close to 0 to p-values close to 1 is very fast along the trimming level. In other words,
the e�ect of under (over) trimming becomes apparent very quickly.

We show next a simulation study to illustrate the power performance for �nite
samples of the bootstrap procedure introduced in Section 3, when the trimming level,
αn, is determined as in Theorem 4. We consider two di�erent cases, comparing
samples of the same size, n, of P = N(0, 1) versus Qi, i = 1, 2. In the �rst case
Q1 = (1 − ε)N(0, 1) + εN(10, 1); the contamination is due to outliers. While in the
second case, the contamination is due to inliers, and Q2 = (1− ε)N(0, 1) + εN(0, 3).
In both cases the null hypothesis is H0 : dTV (P, Qi) ≤ 0.1 and we use 1000 bootstrap
pairs of samples to obtain p∗n,n, rejecting H0 if p∗n,n ≤ 0.05 = β. Then, we compute
the rejection frequencies in 1000 iterations of the procedure, obtaining the values
shown in Tables 1 and 2. We do this for di�erent values of ε (then, di�erent values of
ν = dTV (P, Qi)) and di�erent resampling orders n′ = nρ. The simulation shows that
the bound given in Theorem 4 is approached for moderate sizes in the �rst case (see
Table 1, ν = 0.10). However, in the second case, the procedure is conservative. The
main conclusion is that in both cases the contamination is detected, but the case in
which the contamination comes from inliers, this detection is more di�cult.

We close this subsection with a comparison to classical testing procedures that
could be adapted to the setup of similarity testing. We recall from Proposition 2
that testing α-similarity of P and Q is equivalent to testing whether supA |P (A) −
Q(A)| ≤ α, with A ranging among all (measurable) sets. If we focus on sets of type
A = (−∞, x] then we could test the null hypothesis H0 : supx∈R |F (x) − G(x)| ≤ α

using the Kolmogorov-Smirnov statistic: Dn = supx∈R |Fn(x) − Gn(x)|, where Fn

and Gn denote the empirical d.f.'s based on the Xi and the Yj, respectively (and we
have assumed for simplicity samples of equal size). It is known (see Raghavachari
(1973)) that, provided supx∈R |F (x)−G(x)| = λ > 0, √n(Dn − λ) converges weakly
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to Zλ(F, G) = max(Z1, Z2) with

Z1 = sup
{x:F (x)−G(x)=λ}

B1(G(x)+λ)−B2(G(x)), Z2 = sup
{x:G(x)−F (x)=λ}

B2(G(x))−B1(G(x)−λ),

where B1, B2 are independent Brownian bridges on (0, 1). With standard argu-
ments it can be shown that P (Zλ(F, G) > t) ≤ P (Zλ > t) for t > 0, with Zλ =

sup0≤x≤1−λ B1(x + λ)− B2(x). Hence, if we choose z
(β)
α such that P (Zα > z

(β)
α ) = β,

then the test that rejects when

Dn > α +
1√
n

z(β)
α

is asymptotically of level β for testing H0 : supx∈R |F (x) − G(x)| ≤ α. The critical
value z

(β)
α can be approximated by Monte Carlo simulation. We could try to use this

procedure for testing the α-similarity model. Tough, since we can �nd distributions
which are arbitrarily close in Kolmogorov-Smirnov distance but far frome each other
in total variation distance, this alternative procedure can fail badly. We show this
in our last simulation study. We have taken P = N(0, 1) and Q = 0.70N(0, 1) +

0.15N(2.35, 1) + 0.15N(−2.35, 1), a mixture with three normal components. Here
we have supx∈R |P (−∞, x] − Q(−∞, x]| = 0.1 and dTV (P,Q) = 0.2 and we test
H0 : dTV (P, Q) ≤ 0.1 at level 0.05. We show the observed frequencies of rejection
for Dn and our bootstrap procedure based on W2 as in Theorem 4 with ρ = 4/5,
γ = 0.01. In this case we reject for bootstrap p-values larger that 0.04 to make the
asymptotic probability of type I error less than 0.05. We have considerd sampling
sizes n = 100, 300, 500 and 1000 and have produced 10000 replicates of the tests in
each case. We see that the Kolmogorov-Smirnov test fails to detect the disimilarity,
even for large sample sizes, while the bootstrap procedure suggested in this paper
works reasonably for moderate sizes.

4.2 A case study

The data from this case study come from an admission exam to the Universidad de
Valladolid. 308 exams on the same subject were randomly assigned to 2 markers.
The distribution of the exams was not exactly balanced and markers received 152
and 156 exams, respectively. Each exam was given a grade between 0 and 10 points.
In the admission exams some marking criteria are given to the markers with the
goal of making the grading process �homogeneous�. The main goal of this study
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is to determine whether the markers are using or not the same common criteria.
It is allowed some degree of deviation from this common pattern for each marker.
Therefore, we would like to assess the similarity of the samples of marks for the
di�erent markers.

