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Centro de Matemática, Universidad de la República, Uruguay

Abstract

The possibility of considering random projections to identify probability distribu-
tions belonging to parametric families is explored. The results are based on con-
siderations involving invariance properties of the family of distributions as well as
on the random way of choosing the projections. In particular, it is shown that if a
one-dimensional (suitably) randomly chosen projection is Gaussian, then the distri-
bution is Gaussian.

In order to show the applicability of the methodology some goodness-of-fit tests
based on these ideas are designed. These tests are computationally feasible through
the bootstrap setup, even in the functional framework. The paper includes some
simulations providing power comparisons of these projections-based tests with other
available tests of normality, as well as to test the Black-Scholes model for a stochastic
process.

Key words: Random projections, goodness of fit tests, families of distributions,
gaussian distributions, Black-Scholes, stochastic processes.

1 Research partially supported by the Spanish Ministerio de Educación y Ciencia,
grant MTM2005-08519-C02-01 and 02 and by the Consejeŕıa de Educación y
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1 Introduction

The use of projections of very-high dimensional objects on randomly cho-
sen subspaces is getting an increasing interest as a powerful tool in several
applications of Mathematics. For instance, this idea is employed to obtain ap-
proximate algorithms in problems of high computational complexity (see, e.g.,
[14]) or, even, randomly chosen projections are starting to be employed as a
tool to detect copyright violations on images posted in the Internet (see [9]).

Although in such those applications Statistics is at the basis of the procedure,
a genuinely statistical analysis of the possibilities of the idea (including the
design of methods based on it and a theoretical exploration of their power)
has not been carried out yet. We are aware of some results in which random
projections have been used to estimate mixtures of distributions (see [7] and
[15]), but even these papers have not been written from a purely statistical
point of view but rather from learning theory.

A first look at the problem with statistical motivation was [3]. To analyze to
what extent random projections characterize a probability distribution, the
closed cone

IE(P, Q) := {h ∈ H : Ph = Qh} (1)

associated to two Borel distributions, P and Q, on a Hilbert space H is con-
sidered there. In (1), Ph denotes the marginal distribution of P along the h
direction, i.e., the law of 〈X, h〉 if X is an H-valued random element with law
P and 〈·, ·〉 is the scalar product in H. In the sequel we will often refer to
this distribution as the projection of P on h. With a similar meaning we will
denote by PV the projection of P on a linear subspace V .

A slight modification of one of the main results in [3] gives the following
theorem (see Theorem 4.1 in [3]). It involves the property of a probability
measure, P , being determined by its moments (in the sequel P ∈ DM(H)).
A discussion of this property (including sufficient conditions like the so-called
Carleman condition) can be found in [10] (see also Subsection 8.4 in [2]). A
straightforward result is that an affine transformation of a probability measure
determined by its moments is also determined by its moments.

Theorem 1.1 (Cuesta-Fraiman-Ransford) Let P ∈ DM(H) and Q be
Borel probability measures on a separable Hilbert space, H. Let µ be a non-
degenerate Gaussian distribution on H. Then P = Q if and only if µ[IE(P, Q)] >
0.

This result was employed in [4] to obtain some consistent goodness-of-fit test
to a fixed distribution.

We emphasize that Theorem 1.1 goes, somehow, in a direction opposite to
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that of older results in [5] where (p. 793) it is claimed that “For many data
sets, we show that most projections are nearly the same and approximately
Gaussian”. Below we include further comments on this point.

Our goal, in this paper, is to generalize Theorem 1.1 in some senses, to employ
these results to obtain goodness-of-fit tests for families of distributions and to
make a preliminary study to explore the possibilities of the technique. In par-
ticular, taking into account the above quotation from [5], we are particularly
interested in seeing how this procedure works when applied to the design of
goodness-of-fit tests for Gaussianity.

The proposed generalizations can be summarized as follows. First, in Section
2, we present a class of probability measures which can replace the Gaus-
sian measure, µ, in Theorem 1.1. The possibility of choosing suitable (non-
Gaussian) measures to increase the power against particular alternatives is
still the object of current research.

In Section 3, the distribution P in Theorem 1.1 is replaced by a family of
distributions. We consider two different cases. In the simplest situation one
single random projection suffices to determine whether a distribution belongs
to the family. This is the case for invariant families in the sense given in
Definition 3.1. In particular, Theorem 3.6 states that if a randomly chosen
projection of a distribution is Gaussian, then the distribution is Gaussian.

We want to stress the interest of this result. Let us assume that we are inter-
ested in knowing whether a given (multivariate) distribution, P , is Gaussian.
Projection Pursuit techniques to reject this hypothesis are based on the fact
that, if P is not Gaussian, then not every one-dimensional projection is Gaus-
sian. However, since most projections of P are approximately Gaussian, an
extensive search is required to find out one of the scarce directions in which
the projection of P is clearly not Gaussian. On the other hand, according to
Theorem 3.6, this search is not required because, if P is not Gaussian almost
every projection of P is not Gaussian. Some simulations which are reported
in Subsection 5.1 support this last point of view.

Subsection 3.2 focuses on non-invariant families. In this case, one projection is
not sufficient to determine inclusion in the family. We show, though, that for a
location-scale model with k-dimensional parameter, (k+1) projections suffice.
Notice that we are not considering here a projection on a (k + 1)-dimensional
subspace, but (k + 1) one-dimensional projections. Of course, it would suffice
to handle the (k + 1)-dimensional projection, but we want to remark that
applying, for instance, a (k + 1)-dimensional Kolmogorov-Smirnov test is, by
far, more time consuming than taking the maximum of (k+1) one-dimensional
Kolmogorov-Smirnov tests.

Our results are applied in Section 4 to obtain goodness-of-fit tests to families
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of distributions. Unfortunately, when more than one projection is considered,
the goodness-of-fit test is often not distribution free; this is the case for the
Kolmogorov-Smirnov statistic that we consider in Section 5. We propose to
apply bootstrap to estimate the distribution of the test under the null hy-
pothesis. The analysis to prove that the bootstrap works in this setting is
of a technical character and can be skipped by the readers interested only
in the applications of the methodology. Therefore it has been included as an
appendix

Finally, in Section 5, we present some simulations to give a general idea about
the power of the proposed procedure under several conditions.

We will incorporate new notation as it becomes necessary. However, in addition
to that already presented we use throughout the paper the following. H will
be a separable Hilbert space with norm ‖ · ‖ and scalar product 〈·, ·〉. All
the random elements (r.e.’s) will be assumed to be defined on the same rich
enough probability space (Ω,A, ν). For such a r.e., X, L(X) will denote its
law and X =d Y will mean L(X) = L(Y ). `n will denote Lebesgue measure
on Rn.

If F ⊂ H, then span(F ) will be the closed linear subspace spanned by F .
{vn}∞n=1 will denote a generic orthonormal basis of H and Vn = span({v1, . . . , vn}).
Given any subspace, V , of H we will write V ⊥ for its orthogonal complement.
If X is an H-valued r.e., then XV will denote the projection of X on the
subspace V . Md will denote the set of d× d positive definite matrices.

