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Abstract

The computation of the Tukey depth, also called halfspace depth, is very demanding, even in low
dimensional spaces, because it requires that all possible one-dimensional projections be considered.
In this paper we propose a random depth which approximates the Tukey depth. It only takes into
account a finite number of one-dimensional projections which are chosen at random. Thus, this
random depth requires a reasonable computation time even in high dimensional spaces. Moreover, it
is easily extended to cover the functional framework.

We present some simulations indicating how many projections should be considered depending
among others on the kind of problem, sample size and dimension of the sample space. We also
compare this depth with some others proposed in the literature. It is noteworthy that the random
depth, based on a very low number of projections, obtains results very similar to those obtained with
other depths.
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1 Introduction

This paper is written in the same spirit as [8]. In the abstract of this paper, D.J. Hand
states that “...simple methods typically yield performance almost as good as more sophis-
ticated methods to the extent that the difference in performance may be swamped by other
sources of uncertainty...”. Hand’s work is related to classification techniques. Here we
analyze a conceptually simple and easy to compute multidimensional depth that can be
applied to functional problems and that provides results comparable to those obtained
with more involved depths.

∗Research partially supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa, grant MTM2005-08519-C02-02 and
the Consejeŕıa de Educación y Cultura de la Junta de Castilla y León, grant PAPIJCL VA102/06.
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Depths are intended to order a given set in the sense that if a datum is moved toward
the center of the data cloud, then its depth increases and if the datum is moved toward
the outside, then its depth decreases.

More generally, given a probability distribution P defined in a multidimensional (or
even infinite-dimensional) space X , a depth tries to order the points in X from the “center
(of P )” to the “outer (of P )”. Obviously, this problem includes data sets if we consider
P as the empirical distribution associated to the data set at hand. Thus, in what follows,
we will always refer to the depth associated to a probability distribution P .

In the one-dimensional case, it is reasonable to order the points using the order induced
by the function

x → D1(x, P ) := min{P (−∞, x], P [x,∞)}. (1)

Thus, the points are ordered following the decreasing order of the absolute values of the
differences between their percentiles and 50, and the deepest points are the medians of P .

Several multidimensional depths have been proposed (see, for instance, the recent book
[10]) but here we are mainly interested in the Tukey (or halfspace) depth (see [17]). If
x ∈ Rp, then, the Tukey depth of x with respect to P , DT (x, P ), is the minimal probability
which can be attained in the closed halfspaces containing x. According to [18], this depth
behaves very well in comparison with various competitors.

An equivalent definition of DT (x, P ) is the following. Given v ∈ Rp, let Πv be the
projection of Rp on the one dimensional subspace generated by v. Thus, P ◦ Π−1

v is the
marginal of P on this subspace, and it is obvious that

DT (x, P ) = inf{D1(Πv(x), P ◦ Π−1
v ) : v ∈ Rp}, x ∈ Rp. (2)

I.e., DT (x, P ) is the infimum of all possible one-dimensional depths of the one-dimensional
projections of x, where those depths are computed with respect to the corresponding (one-
dimensional) marginals of P .

Some other depths based on the consideration of all possible one-dimensional projec-
tions have been proposed (see, for instance, [19]). We consider that what follows could
be applied to all of them, but we have chosen the Tukey depth to test it specifically.

Perhaps the most important drawback of the Tukey depth is the required computa-
tional time. This time is more or less reasonable if p = 2, but it becomes prohibitive even
for p = 8 [15, pag. 54]. To reduce the time, in [20, pag. 2234] what we propose is to
approximate their values using randomly selected projections.

On the other hand, in [5], a random depth is defined. In this paper, given a point x,
the authors propose to choose at random a finite number of vectors v1, ..., vk, and then,
take as depth of x the mean of the values D1(Πvi

(x), P ◦ Π−1
vi

), i = 1, ..., k.
Our approach follows more closely the suggestion in [20]: we simply replace the infimum

in (2) by a minimum over a finite number of randomly chosen projections, obtaining a
random approximation to the Tukey depth. Moreover, in Section 2 (Theorem 2.3) we
show that this approximation satisfies the definition of depth given in [18] (but with the
convergence being in probability) and, then, it can also be considered as a depth, which
we call the random Tukey depth. Section 2 closes with Theorem 2.4, where the consistency
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of the random Tukey depth is proved. The proofs of these theorems are included in the
Appendix.