The use of non-parametric methods strongly rejects, at level 0.05, homogeneity
between the considered marking's distributions (Wilcoxon-Mann-Whitney, p-value=
0.000; and Kolmogorov, p-value=0.003). In Figure 6 we show the histograms corre-
sponding to the full data sets and the progressive e�ects of best trimming, minimizing
the Wasserstein distance between the remaining subsample distributions. The white
portions of the bars represent the trimmed observations when the trimming size is
α = 0.05, the union of the white and yellow portions are the trimmed observations
when α = 0.1, and the orange portions complete the trimming corresponding to
α = 0.15. Notice that the best trimming is far from being symmetric.

In Table 4 we have included the p-values corresponding to the bootstrap procedure
introduced in Section 3. In every case, for �xed β = 0.05 and taking αn as in Theorem
4, we used 1000 bootstrap samples to compute the p-values for the null hypothesis
H0 : dTV (P,Q) ≤ α. In general terms, these p-values show that both samples are
not 0.05-similar, but they can be considered 0.10-similar. The considerations made in
Section 3 about condition (9), show the convenience of using resampling orders less
or equal to n4/5, as we don't know if the supports of the contaminating distributions
are well separated or not.

A Appendix: Proofs

A.1 Proof of Theorem 2

Our proof is based on a parallel result for the one-sample case. Let Pn be the em-
pirical measure based on i.i.d. r.v.'s X1, . . . , Xn with common distribution P . In
the particular case P = Q and α = 0 we have nW2

2 (Pn, Q) = OP (1) under su�cient
integrability assumptions (see, e.g., del Barrio et al, 2005). From the obvious bound
W2(Rα(Pn), Q) ≤ W2(Pn, Q) we see that nW2

2 (Rα(Pn), Q) = OP (1). Our �rst result
here shows that, in fact, nW2

2 (Rα(Pn), Q) = oP (1) even if P 6= Q.

Theorem 5. Assume that Q ∈ Rα0(P ) for some α0 ∈ [0, 1), where Q is supported
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in a bounded interval, having a density function which is bounded away from zero on
its support, and with a bounded derivative. If αn ≥ α0 + rn/

√
n for some sequence

0 ≤ rn →∞ then

√
nW2(Rαn(Pn), Q) → 0 in probability as n →∞.

Proof. Arguing as in the proof of Proposition 2 we can check that Q ∈ Rα0(P )

is equivalent to P = (1 − α0)Q + α0P
′ for some distribution P ′. Hence, we can

assume Xn = (1 − Un)Yn + UnZn, where {Yn}n, {Zn}n and {Un}n are independent
i.i.d. sequences with laws Q, P ′ and Bernoulli with mean α0, respectively. Write
Nn =

∑n
i=1 I(Ui = 1). Then Nn follows a binomial distribution with parameters n and

α0. Hence, √n(Nn/n− α0) →
√

α0(1− α0)Z, with Z standard normal. We assume
w.l.o.g. that convergence holds, in fact, a.s..Write n′ = n − Nn, X̃1, . . . , X̃n′ for the
Yi's in the sample with associated Ui = 0 (the uncontaminated fraction of the sample:
X̃1, . . . , X̃n′ are i.i.d. Q) and P̃n′ for the empirical measure on the X̃i's. Observe that
P̃n′ ∈ Rα̃n(Pn) with α̃n = Nn/n. Now we note that given α, β ∈ [0, 1), if Q ∈ Rα(P ),
then Rβ(Q) ⊂ Rα+β−αβ(P ). Hence, Rα̂n(P̃n′) ⊂ Rαn(Pn) for α̂n = (αn − α̃n)/(α̃n)

provided αn > α̃n, which eventually holds. Consequently,

W2(Rαn(Pn), Q) ≤ W2(Rα̂n(P̃n′), Q).

Thus, the result will follow if we prove it in the particular case P = Q and α0 = 0.
We proceed in this case writing F and f for the distribution and density functions

of P . Recalling the parametrization in (4) we have

W2
2 (Rαn(Pn), P ) = min

h∈Cαn

W2
2 ((Pn)h, P ) = min

h∈Cαn

∫ 1

0

(F−1
n (h−1(t))− F−1(t))2dt

and we see that nW2
2 (Rαn(Pn), P ) = minh∈Cαn

Mn(h), where

Mn(h) =

∫ 1

0

(
ρn(t)

f(F−1(t))
−√n(F−1(h(t))− F−1(t))

)2

h′(t)dt

and ρn(t) =
√

nf(F−1(t))(F−1
n (t)−F−1(t)) is the weighted quantile process. W.l.o.g.

we can assume that {Xn}n are de�ned in a su�ciently rich probability space in which
there exist Brownian bridges Bn satisfying

n1/2−ν sup
1
n
≤t≤1− 1

n

|ρn(t)−Bn(t)|
(t(1− t))ν

=





OP (log n), if ν = 0

OP (1), if 0 < ν ≤ 1/2
. (10)
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(this is guaranteed by Theorem 6.2.1 in Csörg® and Horváth (1993)). Now, de�ning

Ñn(h) =

∫ 1

0

(
Bn(t)

f(F−1(t))
−√n(F−1(h(t))− F−1(t))

)2

h′(t)dt,

and assuming w.l.o.g. that αn ≤ 1− δ for some δ > 0 we have that

sup
h∈Cα

|Mn(h)1/2 − Ñn(h)1/2| ≤
(

1

δ

∫ 1

0

(
ρn(t)−Bn(t)

f(F−1(t))

)2

dt

)1/2

= oP (1).