We will employ de Finetti’s notation and, then P (f) will denote the expecta-
tion of f with respect to the probability P . In agreement with this notation,
when the probability belongs to a family {P (·, θ), θ ∈ Θ}, we will use P (f, θ)
to denote the expectation of f with respect to the probability P (·, θ).

2 Determination of a distribution

We begin this section by defining a key concept in this paper.

Definition 2.1 We will say that a Borel probability measure on H, µ, is prob-
ability determining (in short, µ ∈ PD(H)) if for every P ∈ DM(H) and Q
Borel probability measures on H we have that µ[IE(P, Q)] > 0 implies Q = P .

For further reference we include the following easy property of probability
determining distributions.

Lemma 2.2 If µ ∈ PD(H), then µ(K) = 0 for every hyperplane K ⊂ H.
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If H is finite-dimensional, the following consequence of Corollary 3.2 in [3]
gives a sufficient condition for the PD(H) property.

Proposition 2.3 If H = Rd and µ is absolutely continuous with respect to
the Lebesgue measure, then µ ∈ PD(H).

For infinite dimensional spaces, Theorem 4.1 in [3] shows that every non-
degenerate Gaussian measure on a Hilbert space is probability determining.
A generalization of this result is given in Theorem 2.5 below. Its proof relies
on the use of the well-known Lemma 2.4, reproduced from [2] (Corollary 2, p.
231) and the argument in the proof of Theorem 4.1 in [3]. It is included here
for the sake of completeness.

Lemma 2.4 Let X, Y be two random variables taking values on the measur-
able spaces (X , σX ), (Y , σY) respectively, where (X , σX ) is a Borel space. Let
φ(x, y) be a measurable map on the product space (X , σX )× (Y , σY) such that
E|φ(X, Y )| < ∞.

If P (·/Y = y) is a regular conditional distribution for X given Y = y, then

E[φ(X, Y )/Y = y] =
∫

φ(x, y)P (dx/Y = y), a.s.

Theorem 2.5 Let U be an H-valued r.e. satisfying that for some orthonormal
basis, {vn}n, ν

{
UV ⊥n

= 0
}

= 0, for every n ≥ 2, and that the conditional dis-
tribution of UVn given UV ⊥n

is absolutely continuous with respect to the Lebesgue
measure, `n. Then L(U) ∈ PD(H).

PROOF.- Let µ = L(U) and let P ∈ DM(H), Q be two Borel probabilities
on H such that µ[IE(P, Q)] > 0. Fix n ≥ 2. From Lemma 2.4, we have that

0 <µ[IE(P, Q)] =
∫

V ⊥n

ν
[
U ∈ IE(P, Q)

/
UV ⊥n

= z
]
dµV ⊥n

(z)

=
∫

V ⊥n

ν
[
(UVn , z) ∈ IE(P, Q)

/
UV ⊥n

= z
]
dµV ⊥n

(z)

=
∫

V ⊥n

ν
[
UVn ∈ IEz

/
UV ⊥n

= z
]
dµV ⊥n

(z), (2)

where IEz := {hVn : h ∈ IE(P, Q) and hV ⊥n
= z} is the z-section of IE(P, Q)

and the last equality comes from the fact that the sets {(UVn , z) ∈ IE(P, Q)}
and {UVn ∈ IEz} coincide.

From (2), taking into account the hypothesis on the distribution of U⊥
n and

that the conditional distribution of UVn given UV ⊥n
is absolutely continuous

with respect to `n, there exists zn ∈ V ⊥
n − {0} such that `n(IEzn) > 0.
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Since IE(P, Q) is a cone, it also follows that `n(IEtzn) > 0 for each t ∈ R−{0}.
Therefore, `n+1(IE(P, Q) ∩ Ṽn) > 0, where Ṽn = span(Vn ∪ {zn}).

By Proposition 2.3, we deduce that PṼn
= QṼn

. In particular, since Vn ⊂
Ṽn, we obtain PVn = QVn . Taking into account that the finite dimensional
distributions determine the joint distribution, we have that P = Q and so
µ ∈ PD(H). 2

In this paper the term dissipative will make reference to the fact that a random
element, U , (or indistinctly its law L(U)) satisfies the hypotheses in Theorem
2.5.

Notice that in Theorem 2.5, the orthogonal basis may depend on U and, in
consequence, this result includes Theorem 1.1 as a particular case. However, it
also covers non-Gaussian distributions like the one we propose in the following
example.

Example 2.6 Let {Un} be a sequence of real random variables with the fol-
lowing joint distribution.

• The distribution of U1 is uniform on [0, 1].
• For m ≥ 1, the distribution of Un+1 given {U1 = u1, ..., Un = un} is uniform

on
[
0, (1− u2

1 − ...− u2
n)

1/2
]
.

Elementary computations show that
∑

n≥1 U2
n = 1, ν-a.s. Thus, if {vn}∞n=1 is

an orthonormal basis of the Hilbert space H, and we define

U :=
∑
n≥1

Unvn,

we have that U belongs to the unit sphere in H, ν-a.s. However, it is obvious
that the distribution of U is dissipative. 2

3 Families of distributions

In this section we analyze the problem of determining families of distributions
through randomly chosen projections. We will present cases in which only one
projection still suffices and some others in which it does not.

A useful criterion in relation with our goal is invariance that has received
considerable attention mainly in connection to Decision Theory (see e.g. [8]
for a general treatment regarding point-wise estimation). It involves a group of
transformations, G, acting on the sample space, H, that induces a new group,
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G̃, acting on the family of probabilities. For g̃ ∈ G̃ and P , a Borel probability
on H, g̃P will denote the action of g̃ on P .

Definition 3.1 Let G̃ be a group of transformations on the Borel probabilities
on H and let P be a family of Borel probabilities on H. We will say that P is
G̃-invariant if for every g̃ ∈ G̃ and every P ∈ P, then g̃P ∈ P.

Some usual groups of transformations in Statistics include that of changes
in location, G̃1 = {h̃ : h ∈ H}, where h̃P = L(X + h) for any X such
that L(X) = P , or that of changes in scatter, G̃2 = {Σ̃ : Σ ∈ Md}, where
Σ̃P = L(ΣX) for any X such that L(X) = P . A G̃1-invariant family will be
called l-invariant, whereas a G̃2-invariant family will be called s-invariant.

We begin by showing that invariant families are determined by just one ran-
domly chosen projection. In particular, the results in this section show that
randomly chosen one-dimensional projections determine Gaussian distribu-
tions. In Subsection 3.2 we will show that if we are in a non-invariant location-
scale family and the parameter space has dimension k then (k + 1) one-
dimensional projections suffice to determine the family.

3.1 Invariant families

First we focus on the finite dimensional case.

Proposition 3.2 Let H = Rd and set P = {L(ΣX + h) : h ∈ H, and Σ ∈
Md}, where L(X) ∈ DM(H). Let Y be an H-valued r.e. and define

A = {h ∈ H : ∃gh ∈ H, Mh ∈Md s.t. 〈Y, h〉 =d 〈MhX + gh, h〉}.

Let µ ∈ PD(H). If µ(A) > 0, then L(Y ) ∈ P.