The main problem of the random Tukey depth as an approximation to the Tukey depth
is to find the number of random projections required to obtain a good approximation. This
question is addressed in Section 3. This number could depend on the kind of application
of the depth in which we are interested as well as on the dimension of the underlying space
and on the size of the random sample we are employing. However, the simulations carried
out in Section 3 suggest that a maximum of 100 randomly chosen projections are enough
for a wide range of conditions. Section 3 ends with a comparison of the time required to
compute the random Tukey depth and the time to compute the Mahalanobis depth.

One of the main advantages of the random Tukey depth is that it can be extended
to infinite-dimensional functional spaces despite the definition of depth not being fully
satisfied in this case. This is studied in Section 4. There we also apply the random Tukey
depth to a well known supervised classification problem where we are required to classify
an individual, as female or male, based on its growth curve. In addition, we compare
the random Tukey depth with the depths proposed in [12] as well as with classification
methods based on the k-nearest neighbors (k-NN) and kernels. Moreover, taking into
account that, in fact, the data are only 31-dimensional, we also compare it with the
random forest method.

The computations of the random forests have been done with a software downloaded
from http://www.cs.waikato.ac.nz/ml/weka. The other computations have been carried
out with MatLab. Computational codes are available from the authors upon request.

2 The random Tukey depth

In this section we define the random Tukey depth and show that it satisfies the definition
of statistical depth given in [18] and its consistency.

Concerning the notation, in this section P denotes the class of distributions on the
Borel sets of Rp and PX the distribution of a general random vector X. In addition, the
symbols ‖ · ‖ and 〈·, ·〉 respectively denote the usual norm and scalar product in Rp.

Now, let us formally define the random Tukey depth.

Definition 2.1 Let P ∈ P. Let ν ∈ P absolutely continuous, and let v1, ..., vk be indepen-
dent and identically distributed random vectors with distribution ν. The random Tukey
depth of x ∈ Rp with respect to P based on k random vectors chosen with ν is

DT,k,ν(x, P ) = min{D1(Πvi
(x), P ◦ Π−1

vi
) : i = 1, ..., k}, x ∈ Rp.

In order to simplify the notation, unless some risk of confusion appears, we will delete
the subscript ν in the notation and simply write DT,k.

Obviously, DT,k(x, P ) is a random variable. It may seem somewhat strange to take a
random quantity to measure the depth of a point, which is inherently not-random. We
have two reasons for taking this point of view.
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Firstly, Theorem 4.1 in [4] shows that if P and Q are probability distributions on Rp,

such that the absolute moments mk :=
∫
‖x‖kdP (x) are finite and satisfy

∑
k≥1 m

−1/k
k =

∞, ν is an absolutely continuous distribution on Rp and

ν{v ∈ Rp : P ◦ Π−1
v = Q ◦ Π−1

v } > 0,

then P = Q. In other words, if we have two different distributions, and we randomly
choose a marginal of them, those marginals are almost surely different. According to this
result, one randomly chosen projection is enough to distinguish between two p-dimensional
distributions. Since the depths determine one-dimensional distributions, a depth com-
puted on just one random projection allows us to distinguish between two distributions.

Secondly, if the support of ν is Rp, and, for every k, {v1, ..., vk} ⊂ {v1, ..., vk+1}, then

DT,k(x, P ) ≥ DT,k+1(x, P ) → DT (x, P ), a.s. (3)

Therefore, if we choose a large enough k, the effect of the randomness in DT,k will be
negligible. Of course, the question of interest is to learn how large k must be, because
too large values of k would make this definition useless. We will analyze that point in
Sections 3 and 4.

Here, we will show that, for every k, DT,k a.s. satisfies the definition of statistical depth
function given by Zuo and Serfling in [18]. This definition consists of four key properties
desirable for depths. They are affine invariance, maximality at center, monotonicity
relative to deepest point and vanishing at infinity. In [18], it is shown that the Tukey
depth satisfies this definition.

Concerning the maximality at center, this states that, having a distribution with a
unique center of symmetry (with respect to some notion of symmetry), the depth function
should attain the maximum at this center.