The last equality follows from (10), taking ν = 0, because, since f is bounded below
∫ 1−1/n

1/n

(
ρn(t)−Bn(t)

f(F−1(t))

)2

dt ≤ log n√
n

∫ 1

0

1

f 2(F−1(t))
dtOP (1) = oP (1).

Thus, the conclusion will follow if we show minh∈Cαn
Ñn(h) → 0 in probability or,

equivalently, if we show that minh∈Cαn
Nn(h) → 0 in probability, where

Nn(h) =

∫ 1

0

(
B(t)

f(F−1(t))
−√n(F−1(h(t))− F−1(t))

)2

h′(t)dt

and B is a �xed Brownian bridge. To check that minh∈Cαn
Nn(h) → 0 in probability

we observe that minh∈Cαn
Nn(h) ≤ 1

δ
mink∈Gn Rn(k), where

Rn(k) =

∫ 1

0

(
B(t)

f(F−1(t))
−√n(F−1(t + k(t)/

√
n)− F−1(t))

)2

dt

and Gn is the set of real valued, absolutely continuous functions on [0, 1] such that
k(0) = k(1) = 0 and −√n ≤ k′(t) ≤ rn for almost every t. We assume w.l.o.g.
rn ≤ rn+1 for every n. Then Gα,n ⊂ Gα,n+1 for every n and also that G := ∪n≥1Gα,n is
the set of all absolutely continuous functions on [0, 1] such that k(0) = k(1) = 0 and
k′ is (essentially) bounded. From our hypotheses it follows easily that, for k ∈ G,

Rn(k) → R(k) :=

∫ 1

0

(
B(t)− k(t)

f(F−1(t))

)2

dt

and hence mink∈Gα,n Rn(h) → 0 (therefore nW2
2 (Rαn(Pn), P ) → 0) will follow if we

show that infk∈G R(k) = 0. But this can be checked easily by noting, for instance,
that choosing kn to be the function that interpolates B(t) at knots i/n, i = 0, . . . , n

and is linear in between we have kn ∈ G and R(kn) → 0. ¤

Proof of Theorem 2. First note that we can assume that P and Q are supported
in a bounded interval (otherwise, conditioning on bounded intervals of increasing
size we would obtain the conclusion). We write α0 = dTV (P,Q) and take P0 as in
Remark 1 (we take µ to be Lebesgue measure there). Then P0 ∈ Rα0(P ) holds with
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P and P0 playing the roles of P and Q there and the density of P0 satis�es the
assumptions in Theorem 5 (in fact f0 = (f ∧ g)/(1 − α0) has a bounded derivative
a.e., but this su�ces for the strong approximation in the proof of Theorem 5). Hence,
√

nW2(Rαn(Pn), P0) → 0 in probability and similarly for √nW2(Rαn(Qn), P0). The
triangle inequality for W2 yields the conclusion. ¤

A.2 Asymptotic theory for the bootstrap

The behavior of the bootstrap p-value under the alternative follows from the next
result.

Proposition 4. Assume Xn,1, . . . , Xn,n′ ; Yn,1, . . . , Yn,m′ are i.i.d. random variables
with common distribution Pn ∈ F2 such that W2(Pn, P ) → 0. If P ∗

n′ and Q∗
m′ de-

note the empirical measures on Xn,1, . . . , Xn,n′ and Yn,1, . . . , Yn,m′, respectively, and
n′,m′ →∞ then

W2(P
∗
n′ , Q

∗
m′) → 0 in probability.

Proof. By Proposition 3 it is enough to consider the case Pn = P for all n. But then
Pn′ →w P a.s. by the Glivenko-Cantelli Theorem while the Law of Large Numbers
gives convergence of second order moments. These two facts imply thatW2(P

∗
n′ , P ) →

0 and similarly for W2(Q
∗
m′ , P ) . ¤

Now we take care of the null hypothesis. The next result will be useful for P and
Q away from the boundary. Its proof is analogous to that of Theorem 2.1 in Bickel
and Freedman (1981).

Proposition 5. Assume Xn,1, . . . , Xn,n′ are i.i.d. random variables with common
distribution Pn ∈ F2 such that W2(Pn, P ) → 0. If X̄n,n′ := 1

n′
∑n′

i=1 Xn,i, then
√

n(X̄n,n′ − µn) →w N(0, σ2),

where µn = E(X̄n,n′) and σ2 is the variance of P .

Proof of Theorem 3. We will assume for simplicity n = m and n′ = m′. The
general case can be handled with strightforward modi�cations. We consider �rst the
case dTV (P, Q) > α. In this case we have (Theorem 1) that W2(Pn,αn , Pα) → 0 and
W2(Qn,αn , Qα) → 0 a.s.. Since

W2
2 (aP1 + (1− a)P2, aQ1 + (1− a)Q2) ≤ aW2

2 (P1, Q1) + (1− a)W2
2 (P2, Q2)
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for probabilities Pi, Qi ∈ F2 and a ∈ [0, 1] (see, e.g., Álvarez-Esteban et al, 2010a) it
follows that W2(Rn,n, λPα + (1− λ)Qα) → 0 a.s.. Note that

p∗n,n = P∗
(
W2(P

∗
n′ , Q

∗
n′) >

√
n

n′
W2(Pn,αn , Qn,αn)

)
.