PROOF.- Without loss of generality we can assume that X is centered with
identity covariance matrix. By hypothesis, for every h ∈ A there exist mh ∈ H
and Mh ∈Md such that

〈Y, h〉 =d 〈MhX, h〉+ 〈mh, h〉. (3)

From Lemma 2.2 it is obvious that A contains k independent vectors, and,
then we have that E‖Y ‖2 < ∞. Call Σ the covariance matrix of Y and m its
mean.

Obviously, we can take Mh = Σ and mh = m in (3) and, in consequence, we
have that A = IE(L(ΣX + m),L(Y )), which implies that

µ [IE(L(ΣX + m),L(Y ))] > 0.
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From this, taking into account that L(ΣX + m) ∈ DM(H) and that µ ∈
PD(H), we have that L(Y ) = L(ΣX + m), and in consequence L(Y ) ∈ P . 2

Some corollaries are easily obtained from Proposition 3.2. The first two state
that the result in this proposition holds for l- or s-invariant families.

Corollary 3.3 Let H = Rd and set P = {L(X + h) : h ∈ H}, where L(X) ∈
DM(H). Let Y be an H-valued r.e. and define

A = {h ∈ H : ∃gh ∈ H s.t. 〈Y, h〉 =d 〈X + gh, h〉}.

Let µ ∈ PD(H). If µ(A) > 0, then L(Y ) ∈ P.

Corollary 3.4 Let H = Rd and set P = {L(ΣX) : Σ ∈ Md}, where L(X) ∈
DM(H). Let Y be an H-valued r.e. and define

A = {h ∈ H : ∃Mh ∈Md s.t. 〈Y, h〉 =d 〈MhX, h〉}.

Let µ ∈ PD(H). If µ(A) > 0, then L(Y ) ∈ P.

Our third corollary is related to elliptical families of distributions. Recall that
an elliptical family on Rd consists of all the probability distributions with
density functions

fm,Σ(x) = C(Σ)f0

(
(x−m)′Σ−1(x−m)

)
, x ∈ H,

for m ∈ H, Σ ∈ Md, where C(Σ) is a normalizing constant and f0 a suitable
function. Note that an elliptical family is both l- and s-invariant.

Corollary 3.5 Let H = Rd and let P be an elliptical family on H, such that
some (hence all) its distributions are in PD(H). For an H-valued r.e. Y define

A = {h ∈ H : L(〈Y, h〉) = Ph, for some P ∈ P}.

Let µ ∈ PD(H). If µ(A) > 0, then L(Y ) ∈ P.

Since the family of Gaussian distributions is elliptical, for this particular case
Corollary 3.5 means that if the set A = {h ∈ H : L(〈Y, h〉) is Gaussian}
satisfies µ(A) > 0, then Y is Gaussian.

The extension of these results to the infinite dimensional case will focus on
the Gaussian case.

Theorem 3.6 Let µ be a dissipative measure on H. If Y is an H-valued r.e.
and the set

A = {h ∈ H : L(〈Y, h〉) is Gaussian}
has positive µ-measure, then Y is Gaussian.
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PROOF.- Let {vn}n be an orthonormal basis as in Theorem 2.5. Fix n ∈ N.
For z ∈ V ⊥

n consider the set Az = {hVn : h ∈ A and hV ⊥n
= z}, the z-section

of A.

By the same argument as in the proof of Theorem 2.5 we obtain that there
exists zn ∈ V ⊥

n such that `n+1(A∩Ṽn) is strictly positive, where Ṽn = span(Vn∪
{z}).

Taking into account that all Gaussian distributions on Ṽn are projections on
this subspace of the Gaussian distributions on H, and Corollary 3.5 we obtain
that the projection of Y on Ṽn is Gaussian. Thus, we have that, for every
n ∈ N, the distribution of YVn is Gaussian.

Moreover, since Y is the limit of the sequence {YVn}n then L(Y ) is also Gaus-
sian. 2

The following corollaries are consequences of similar arguments and their
proofs are hence omitted.

Corollary 3.7 Let m ∈ H. Consider the set P of all Gaussian distributions
on H with mean m and let µ be a dissipative probability distribution on H. If
Y is an H-valued r.e. such that the set

A = {h ∈ H : L(〈Y, h〉) = Ph for some P ∈ P}

is of positive µ-measure, then L(Y ) ∈ P.

Corollary 3.8 Let P be the set of all Gaussian distributions on H with a
given covariance operator Σ. Let µ be a dissipative probability distribution on
H. If Y is an H-valued r.e. such that the set

A = {h ∈ H : L(〈Y, h〉) = Ph for some P ∈ P}

is of positive µ-measure, then L(Y ) ∈ P.

To end this subsection we give the generalization of Corollary 3.3 to l-invariant
families on infinite-dimensional spaces.

Proposition 3.9 Let P = {L(X + g) : g ∈ H}, where X is an H-valued r.e.
such that L(X) ∈ DM(H). Let µ be a dissipative probability distribution on
H. If Y is an H-valued r.e. and the set

A = {h ∈ H : 〈Y, h〉 =d 〈X + gh, h〉, for some gh ∈ H}

is of positive µ-measure, then L(Y ) ∈ P.
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PROOF.- The same proof as in Theorem 3.6 allows to obtain that, for every
n ∈ N, there exists hn ∈ Vn such that YVn =d (XVn + hn) and, in conse-
quence, there exists a (real) random variable X∗

n, with the same distribution
as 〈XVn , en〉, such that

〈Y, en〉 = X∗
n + 〈hn, en〉, ν − almost surely. (4)

Since 〈XVn , en〉 and X∗
n have the same distribution, we have that the (real)

random variable Z =
∑∞

n=1 |X∗
n|2 has finite expectation; in consequence, it is

almost surely finite and X∗ =
∑∞

n=1 X∗
nen is an H-valued r.e.

Moreover, by Parseval’s identity, Y =
∑∞

n=1〈Y, en〉en ∈ H. Thus, from (4),
we have that hY :=

∑∞
n=1〈hn, en〉en ∈ H and, in consequence, we can take

hn = (hY )Vn for every n ∈ N.

The proof ends by taking into account that {XVn}, {YVn} and (hY )Vn converge
to X, Y and hY in norm and, in consequence, Y has the same distribution as
X + hY . 2

3.2 Non-invariant families

First we include two examples and a proposition in which a family of distri-
butions is not determined by one-dimensional (or k-dimensional, with k ≥ 1
fixed) projections. We build these examples by resorting to non-invariant fam-
ilies.

Example 3.10 Let v, w be two (non-random) not collinear vectors in H, not
necessarily infinite-dimensional, and for a given r.e., X, on H, let us consider
the parametric family of distributions, P = {L(X + θv) : θ ∈ R}. Set Y :=
X + w. Obviously L(Y ) /∈ P. However, if h ∈ H satisfies that 〈h, v〉 6= 0, it is
obvious that

〈Y, h〉 = 〈X, h〉+ θ〈v, h〉,
where θ = 〈w,h〉

〈v,h〉 and, therefore, the projection of the distribution of Y on the
linear subspace generated by h belongs to the family of projections of P on
this subspace. Thus one random projection is not enough to determine P as
long as the distribution used to produce the random direction, h, satisfies that

µ{h : 〈v, h〉 6= 0} > 0

(which is satisfied by every distribution in PD(H) because of Lemma 2.2). 2

We can generalize Example 3.10 as follows.
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Proposition 3.11 Let µ ∈ PD(H). Consider a fixed value n ∈ N and let Vn

be an n-dimensional subspace of H. Let X be an H-valued r.e. and let

P := {L(X + g) : g ∈ Vn}.