Now, Theorem 1 implies that W2(Pn,αn , Qn,αn) → W2(Rα(P ),Rα(Q)) > 0, while
n/n′ is bounded away from 0 by assumption. This together with Proposition 4 gives
(ii).

We assume now that dTV (P, Q) < α. Then Theorem 2 ensures that √nW2(Pn,αn ,

Qn,αn) → 0 in probability. Now, if P1, P2 are probabilities in F2 with means µ1, µ2

and P̄1, P̄2 are their centered versions, then it is easy to check that W2
2 (P1, P2) =

(µ1 − µ2)
2 + W2

2 (P̄1, P̄2) and, therefore W2
2 (P1, P2) ≥ (µ1 − µ2)

2. Let X̄∗
n′ and Ȳ ∗

n′

respectively denote the means corresponding to the X's and Y 's bootstrap samples,
and µn be the mean of the parent bootstrap distribution, Rn,n. Then

n′W2
2 (P ∗

n , Q∗
m) ≥ n′

(
X̄∗

n′ − Ȳ ∗
n′

)2
=

(√
n′(X̄∗

n′ − µn)−
√

n′(Ȳ ∗
n′ − µn)

)2

.

From the Glivenko-Cantelli Theorem we have a.s. tightness of {Pn}n and {Qn}n

and, as a consequence, of Pn,αn and Qn,αn (see Proposition 2.1 in Álvarez-Esteban et
al, 2010a). We can assume, taking subsequences if necessary, that Pn,αn →w P0 and
Qn,αn →w Q0 for some probabilities P0, Q0. A little thought shows that, necessarily,
P0 ∈ Rα(P ) and Q0 ∈ Rα(Q). Since W2(Pn,αn , Qn,αn) → 0, necessarily P0 = Q0 ∈
Rα(P ) ∩ Rα(Q). Also, since P,Q ∈ F2, the Strong Law of Large Numbers shows
that the map x2 is uniformly integrable with respect to {Pn}n and {Qn}n a.s., hence
also with respect to {Pn,αn}n and {Qn,αn}m. Thus, perhaps through subsequences,
W2(Pn,αn , P0) → 0 and W2(Qn,αn , P0) → 0, hence W2(Rn,n, P0) → 0 for some P0 ∈
Rα(P ) ∩Rα(Q).

The function that sends P to its variance is continuous in F2 for the W2 metric.
Hence, since Rα(P )∩Rα(Q) is compact, the variance attains its minimum there. Let
us write σ2

0 = minR∈Rα(P )∩Rα(Q) Var(R). Then σ0 > 0 (a trimming of a probability
with a density has a density, hence, cannot have null variance) and if we write σ2 for
the variance of P0 we have

p∗n,n = P∗
(√

n′W2(P
∗
n′ , Q

∗
n′) >

√
nW2(Pn,αn , Qn,αn)

)

≥ P∗
(
|
√

n′
2σ

(X̄∗
n′ − Ȳ ∗

n′)| >
√

n
2σ
W2(Pn,αn , Qn,αn)

)

≥ P∗
(
|
√

n′
2σ

(X̄∗
n′ − Ȳ ∗

n′)| >
√

n
2σ0
W2(Pn,αn , Qn,αn)

)
.
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Thus, Proposition 5 and the fact that √nW2(Pn,αn , Qn,αn) → 0 yield that p∗n,n → 1

in probability, showing (i). ¤

Proof of Theorem 4. As in the proof of Theorem 2, we assume that Xn =

(1 − Un)An + UnBn, Yn = (1 − Vn)Cn + VnDn with {An}n, {Bn}n, {Cn}n, {Dn}n,
{Un}n, {Vn}n independent i.i.d. sequences of which {An}n and {Cn}n have com-
mon distribution P0 while {Un}n and {Vn}n are Bernoulli with mean α. We write
Nn =

∑n
i=1 I(Ui = 1) and Mn =

∑n
i=1 I(Vi = 1). Also we put n′1 = n − Nn,

n′2 = n − Mn and write X̃1, . . . , X̃n′1 and Ỹ1, . . . , Ỹn′2 for the data corresponding to
Ui = 0 and Vi = 0, respectively.

On the set En := (Nn ≤ nαn,Mn ≤ nαn), the empirical measures on X̃1, . . . , X̃n′1

and Ỹ1, . . . , Ỹn′1 (which we denote P̃n′1 and Q̃n′2) satisfy P̃n′1 ∈ Rαn(Pn) and Q̃n′2 ∈
Rαn(Qn). Hence, we have W2(Pn,αn , Qn,αn) ≤ W2(P̃n′1 , Q̃n′2). Thus,

P(p∗n,n ≤ β) ≤ P(EC
n ) + P((p̃∗n ≤ β) ∩ En),

where
p̃∗n = P∗

(√
n′W2(P

∗
n′ , Q

∗
n′) >

√
n(1− α)W2(P̃n′1 , Q̃n′2)

)
.

By the CLT we have P(EC
n ) → γ. Hence it su�ces to control P((p̃∗n ≤ β) ∩ En).

If J1, . . . , Jn′ , L1, . . . , Ln′ are i.i.d r.v.'s with law P0, independent of the data (both
original and bootstrap) and µn′ , νn′ are the empirical measures, then, Theorem 3 and
the fact that W2(L(aX),L(aY )) = aW2(L(X),L(Y )) for a > 0 imply

W2(L∗(
√

n′W2(P
∗
n′ , Q

∗
n′)),L(

√
n′W2(µn′ , νn′)) ≤ 2

√
n′W2(Rn,n, P0).

By Lemma 1 below
√

n′W2(Rn,n, P0)IEn → 0 in probability. Now, the assumptions
on P and Q yield that

√
n′W2(µn′ , νn′) converges weakly to a non-null limiting dis-

tribution as in (6) (with a proof as in Theorem 4.6 in del Barrio et al, 2005). We call
η the limit probability measure. Then

|p̃∗n − η((
√

n(1− α)W2(P̃n′1 , Q̃n′2),∞))|IEn → 0

in probability. As a consequence,

P((p̃∗n ≤ β) ∩ En)− P
(
(η((

√
n(1− α)W2(P̃n′1 , Q̃n′2),∞)) ≤ β) ∩ En

)
→ 0.

But

P
(
(η((

√
n(1− α)W2(P̃n′1 , Q̃n′2),∞)) ≤ β) ∩ En

)

≤ P
(
(η((

√
n(1− α)W2(P̃n′1 , Q̃n′2),∞)) ≤ β)

)
→ β,
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since, as above,
√

n(1− α)W2(P̃n′1 , Q̃n′2) converges weakly to η. This completes the
proof. ¤

The following technical result has been used in the proof of Theorem 4.

Lemma 1. With the notation and assumptions of Theorem 4,

√
n′W2(Rn,n, P0)IEn = oP (1).

Proof. We use the parametrization in (4). We have Pn,αn = (Pn)hn , Qn,αn = (Qn)ln ,
for some hn, ln ∈ Cαn . Writing F−1

n , G−1
n , F−1 and G−1 for the quantile functions of

Pn, Qn, P and Q we have W2(Pn,αn , Qn,αn) = ‖F−1
n ◦ h−1

n − G−1
n ◦ l−1

n ‖2, with ‖ · ‖2

denoting the usual norm in L2(0, 1), namely, ‖b‖2
2 =

∫ 1

0
b2. Now

‖(F−1
n ◦ h−1

n −G−1
n ◦ l−1

n )− (F−1 ◦ h−1
n −G−1 ◦ l−1

n )‖2

≤ ‖F−1
n ◦ h−1

n − F−1 ◦ h−1
n ‖2 + ‖G−1

n ◦ l−1
n −G−1 ◦ l−1

n ‖2

≤ 1√
1− αn

(‖F−1
n − F−1‖2 + ‖G−1

n −G−1‖2),

where we have used that
∫ 1

0
(F−1(h−1(t))−G−1(h−1(t))2dt =

∫ 1

0
(F−1(x)−G−1(x)2h′(x)dx.

The assumptions on P and Q ensure that, as in (6), ‖F−1
n −F−1‖2 +‖G−1

n −G−1‖2 =

OP (n−1/2). On the other hand, on En,

‖F−1
n ◦ h−1

n −G−1
n ◦ l−1

n ‖2 = W2(Pn,αn , Qn,αn) ≤ W2(P̃n′1 , Q̃n′2) = OP (n−1/2).

Combining this two facts we see thatW2(Phn , Qhn)IEn = ‖F−1◦h−1
n −G−1◦l−1

n ‖2IEn =

OP (n−1/2) and using (9) that W2(Phn , P0) = O(n−ρ/2). Since W2(Phn , Pn,αn) =

OP (n−1/2), we conclude that W2(Pn,αn , P0)IEn = O(n−ρ/2). Convexity and a simi-
lar argument for Qn,αn yield the result. ¤

Proof of Example 1. The fact that dTV (P, Q) = α follows from noting (with some
abuse of notation) that for F̃−1 ∈ Rα(P ) and G̃−1 ∈ Rα(Q)

F̃−1(t) ≤ F−1(α + (1− α)t) ≤ G̃−1(t).

Hence, the probability P0 with quantile F−1
0 (t) = F−1(α + (1 − α)t) is the unique

element in Rα(P ) ∩Rα(Q). Next we observe that, for F̃−1 ∈ Rαn(P ),

F−1(t) ≤ F−1(αn + (1− αn)t)

≤ F−1
0 (t) + (F−1(αn + (1− αn)t)− F−1(α + (1− αn)t)).
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Similarly, if G̃−1 ∈ Rαn(Q), G̃−1(t) ≥ F−1
0 (t) − (F−1(αn + (1 − αn)t) − F−1(α +

(1 − αn)t)) and, combining both inequalities we get |F−1
0 (t) − F̃−1(t)| ≤ |F̃−1(t) −

G̃−1(t)|+ |F−1(αn + (1−αn)t)−F−1(α + (1−αn)t)| and the bound follows from the
triangle inequality.