Let w ∈ H − Vn and define the r.e. Y := X + w. If k ≤ n, for µk-a.e.
(h1, ..., hk) ∈ Hk, there exists g0 ∈ Vn such that the distribution of the pro-
jection of Y on the subspace generated by h1, ..., hk coincides with that of the
projection of X + g0.

PROOF.- Let v1, ..., vn be an orthogonal basis of Vn. Because of Lemma 2.2
we have that

µk{(h1, ..., hk) : 〈hi, vi〉 6= 0, i = 1, ..., k} = 1.

Then, for µk-almost every (h1, ..., hk), the linear system

〈w, hi〉 =
i∑

j=1

λj〈vj, hi〉, i = 1, ..., k,

admits an unique solution λ0
1, ..., λ

0
k and the vector g0 =

∑k
i=1 λ0

i vi is an element
in Vn which satisfies the desired property. 2

Example 3.12 Let {gθ : θ ∈ Θ} ⊂ H. Notice that the argument in Example
3.10 holds under the following assumptions:

(1) P = {L(X + gθ) : θ ∈ Θ}, where X is an H-valued r.e.
(2) {gθ : θ ∈ Θ} 6= H
(3) For µ-almost every h ∈ H, R coincides with the image set {〈gθ, h〉 : θ ∈ Θ}

2

Thus, non-invariant location families are not determined by just one random
projection. However, we will show that, in some cases, if the parameter which
defines the family of distributions has finite dimension n, then the family is
determined by k = (n + 1) one-dimensional projections.

We analyze first location families. The proof goes in two steps. We begin by
dealing with the case when the candidate distribution is also a shift of the
parent distribution. Then we apply Proposition 3.9 to extend this result to
general distributions.

Proposition 3.13 Let µ ∈ PD(H) and consider Vn, a proper subspace of H,
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with dim(Vn) = n ∈ N. Let X be an H-valued r.e. and let

P := {L(X + g) : g ∈ Vn}.

Let w ∈ H − Vn and let us consider the random element Y := X + w. Then,
for µn+1-a.e. (h1, ..., hn+1) ∈ Hn+1, there exists no g0 ∈ Vn such that the
distributions of the projections of Y on the (n + 1) one-dimensional subspaces
generated by h1, ..., hn+1 coincide with those of the projections of X + g0.

PROOF.- Let v1, ..., vn be an orthogonal basis of Vn. If h1, ..., hn+1 ∈ H satisfy
that there exists g0 =

∑n
j=1 λ0

jvj ∈ Vn such that

〈Y, hi〉 =d 〈X, hi〉+ 〈g0, hi〉, i = 1, ..., n + 1,

then it is also satisfied that λ0
1, ..., λ

0
n is a solution of the linear system

〈w, hi〉 =
n∑

j=1

λj〈vj, hi〉, i = 1, ..., n + 1. (5)

However, if h1, ..., hn+1 is a random sample taken from µ, Lemma 2.2 implies
that there is probability zero for the event that hn+1 belongs to the subspace
generated by h1, ..., hn, thus the linear system (5) has no solution with µn+1-
probability one. 2

Proposition 3.14 Let µ be a dissipative distribution on H and consider Vn,
a proper n-dimensional subspace of H. Let X be an H-valued r.e. such that
L(X) ∈ DM(H), and let

P := {L(X + g) : g ∈ Vn}.

Let Y be an H-valued r.e. such that L(Y ) /∈ P. Then, for µn+1-a.e. (h1, ..., hn+1) ∈
Hn+1, there exists no g0 ∈ Vn such that the distributions of the projections of
Y on the (n + 1) one-dimensional subspaces generated by h1, ..., hn+1 coincide
with those of the projections of X + g0.

PROOF.- Let us assume that the result is false. In particular we have that

µ{h ∈ H : 〈Y, h〉 =d 〈X, h〉+ 〈v, h〉, for some v ∈ H} > 0.

From Proposition 3.9 there exists w ∈ H such that Y + w =d X. Then the
result follows from Proposition 3.13. 2

Finally, we analyze location-scale families. Thus, we will assume that X is an
H-valued r.e., such that L(X) ∈ DM(H) and that P := {L(sX + g) : g ∈
V and s ∈ R}, where V is a subspace of H which is not necessarily nonempty
and not necessarily different from H.

12



The next example shows that, even in the case V = ∅, one projection is not
enough to identify this model.

Example 3.15 Let H = R2. Let X = (X1, X2) and Y = (Y1, Y2) cen-
tered Gaussian r.e.’s with independent marginals, and Var(X1) = Var(X2) =
Var(Y1) = 1 and Var(Y2) = 2.

It is easy to check that if µ is a distribution absolutely continuous with respect
to the Lebesgue measure, then for µ-almost every h ∈ R2 there exists s ∈ R
such that s〈X, h〉 and 〈Y, h〉 are identically distributed. 2

Now we show that, if dim (V ) = n < ∞ then (n + 2) independent projections
are enough to determine the family P .

Proposition 3.16 Let µ be a dissipative distribution on H and let Vn be an
n-dimensional subspace of H, where the dimension of H is greater than or
equal to (n + 2). Let X, Y be H-valued r.e.’s such that L(X) ∈ DM(H), and
let

P := {L(sX + g) : s ∈ R and g ∈ Vn}.

Then, if L(Y ) /∈ P, for µn+2-a.e. (h1, ..., hn+2) ∈ Hn+2, there exists no g0 ∈ Vn

and s ∈ R such that the distributions of the projections of Y on the (n + 2)
one-dimensional subspaces generated by h1, ..., hn+2 coincide with those of the
projections of (sX + g0).

PROOF.- To avoid trivialities let us assume that X is not ν-a.s. constant. In
this case, Lemma 2.2 implies that, ν-a.s., the random variable 〈X, h1〉 is not
a.s. constant and s is determined by the variances of the random variables
〈X, h1〉 and 〈Y, h1〉. In other words, there exists at most one value for s which
satisfies the equation

〈Y, h1〉 =d s〈X, h1〉+ 〈g, h1〉.

Let us denote this solution by sh1 and set X1 = sh1X. Obviously L(X1) ∈
DM(H) and, by Proposition 3.14, there exists no g0 ∈ Vn such that the dis-
tributions of the projections of Y on the (n + 1) one-dimensional subspaces
generated by h2, ..., hn+2 coincide with those generated by the projections of
(X1 + g0) which concludes the proof. 2

From Proposition 3.9, using a similar argument to that in Proposition 3.16 it
is possible to prove the following result.