Proof of Example 2. We write F0 for the distribution function of P0, hence,
F−1

0 (y) = µ/2+F−1((1−α)y) for y ∈ (0, 1/2] and F−1
0 (y) = −µ/2+F−1(α+(1−α)y)

for y ∈ [1/2, 1). Similarly, we write F̃n and G̃n for the distribution functions of P̃n

and Q̃n, respectively. Necessarily, P̃n(0,∞) ≤ 1
1−αn

(1 − F (µ
2
)) = 1

2

(
1 + K

(1−αn)
√

n

)
.

We write βn = 1
2
− P̃n(0,∞). It follows from the fact that W2(P̃n, Q̃n) → 0 that

W2(P̃n, P0) → 0 and, therefore, that βn → 0. We give next a lower bound for
W2(P̃n, Q̃n) assuming that βn > 0. If this is the case

F̃−1
n (t) ≤ −µ

2
+ F−1(α + (1− αn)(t− βn) + K

2
√

n
), t ∈ (0, 1

2
+ βn). (11)

On the other hand G̃−1
n ((1− αn)t) ≥ µ/2 + F−1((1− αn)t). Standard computations

show that there is a unique a = a(βn) > 0 such that F (a− µ
2
)−F (a+ µ

2
)+α = (1−α)βn

and that
−µ

2
+ F−1(α + (1− α)(t− β)) ≤ µ/2 + F−1((1− α)t)

for t ∈ ( 1
1−α

F (−a− µ
2
), 1

2
). From this we get that

W2(P̃n, Q̃n) ≥
√

g1(βn)− sn,1 − sn,2, (12)

where g1(β) =
∫ 1/2

F (−a−µ/2)/(1−α)
(µ+F−1((1−α)t)−F−1(α+(1−α)(t−β)))2dt, s2

n,1 =
∫ 1/2

F (−a−µ/2)/(1−α)
(F−1((1− α)t)− F−1((1− αn)t))2dt, s2

n,2 =
∫ 1/2

F (−a−µ/2)/(1−α)
(F−1(α +

(1 − α)(t − βn)) − F−1(α + (1 − αn)(t − βn) + K
2
√

n
))2dt. A routine use of Taylor

expansions yields limβ→0+
g1(β)

β5/2 = (1 − α)3/2

√
|f ′(µ

2
)|

f2(µ
2
)

> 0 and also s2
n,1 = O(

√
βnn−1)

and s2
n,2 = O(

√
βnn

−1). From this and (12) we obtain

βn = O(n−2/5), (13)

with a similar bound being satis�ed by γn = 1
2
− Q̃n(−∞, 0).

We turn now to the upper bound for W2(P̃n, P0). From the triangle inequality we
get

W2(P̃n, P0) ≤
(∫ 1

2

0
(F̃−1

n − F−1
0 )2

)1/2

+
(∫ 1

1
2
(F̃−1

n − F−1
0 )2

)1/2

≤ W2(P̃n, Q̃n) +
(∫ 1

2

0
(G̃−1

n − F−1
0 )2

)1/2

+
(∫ 1

1
2
(F̃−1

n − F−1
0 )2

)1/2

.

24



We consider next
∫ 1

1
2
(F̃−1

n − F−1
0 )2. Since P̃n ∈ Rαn(P ) we have

F̃−1
n (t) ≤ −µ

2
+ F−1(αn + (1− αn)t), t ∈ (0, 1). (14)

Keeping the above notation for βn, let assume �rst that βn ≤ 0. Then

F̃−1
n (t) ≥ −µ

2
+ F−1(α + (1− αn)t + K

2
√

n
), t ∈ (1

2
, 1) (15)

(this follows upon noting that F̃−1
n (1

2
+) ≥ 0 and F̃−1

n (t) = F−1(h−1(t)), h−1 grow-
ing with slope at least 1 − αn). For t ∈ (1

2
, 1), (14) and (15) still hold if we

replace F̃−1
n by F−1

0 . Hence, in this case
∫ 1

1
2
(F̃−1

n − F−1
0 )2 ≤ ∫ 1

1
2

(F−1(αn + (1−
αn)t)− F−1(αn + (1− αn)t− K

2
√

n
)
)2

dt =: s2
n,3.

If βn > 0, then, arguing as above, we have

F̃−1
n (t) ≥ −µ

2
+ F−1(α + (1− αn)(t− βn) + K

2
√

n
), t ∈ (1

2
+ βn, 1), (16)

while (11) holds in (0, 1
2

+ βn). Now we use the bound (
∫ 1

1
2
(F̃−1

n − F−1
0 )2)1/2 ≤

(
∫ 1

2
+βn

1
2

(F̃n
−1 − F−1

0 )2)1/2 + (
∫ 1

1
2
+βn

(F̃−1
n − F−1

0 )2)1/2 and proceed as follows. For
t ∈ (1

2
+ βn, 1) (14) and (16) hold again after replacing F̃−1

n by F−1
0 . This and

the triangle inequality yield
(∫ 1

1
2
+βn

(F̃−1
n − F−1

0 )2
)1/2

≤
(∫ 1

1
2
+βn

(F−1(α + (1− α)t)− F−1(α + (1− α)(t− βn)))2dt
)1/2

+2
(∫ 1

1
2
(F−1(αn + (1− αn)t)− F−1(αn + (1− αn)t− K

2
√

n
))2dt

)1/2

=
√

g2(βn) + 2sn,3. (17)

For the interval (1
2
, 1

2
+βn) we write G−1(t) = µ

2
+F−1((1−αn)t) (the minimal quantile

function in Rαn(Q)). Then (
∫ 1

2
+βn

1
2

(F̃−1
n − F−1

0 )2)1/2 ≤ (
∫ 1

2
+βn

1
2

(F̃−1
n − G−1)2)1/2 +

(
∫ 1

2
+βn

1
2

(G−1 − F−1
0 )2)1/2. We observe now that G̃−1(t) ≥ G−1

n (t) and also that, for
t ∈ (1

2
, 1

2
+ βn), −µ

2
+ F−1(α + (1− α)(t− βn)) ≤ 0 ≤ µ

2
+ F−1((1− α)t). Combining

these facts with (11) we obtain

|F̃−1
n (t)−G−1(t)| ≤ |F̃−1

n (t)− G̃−1
n (t)|

+|F−1((1− αn)t)− F−1((1− α)t)|
+|F−1(α + (1− αn)(t− βn) + K

2
√

n
)− F−1(α + (1− α)(t− βn))|.
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As a consequence,
(∫ 1

2
+βn

1
2

(F̃−1
n − F−1

0 )2
)1/2

≤ W2(P̃n, Q̃n)

+
(∫ 1

2
+βn

1
2

(µ + F−1((1− α)t)− F−1(α + (1− α)t))2dt
)1/2

+2
(∫ 1

2
+βn

1
2

(F−1((1− αn)t)− F−1((1− α)t))2dt
)1/2

+
(∫ 1

2
+βn

1
2

(F−1(α + (1− αn)(t− βn) + K
2
√

n
)− F−1(α + (1− α)(t− βn))2dt

)1/2

= W2(P̃n, Q̃n) +
√

g3(βn) + 2sn,4 + sn,5,

where g3(β) =
∫ 1

2
+β

1
2

(µ + F−1((1 − α)t) − F−1(α + (1 − α)t))2dt. Again a Taylor
expansion shows that g3(βn) = O(β3

n) = o(n−1). Similarly, we get sn,j = o(n−1),
j = 4, 5, and, as a consequence

(∫ 1
2
+βn

1
2

(F̃−1
n − F−1

0 )2
)1/2

= O(n−1/2). (18)

Now collecting the estimates in (17) and (18) we obtain
(∫ 1

1
2
(F̃−1

n − F−1
0 )2

)1/2

≤
√

g2(βn) + 2sn,3 + O(n−1/2). (19)

We note next that F−1 has a bounded derivative and, as a consequence, s2
n,3 = O(n−1).

Similarly, we �nd that g2(βn) = O(β2
n). Summarizing,

(∫ 1
1
2
(F̃−1

n − F−1
0 )2

)1/2

= O(n−
2
5 ).

A similar analysis works for
∫ 1

2

0
(G̃−1

n − F−1
0 )2 and completes the proof. ¤

Proof of Proposition 3. We take (X1,1, Y1,1) to be an optimal coupling for P and
Q with respect to the ‖x − y‖p-cost and (X1,i, Y1,i), 2 ≤ i ≤ n, and (X2,j, Y2,j),
1 ≤ j ≤ m, independent copies of (X1,1, Y1,1) (hence E‖Xi,j − Yi,j‖p = Wp

p (P,Q)).
Then Sn,m = minπ(a(π))1/p and Tn,m = minπ(b(π))1/p, where

a(π) =
∑

1≤i≤n,1≤j≤m

πi,j‖X1,i −X2,j‖p,

b(π) is de�ned similarly replacing Xi,j by Yi,j and π takes values in the set of n×m

matrices with nonnegative entries πi,j such that
∑

1≤j≤m πi,j = 1
n
and

∑
1≤i≤n πi,j = 1

m
.

We observe next that, by the triangle inequality,

|a(π)1/p − b(π)1/p| ≤
( ∑

1≤i≤n,1≤j≤m

πi,j‖(X1,i −X2,j)− (Y1,i − Y2,j)‖p

)1/p

≤
(

1

n

∑
1≤i≤n

‖X1,i − Y1,i‖p

)1/p

+

(
1

m

∑
1≤j≤m

‖X2,j − Y2,j‖p

)1/p

.
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As a consequence, we have that |Sn,m−Tn,m| is upper bounded by the right-hand side
of the above display and, from the elementary inequality (a + b)p ≤ 2p−1ap + 2p−1bp

for nonnegative a, b, we get

E(Sn,m − Tn,m)p ≤ 2p−1E‖X1,1 − Y1,1‖p + 2p−1E‖X2,1 − Y2,1‖p

= 2pWp
p (P, Q).