Proposition 3.17 Let P = {L(sX + g) : s ∈ R, g ∈ H}, where X is an
H-valued r.e. such that L(X) ∈ DM(H). Assume that µ is a dissipative dis-
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tribution on H. Let Y be an H-valued r.e. and consider the set

A = {(h1, h2) ∈ H2 : ∃ g ∈ H and s ∈ R s.t. 〈Y, hi〉 =d 〈sX, hi〉+〈g, hi〉, i = 1, 2}.

If µ2(A) > 0, then L(Y ) ∈ P.

4 Goodness-of-fit tests

This section is devoted to the application of the above results to the goodness-
of-fit setup. Rather than being exhaustive we have decided to focus on some
simple examples to show how the random projection method could be used
for testing fit to a parametric family of distributions. This could be easily
modified to cover more general situations.

We will assume that, given i.i.d. H-valued data, X1, . . . , Xn, with L(Xi) = P ,
we are interested in testing the null hypothesis

H0: P ∈ P := {P (·, θ) : θ ∈ Θ}

against the alternative P /∈ P, where P is either an invariant family as in
Subsection 3.1 or an non-invariant family like the one considered in Proposition
3.16. In any case the family will be determined by k µ-generated random
projections, h1, . . . , hk, meaning that µk-a.e.

(Ph1 , . . . , Phk
) ∈ Ph1,...,hk

:= {(Ph1(·, θ), . . . , Phk
(·, θ)) : θ ∈ Θ} (6)

iff P ∈ P (k can be taken to be 1 for invariant families, whereas for non-
invariant families as in Proposition 3.16 it should be no less than n + 2).

We can try to use univariate Kolmogorov-Smirnov metrics to measure the de-
viation of a probability measure P with respect to P . To be precise, for prob-
ability measures on the real line Q1, Q2, call d(Q1, Q2) := supx |Q1(−∞, x]−
Q2(−∞, x]|. With this notation (6) means that P = P (·, θ) iff µk-a.e.

max
i=1,...,k

d(Phi
, Phi

(·, θ)) = 0. (7)

This suggest that we base our test on

Dn := max
i=1,...,k

√
nd((Pn)hi

, Phi
(·, θ)),

the maximum of k univariate Kolmogorov-Smirnov statistics, where Pn de-
notes the empirical measure based on X1, . . . , Xn. From (7) we get that Dn →
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∞ if P /∈ P , while if P = P (·, θ) ∈ P then the multivariate version of Donsker’s
Theorem gives that Dn →w D, D being a finite random variable.

Obviously, in order to make the test useful, we need to know the distribution
of Dn under the assumption P = P (·, θ). If k = 1 and P has continuous
marginals this is trivial because, in this case, the Kolmogorov-Smirnov test
is distribution free. Regrettably, this is no longer true if k > 1. An added
difficulty arises from the fact that θ must be estimated and we should replace
Dn by

D̂n = max
i=1,...,k

√
nd((Pn)hi

, Phi
(·, θ̂n)), (8)

for some suitable estimator θ̂n = θ(X1, . . . , Xn).

We propose to apply the bootstrap to approximate the null distribution of
D̂n as follows. Generate X∗

1 , . . . , X
∗
n i.i.d. data from distribution P (·, θ̂n), the

bootstrap sample. Call P∗n the empirical distribution based on X∗
1 , . . . , X

∗
n and

θ̂∗n = θ(X∗
1 , . . . , X

∗
n). Define

D̂∗
n = max

i=1,...,k

√
nd((P∗n)hi

, Phi
(·, θ̂∗n)). (9)

In the Appendix it is proved that the bootstrap works for this problem under
suitable assumptions, that is, the conditional distribution of D̂∗

n given the data
mimics that of D̂n and critical values for the D̂n-test can be approximated by
quantiles of D̂∗

n obtained by simulation. This Appendix is of technical character
and can be skipped by the reader interested only in applications.

A consequence of the results in the Appendix is that the distribution of D
under the null hypothesis depends indeed on the values of h1, ..., hk. Thus, the
test is a randomized test.

5 Simulations

In this section we make some simulations in order to show how the proposed
procedure behaves in practice. We have chosen two examples. We consider first
the design of a test of multivariate normality. Then we propose a goodness of
fit test for the Black-Scholes model.

Our tests will be based on the statistic D̂n in (8). We use D̂n because of
its computational convenience and the good asymptotic properties shown in
Subsection 6. Note, nevertheless, that the univariate K.S.-test is not optimal
against the alternatives considered here. Thus, the power of the resulting test
should increase if we replace K.S. by a better univariate test against these
alternatives. We do not pursue this line here because we focus on providing a
general idea on how the random projection method works in goodness-of-fit
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testing and, in particular, on how this kind of tests are affected when the
dimension of the data set increases.

Computations have been carried out with MatLab. Programs are available
from the authors upon request.

5.1 Gaussian goodness-of-fit test

The null hypothesis in this section is that the sample comes from a d-dimensional
Gaussian distribution. We have considered several values of d. The alterna-
tives we use are the same as in [12], which we describe succinctly: If we denote
by 3 (resp. 0) the d-dimensional vector with all components equal to 3 (resp.
0) and by S (resp. Id) the covariance matrix with all elements in the diagonal
equal to 1 and the elements off-diagonal equal to .9 (resp. the identity), then
the considered alternatives are the mixtures

pNd(0, Id) + (1− p)Nd(m, Σ), (10)

where m is 3 or 0 and Σ is S or Id, for several values of d and p = .5, .79, .9.

We consider the projection of the sample on k randomly chosen directions and
the statistic D̂n defined in (8). According to the results in Subsection 6, the
rejection areas have been computed using the bootstrap as follows.

If k < d, we have started by selecting the k vectors, computing the projection
of the sample on the k-dimensional subspace generated by those vectors and
then we have taken θ̂n = (µ̂n, Σ̂n) to be the sample mean and covariance matrix
of the projections on this k-dimensional subspace. At this stage, we have
generated 200 k-dimensional random samples from a Gaussian distribution
with parameters (µ̂n, Σ̂n) and we have computed bootstrap replicas D̂∗

n,r, r =
1, . . . , 200 . We have sorted the values and, if we denote by R the average of
the values in positions 190 and 191 in the sorted list, then the rejection region
is [R,∞).

If k ≥ d, to reduce the computational effort, we calculate first the sample mean
and covariance matrix. Then, we have generated 200 random samples from a
d-dimensional Gaussian distribution with this mean and this covariance, we
have projected each of these samples on the k randomly chosen vectors and
we have worked as in the previous case.

In Tables 5.1 and 5.2, we show proportions of rejections along the 2000 rep-
etitions we have done for each number of randomly chosen projections and
alternatives. This number is the same as in [12] to make the results compara-
ble. In both tables, k denotes the number of randomly chosen projections, d
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the dimension of the space under consideration, p, m and Σ the corresponding
value of the parameters in (10).

We compare first our results to those obtained with the Projection Pursuit
method applied to the K.S-test as carried out in [12]. We consider this com-
parison particularly illuminating because of the reasons stated in the intro-
duction. In [12], the authors have fixed d = 2 and, then, they have taken 15000
directions uniformly scattered on the unit sphere. Results are shown in Table
5.1.