This completes the proof. ¤
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Table 1: Observed rejection frequencies for H0 : dTV (P, Q1) ≤ 0.1, P = N(0, 1),
Q1 = (1− ε)N(0, 1) + εN(10, 1), where ν = dTV (P,Q1) and β = 0.05.

ρ 1 4/5 2/3 1/2
ν n γ 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

0.10
ε ' 0.10

100 0.008 0.001 0.016 0.003 0.043 0.006 0.047 0.007
300 0.030 0.007 0.040 0.015 0.059 0.017 0.065 0.019

1000 0.052 0.009 0.092 0.016 0.098 0.018 0.114 0.022

0.15
ε ' 0.15

100 0.130 0.044 0.207 0.090 0.246 0.130 0.252 0.170
300 0.587 0.386 0.648 0.458 0.687 0.507 0.703 0.556

1000 0.996 0.980 0.998 0.985 0.998 0.986 0.999 0.990

0.20
ε ' 0.20

100 0.576 0.403 0.685 0.515 0.732 0.585 0.738 0.624
300 0.990 0.973 0.992 0.981 0.993 0.985 0.993 0.986

1000 1 1 1 1 1 1 1 1

0.25
ε ' 0.25

100 0.919 0.842 0.953 0.893 0.969 0.917 0.970 0.929
300 1 1 1 1 1 1 1 1

1000 1 1 1 1 1 1 1 1

Table 2: Observed rejection frequencies for H0 : dTV (P, Q2) ≤ 0.1, P = N(0, 1),
Q2 = (1− ε)N(0, 1) + εN(0, 3), where ν = dTV (P, Q2) and β = 0.05.

ρ 1 4/5 2/3 1/2
ν n γ 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

0.10
ε ' 0.21

100 0 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0

0.15
ε ' 0.31

100 0.002 0.000 0.002 0.001 0.002 0.001 0.003 0.001
300 0.013 0.003 0.016 0.005 0.017 0.006 0.027 0.008

1000 0.185 0.089 0.196 0.100 0.210 0.103 0.235 0.120

0.20
ε ' 0.41

100 0.037 0.017 0.048 0.022 0.060 0.023 0.065 0.027
300 0.397 0.253 0.418 0.279 0.437 0.293 0.490 0.330

1000 0.992 0.979 0.994 0.979 0.995 0.982 0.994 0.983

0.25
ε ' 0.52

100 0.254 0.146 0.277 0.163 0.301 0.189 0.324 0.195
300 0.924 0.846 0.928 0.856 0.936 0.866 0.949 0.888

1000 1 1 1 1 1 1 1 1

0.30
ε ' 0.62

100 0.565 0.426 0.599 0.456 0.629 0.484 0.654 0.508
300 0.996 0.993 0.998 0.993 0.998 0.993 0.999 0.995

1000 1 1 1 1 1 1 1 1
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Table 3: Observed rejection frequencies for H0 : dTV (P,Q) ≤ 0.1, P = N(0, 1),
Q = 0.70 N(0, 1) + 0.15 N(2.35, 1) + 0.15 N(−2.35, 1) at level 0.05.

n 100 300 500 1000
Dn 0.007 0.004 0.003 0.002
W2 0.007 0.091 0.320 0.875

Table 4: Bootstrap p-values arising from the introduced bootstrap methodology, ap-
plied to the similarity analysis between markers (β = 0.05).

ρ 1 4/5 2/3 1/2
α γ 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01
0 0 0 0 0 0 0 0 0

0.05 0.059 0.133 0.016 0.058 0.007 0.034 0.005 0.019
0.10 0.884 0.975 0.717 0.865 0.567 0.708 0.371 0.597
0.15 1 1 1 1 1 1 0.997 0.999
0.20 1 1 1 1 1 1 1 1
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Figure 1: Densities of optimally trimmed P and Q with independent trimming (�rst
row) and common trimming (second row).
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Figure 2: Trajectories of the uniform empirical process (black) and two variants based
on trimming. The trimming levels are α = 0.1 and α = 0.3 (green and red curves).

(a) Separated contaminations

(1 − α)P0αP’ αQ’

(b) Non−separated contaminations

(1 − α)P0αP’ αQ’

Figure 3: Canonical decomposition in the separated (left) and non-separated (right)
cases.
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N(0,1) vs 0.9*N(0,1)+0.1*N(10,3)

Trimming level: 9%
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N(0,1) vs 0.9*N(0,1)+0.1*N(10,3)

Trimming level: 11%
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Figure 4: Histograms, for di�erent sizes of trimming, of the bootstrap p-values ob-
tained from 200 pairs of samples from P = N(0, 1) and Q = 0.9N(0, 1 + 0.1N(10, 3)

distributions.
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Figure 5: Curves of boostrap p-values obtained varying the trimming level (α). Colors
depend on the real proportion of data coming from the N(10,3) distribution in each
particular sample.
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Figure 6: Best trimmings between markers 1 and 2, in the example of Subsection 4.2,
α = 0.05 (white), α = 0.10 (white+yellow) and α = 0.15 (white+yellow+orange).
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