Table 5.1
Comparison with the Projection Pursuit applied to the K-S-test. Dimension of the
data is d = 2.

Sample projection Projected tests
p m Σ

size pursuit k = 1 k = 2 k = 5 k = 10 k = 40

n = 25 .5 3 Id .22 .248 .283 .294 .317 .283

0 S .15 .083 .093 .109 .115 .144

.79 3 Id .48 .346 .414 .481 .526 .520

.1 3 Id .36 .250 .307 .376 .398 .384

0 S .14 .070 .086 .093 .124 .148

n = 50 .5 3 Id .61 .410 .566 .665 .706 .688

0 S .26 .126 .142 .185 .193 .254

.79 3 Id .87 .507 .671 .832 .891 .897

.1 3 Id .67 .382 .533 .637 .670 .716

0 S .25 .089 .116 .136 .161 .217

n = 100 .5 3 Id .97 .542 .759 .940 .977 .984

0 S .54 .159 .184 .291 .384 .491

.79 3 Id 1 .633 .823 .976 .999 1

.1 3 Id .94 .574 .735 .908 .933 .950

0 S .53 .102 .151 .201 .252 .365

Geometric means: .4421 .2334 .2968 .3613 .4005 .4427

As a way to summarize the results, we have computed the geometric mean
of the values provided by those authors and, also, the geometric mean of our
results in the same cases.

We consider that the results in Table 5.1 are very promising. The obtained

17



powers with just 40 randomly selected directions are very similar to those ob-
tained with Projection Pursuit with 15000 projections. Moreover, the applica-
tion of Projection Pursuit procedures in higher dimensions is quite involved,
while the application of the random projection method is straightforward and
the growth in computational time when the dimension increases is very small.

An important issue is how the method is affected by increasing dimensions.
This is analyzed in Table 5.2. For the sake of comparison, when available, we
provide the proportion of rejections obtained by Szekely and Rizzo (see [12])
when applying their (S.R.-)test. The comparison between our results and those
obtained with the S.R.-test is now more difficult because both procedures are
based on different univariate tests. In particular, it seems that increasing the
dimension affects very negatively the S.R.-test when m = 3 and Σ = Id, while
the effect is clearly positive if m = 0 and Σ = S.

With respect to our test, it seems that it is not so affected as the S.R.-test.
Roughly speaking, the effect appears to go in the same direction: when m = 3
and Σ = Id the power (slightly) decreases with the dimension, while if m = 0
and Σ = S, the power (slightly) increases with the dimension. It is worth
noticing that if k = 40, then the power increases in both cases. Thus, it seems
that a good protection against the curse of the dimensionality in this kind of
problem is to take a number of projections around 40.

5.2 Goodness-of-fit test to the Black-Scholes model

The celebrated Black-Scholes model for the evolution of stock prices, S(t), is
described by the differential equation dS(t) = µS(t)dt + σS(t)dW (t), where
µ ∈ R, σ > 0 and W is a standard Brownian motion (in [0, 1]), see, e.g., [11].
If a stochastic process Y (t) follows the Black-Scholes model then

Z(t) = log(Y (t)) = sW (t) + at (11)

for some s > 0 and a ∈ R. We will consider Z as an L2[0, 1]-valued random
element with the usual scalar product and norm.

After the logarithmic transform, testing fit to the Black-Scholes model fits in
the setup of Proposition 3.14 where Vn is the one-dimensional subspace gener-
ated by the identity and the r.e. X in this proposition is a standard Brownian
Motion. Hence, according to this proposition, three one-dimensional projec-
tions suffice to construct a goodness-of-fit test to the Black-Scholes model.

We analyze the behavior of our procedure against alternatives of type

Z(t) = (1 + s2f(t))W (t) + (a1t + a2g(t)), t ∈ [0, 1], (12)
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Table 5.2
Comparison with Szekely and Rizzo’s test. Sample size is 50.

Szekely Projected tests
Dimension p m Σ

and Rizzo k = 1 k = 2 k = 5 k = 10 k = 40

d = 3 .5 3 Id .58 .380 .540 .748 .865 .926

0 S .71 .127 .180 .214 .258 .344

.79 3 Id .98 .451 .635 .854 .952 .985

.1 3 Id .91 .353 .521 .708 .801 .859

0 S .65 .114 .129 .167 .197 .266

d = 5 .5 3 Id .20 .332 .518 .742 .875 .989

0 S .99 .139 .175 .230 .274 .410

.79 3 Id .79 .411 .601 .842 .955 .998

.1 3 Id .93 .342 .508 .733 .847 .932

0 S .89 .100 .127 .180 .231 .326

d = 10 .5 3 Id .05 .332 .501 .696 .863 .997

0 S 1 .155 .201 .254 .304 .462

.79 3 Id .27 .383 .550 .811 .946 1

.1 3 Id .66 .351 .459 .714 .840 .966

0 S .97 .114 .140 .190 .236 .392

d = 50 .5 3 Id — .310 .462 .687 .864 .997

0 S — .154 .210 .269 .334 .470

.79 3 Id — .353 .540 .806 .933 1

.1 3 Id — .321 .442 .668 .852 .967

0 S — .110 .138 .203 .256 .416

d = 500 .5 3 Id — .326 .463 .687 .867 .995

0 S — .170 .213 .281 .344 .487

.79 3 Id — .368 .540 .771 .937 1

.1 3 Id — .308 .445 .694 .847 .973

0 S — .113 .150 .204 .267 .446

where we have taken f, g equal to t2 or sin(2πt) and s2, a1, a2 ∈ {0, 1}. Thus,
if s2 = a2 = 0 we are in the null hypothesis, otherwise the alternative holds.
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According to Proposition 3.14, any dissipative distribution µ is valid for gen-
erating the random directions to be employed to project. Here we have taken
µ to be Wiener measure on L2[0, 1].

To generate replicas of W we have taken W (0) = 0 and, then

W (t) = W
(

j − 1

N

)
+ wj, j = 1, ..., N, t ∈

(
j − 1

N
,

j

N

]
,

where wj, j = 1, ..., N are i.i.d. real r.v.’s with Gaussian distribution centered
at 0 and variance N−1. In our simulations, we have fixed N = 100 and we
have taken n = 50 as sample size.

Concerning the estimates of a and s in (11), observe that, for the model (11)
E(Z(1)) = a and 〈Z〉 = s2, where 〈Z〉 denotes the quadratic variation in
[0, 1] of Z (see, e.g., [11] for general background on this and other concepts
in stochastic calculus). Thus, if we have the random sample Z1, ..., Zm, this
motivates that we consider the estimators

â1 =
1

n

n∑
i=1

Zi(1)

and

ŝ2 =
1

n

n∑
i=1

N∑
j=1

[
Zi

(
j

N

)
− Zi

(
j − 1

N

)]2

.

It can be shown that these estimators satisfy the hypotheses in Corollary 6.3.

We have tried our test with k = 3, 5, 10 and 40 one-dimensional projections.
The rejection region has been obtained as in Subsection 5.1 taking B = 200
bootstrap simulations. In Table 5.3, we show the proportion of rejections along
1000 repetitions.

Results in this table are very promising. We get quite high powers, even for the
minimum value of k = 3, except in the case where s2 = 1, a2 = 0 and f(t) = t2,
in which we obtain proportion of rejections around .150. The conclusion is
that the procedure works well for data with sinusoidal volatility or with a
non-linear drift. The only case in which the procedure provides not-so-good
results is when the volatility is f(t) = t2 and there is linear drift.

6 Appendix: Bootstrapping the estimated empirical process.

As noted in Section 4, projection on a finite number of directions reduces our
data to i.i.d. observations in Rk and we want to test fit of this multivariate data
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Table 5.3
Goodness-of-fit test to the Black-Scholes model. Sample size is 50. Samples have
been taken from Z(t) = (1 + s2f(t))W (t) + (a1t + a2g(t)), t ∈ [0, 1], where W is a
standard Brownian motion. Sample size is n = 50.

Projected tests
s2 a1 a2

k = 3 k = 5 k = 10 k = 40

f(t) = t2 g(t) = t2 0 0 0 .056 .054 .050 .057

0 0 1 .713 .758 .809 .847

0 1 0 .059 .053 .055 .049

0 1 1 .712 .741 .772 .850

1 0 0 .154 .154 .166 .144

1 0 1 .526 .569 .650 .720

1 1 0 .154 .147 .147 .123

1 1 1 .513 .551 .614 .717

g(t) = sin(2πt) 0 0 1 .981 .998 1 1

0 1 1 .976 .998 1 1

1 0 1 .939 .981 1 1

1 1 1 .942 .977 1 1

f(t) = sin(2πt) g(t) = t2 1 0 0 .968 .992 1 1

1 0 1 .994 1 1 1

1 1 0 .960 .994 .999 1

1 1 1 .995 1 1 1

g(t) = sin(2πt) 1 0 1 1 1 1 1

1 1 1 .999 1 1 1

to some parametric family. Hence we consider the following setup. I{Xn}n are
i.i.d. Rk-valued random vectors with common distribution P (·, θ0) (the Xn’s
here correspond to the k-dimensional projections [〈Xn, h1〉, . . . , 〈Xn, hk〉]T of
the Xn in Section 4 and the P (·, θ) here to the projection of the P (·, θ) there
on span{h1, . . . , hk}; to ease notation we avoid any reference to h1, . . . , hk in
this Appendix).

We assume this common distribution to be a member of the family P :=
{P (·, θ) : θ ∈ Θ}, with Θ ⊂ Rd an open set. We take F to be a class of real
valued functions on Rk such that supf∈F |f(x)−P (f, θ)| < ∞ for every x and
θ. The true value of the parameter, θ0, will be, in general, unknown and we
cannot, therefore, base our inferences on the usual empirical process indexed
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by F , namely, {Gn(f)}f∈F with Gn(f) =
√

n(Pn(f)−P (f, θ0)) (Gn(f) is con-
sidered as an l∞(F)-valued process). We can, instead, consider the estimated
empirical process : {

Ĝn(f) =
√

n(Pn(f)− P (f, θ̂n))
}

f∈F
, (13)

where θ̂n = θ(X1, . . . , Xn) is some suitable estimator of θ0. This estimated em-
pirical process was first considered in [6] for k = 1 and F = {1(−∞,x] : x ∈ R},
giving weak convergence (in the Skorohod topology) to a certain Gaussian pro-
cess under suitable regularity assumptions on P and θ̂n. Later, [1] generalized
these results to the class of lower rectangles in Rk, F = {1(−∞,x] : x ∈ Rk},
where 1(−∞,x] = 1(−∞,x1] × · · · × 1(−∞,xk] for x = (x1, . . . , xk) ∈ Rk. We will
give here a simple extension to general classes of functions. Further, in order
to make our results usable in practice, we will provide sufficient conditions
under which the (parametrically) bootstrapped estimated empirical process,
namely, {

Ĝ∗
n(f) =

√
n(P∗n(f)− P (f, θ̂∗n))

}
f∈F

, (14)

mimics the distribution of the estimated empirical process. In (14), P∗n denotes
the empirical measure based on the bootstrap sample X∗

1 , . . . , X
∗
n which, condi-

tionally given X1, . . . , Xn, are i.i.d. random vectors with common law P (·, θ̂n)
and θ̂∗n = θ(X∗

1 , . . . , X
∗
n).

As in [6] or [1] we will assume θ̂n to be efficient, meaning that, under P (·, θ),

√
n(θ̂n − θ) =

1√
n

n∑
i=1

l(Xi, θ) + oP (·,θ)(1). (15)

We also make the following assumptions on function l in (15):

P (l(·, θ), θ) = 0, P (l(·, θ)T l(·, θ), θ) < ∞. (16)

If P (f, θ) is smooth enough and we denote ∇θP (f, θ) the vector of partial
derivatives of P (f, θ) with respect to θ then we have

Ĝn(f) = Gn(f)−
√

n
(
P (f, θ̂n)− P (f, θ0)

)
= Gn(f)−

√
n∇θP (f, θ0)

T (θ̂n − θ0) + oPθ0
(1)

= Gn(f)−∇θP (f, θ0)
T Gn(l(·, θ0)) + oPθ0

(1).

Sufficient conditions to ensure that the oPθ0
(1) in the above display can be

taken to be uniform in f (that is, to ensure that the l∞(F)-valued r.e.

Ĝn −
(
Gn −∇θP (·, θ0)

T Gn(l(·, θ0))
)
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tends to 0 in outer probability) are given by

∇θP (f, θ) is uniformly bounded in f for fixed θ. (17)

and

∇θP (f, θ) is uniformly continuous in f and θ ∈ Λ, (18)

where Λ is some neighborhood of θ0. Here, uniform continuity in f is with
respect to the semi-metric

ρθ0(f, g) :=
(
P ((f − g)2, θ0)− (P ((f − g), θ0))

2
)1/2

.

Observe now that, for a fixed element T ∈ l∞(F), τT (z) := z(·)−T (·)z(l) is a
continuous map from l∞(F ∪{l}) into l∞(F) (this follows from the inequality
‖τT (z1)− τT (z2)‖F ≤ (1 + ‖T‖F)‖z1 − z2‖F∪{l}). Thus, if

F is P (·, θ0)-Donsker, (19)

then so is F ∪ {l} and this essentially proves (only straightforward changes
that we omit are needed) the following result.

Theorem 6.1 Under (15)-(19) Ĝn converges weakly in l∞(F) to the Gaus-
sian process

Ĝ(f) = G(f)−∇θP (f, θ0)
T G(l(·, θ0)),

where G is a P (·, θ0)-Brownian bridge.

Let us turn now to the bootstrapped estimated empirical process defined in
(14). We recall that weak convergence of a sequence of random elements {Zn}n

to a (tight, Borel measurable) limit Z in l∞(F) is equivalent to

sup
h∈BL1

|E∗h(Zn)− Eh(Z)| → 0

as n →∞, where BL1 is the set of all functions h : l∞(F) → R bounded by 1
and such that |h(x)− h(y)| ≤ ‖x− y‖F , see, e.g., [13], p 73. We will say that
Ĝ∗

n converges weakly to Ĝ in outer probability if

sup
h∈BL1

∣∣∣Ẽh(Ĝ∗
n)− Eh(Ĝ)

∣∣∣ → 0

in outer probability. Here Ẽ denotes outer expectation with respect to the
probability P (·, θ̂n), conditionally given θ̂n. It is easy to see that if Ĝ∗

n converges
weakly to Ĝ in outer probability, H : l∞(F) → R is a continuous function such
that H(Ĝ∗

n) is measurable and d metrizes weak convergence of probability
measures on the line, then

d(L̃(H(Ĝ∗
n)),L(H(Ĝ))) → 0

23



in probability, where L̃(H(Ĝ∗
n)) denotes the conditional law of H(Ĝ∗

n) given
θ̂n.

To show that Ĝ∗
n converges weakly to Ĝ in outer probability we will use the

notation Gn,θ for the empirical process when the underlying distribution is
P (·, θ). We can write now

G∗
n(f) =

√
n

(
P∗n(f)− P (f, θ̂∗n)

)
= Gn,θ̂n

(f)−
√

n
(
P (f, θ̂∗n)− P (f, θ̂n)

)
.

If we strengthen (15) to

Lε(θn) → 0 (20)

as θn → θ0, for every ε > 0, where Lε(θ) = P
(∥∥∥√n(θ̂n − θ)−Gn,θ(l)

∥∥∥ > ε, θ
)

(observe that, with this notation, (15) means Lε(θ0) → 0), then we can argue
as before to get

Ĝ∗
n(f)'Gn,θ̂n

(f)−∇θP (f, θ̂n)T Gn,θ̂n
(l(·, θ̂n))

'Gn,θ̂n
(f)−∇θP (f, θ0)

T Gn,θ̂n
(l(·, θ̂n)),

with ' meaning that the difference between the corresponding l∞(F)-valued
r.e.’s tends to 0 in outer probability. If we also assume

P
(
(l(·, θn)− l(·, θ0))

2, θn

)
→ 0, (21)

as θn → θ0, then we obtain

Ĝ∗
n(f) 'Gn,θ̂n

(f)−∇θP (f, θ0)
T Gn,θ̂n

(l(·, θ0)).

Thus, we see that the study of the asymptotic behavior of Ĝ∗
n can be reduced to

the consideration of a central limit theorem for a empirical process based on a
triangular array, namely, {Gn,θ̂n

(f)}f∈F∪{l(·,θ0)}. This, in turn, can be obtained
as an application of the uniform central limit theorem, see Subsection 2.8.3 in
[13]. Sufficient conditions for the desired conclusion are

sup
f,g∈F∪{l(·,θ0)}

|ρθ̂n
(f, g)− ρθ0(f, g)| → 0 (22)

in probability,

F ∪ {l(·, θ0)} is Donsker and pre-Gaussian uniformly in {P (·, θ)}θ∈Θ (23)
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and

F ∪ {l(·, θ0)} has a measurable envelope F such that P (F 2IF>ε
√

n, θ̂n) → 0
(24)

in probability, for every ε > 0. We summarize this argument in the following
results.

Theorem 6.2 If conditions (15)-(18) and (20)-(24), hold then Ĝ∗
n converges

weakly to Ĝ in outer probability, where Ĝ is the Gaussian process defined in
Theorem 6.1

Corollary 6.3 (Consistency of the bootstrap for general Kolmogorov-Smirnov
statistics with estimated parameters). Under the hypotheses of Theorem 6.2, if
‖Ĝ∗

n‖F is measurable and d metrizes weak convergence of probability measures
on the line, then

d(L̃(‖Ĝ∗
n‖F),L(‖Ĝ‖F)) → 0

in probability.

Example 6.4 Let us consider the problem of testing fit to the family of mul-
tivariate normal distributions N(µ, Σ) on Rk using the Kolmogorov-Smirnov
statistic with estimated parameters, namely,

D̂n =
√

n sup
x∈Rk

|Fn(x)− F (x; µ̂n, Σ̂n)|,

where Fn denotes the k-variate empirical d.f., F (x; µ, Σ) the distribution func-
tion of the N(µ, Σ) law and µ̂n, Σ̂n are the usual estimators based on a sample
of size n, namely, the sample mean and covariance matrix, respectively. Ob-
serve that D̂n = ‖Ĝn‖F , with F the class of indicators of lower rectangles in
Rk, F = {1(−∞,x] : x ∈ Rk} (we denote 1(−∞,x] = 1(−∞,x1] × · · · × 1(−∞,xk]

for x = (x1, . . . , xk) ∈ Rk). Here θ̂n = (µ̂n, Σ̂n) satisfies (15) with l(x, θ) =
(x− µ, (x− µ)(x− µ)T −Σ) and remainder (0,−

√
n(X̄n − µ)(X̄n − µ)T ). We

also have (16), whereas (17) and (18) follow from straightforward (but cum-
bersome) computations that we omit. It is well known that F is universally
Donsker (see, e.g., [13], p 129), hence we also have (19). Applying Theorem
6.1 we can conclude

D̂n →
w
‖Ĝ‖F .

The distribution of ‖Ĝ‖F is hard to evaluate even in dimension one.

We can try to use a bootstrap approach based on

D̂∗
n =

√
n sup

x∈Rk

|F ∗
n(x)− F (x; µ̂∗n, Σ̂

∗
n)|

where F ∗
n is the empirical d.f. associated to X∗

1 , . . . , X
∗
n, i.i.d. N(µ̂n, Σ̂n) r.v.’s

and µ̂∗n and Σ̂∗
n are the sample mean and sample covariance matrix, respec-
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tively, computed from X∗
1 , . . . , X

∗
n. Now, (20) reduces to check

P
(
‖
√

n(X̄n − µn)(X̄n − µn)T‖ > ε; µn, Σn

)
→ 0,

when (µn, Σn) → (µ, Σ), which is certainly true. (21) follows from the fact that
l(x, θn)− l(x, θ0) = (θ0−θn, (x−µn)(x−µn)T − (x−µ0)(x−µ0)

T − (Σ0−Σn))
and we can similarly show that (22) holds in this case. Condition (24) is an
easy consequence of the fact that F is a uniformly bounded class of functions.
Finally, (23) is a consequence of F being a uniformly bounded VC-class (plus
some measurability properties). Summarizing, we obtain that

d(L̃(D̂∗
n),L(D̂n)) → 0

in probability and, therefore, that we can use the bootstrap to approximate
the distribution of D̂n.

Example 6.5 Consider now the statistics D̂n and D̂∗
n of (8) and (9). They

can be written as ‖Ĝn‖F and ‖Ĝ∗
n‖F , respectively, with F = F1∪· · ·∪Fk and

Fj = {R×· · ·× (−∞, xj]×· · ·×R}xj∈R. We have again that F is a uniformly
bounded VC-class and, as in Example 6.4 we can show that the assumptions
of Theorem 6.2 are satisfied for suitable families of distributions (including
the family of multivariate normal distributions) and, in those cases

d(L̃(D̂∗
n),L(D̂n)) → 0

in probability.
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