Definition 2.2 The bounded and nonnegative mapping D(·, ·) : Rp ×P −→ R is called a
statistical depth function if it satisfies the following properties:

1. D(Ax + b, PAX+b) = D(x, PX) holds for any Rp-valued random vector X, any p× p
nonsingular matrix A and any b ∈ Rp.

2. D(θ, P ) = sup
x∈Rp D(x, P ) holds for any P ∈ P having center θ.

3. For any P ∈ P having deepest point θ, D(x, P ) ≤ D(θ + α(x − θ), P ) holds for
α ∈ [0, 1].

4. D(x, P ) → 0 as ‖x‖ → ∞, for each P ∈ P .

Concerning point 2, various notions of symmetry are possible, among them, central,
angular and halfspace symmetry. As central symmetry implies angular, which implies
halfspace, we will identify center with the point of halfspace symmetry.

Theorem 2.3 The random Tukey depth is a bounded and non-negative mapping which
satisfies items 1, 2 and 3 in Definition 2.2.

Moreover, let P ∈ P and k > 0. If ‖x‖ → ∞ with x ∈ Rp, then DT,k(x, P ) converges
to zero in probability.

4



Remark 2.3.1 As a consequence of Theorem 2.3 we can say that the random Tukey
depth is a depth in the sense of Definition 2.2 if we replace the convergence in item 4 by
convergence in probability.

The randomness only affects item 4. The problem is that it would be possible for all
the k vectors to be included in the same hyperplane, and, in this case, it is obvious that
property 4 is not satisfied, for instance, for some sequence of points orthogonal to this
hyperplane, if DT,k(0, P ) > 0.

Another desirable property for depths is that its sample version converges to the popu-
lation counterpart. Slightly more general than this is that, almost surely, supx |D(x, Pn)−
D(x, P )| → 0 where Pn denotes the empirical distribution (i.e. if x1, ..., xn is a random
sample, P n[A] = #(A ∩ {x1, ..., xn})/n). This property is satisfied by the Tukey depth
(see [18]) and Theorem 2.4 shows that the random Tukey depth also enjoys this property.

Theorem 2.4 Let ν ∈ P and v1, ..., vk be independent and identically distributed random
vectors with distribution ν. Let P ∈ P and let {Pn} be a sequence of empirical distributions
computed on a random sample taken from P which is independent of the vectors v1, ..., vk.

Then, conditionally on v1, ..., vk, we have that

sup
x∈Rp

|DT,k(x, Pn)−DT,k(x, P )| → 0, almost surely [P].

Remark 2.4.1 In Theorem 2.4, the almost surely convergence is with respect to the
empirical samples taken from P and the random vectors employed in the computation of
the depths are chosen independently of these samples.

In fact, this result holds for every fixed vector in Rp, randomly chosen with the dis-
tribution ν or not, with the only condition that it be independent of the random sample
taken from P .

3 How many random projections? Testing homogeneity

Obviously, Theorem 4.1 in [4] also holds if ν is a probability distribution absolutely
continuous with respect to the surface measure on the unit sphere in Rp. Then, in this
section, we fix ν to be the uniform distribution on the unit sphere to analyze the question
of the selection of k. Our proposal is to make this selection depending on the problem
we have at hand; for instance with bootstrap (as in Section 3.1) or with cross-validation
(as in Section 4). However, it is good to first have some idea about the range in which to
look for this value.

The obvious way to do this is to make some comparisons between DT and DT,k for
several dimensions, sample sizes and distributions; however, the long computational times
required to obtain DT makes those comparisons impractical. Then, instead of doing these
comparisons, we have placed ourselves in some situations in which the deepness of the
points are clearly defined and can easily be computed with a different depth. However, a
comparison from the point of view of the results is carried out in Section 3.1.
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If P is an elliptical distribution with centralization parameter µ and dispersion matrix
Σ, then P is centrally symmetric around µ and it seems that every reasonable depth
should consider those points at the same Mahalanobis distance of µ to have the same
depth, and that differences in depth should correspond with differences in Mahalanobis
distance of µ. Then, in this situation, every depth should be a monotone function of the
Mahalanobis depth [13], where, given x ∈ Rp, this depth is

DM(x, P ) :=
1

1 + (x− µ)tΣ−1(x− µ)
. (4)

Therefore, we can have an idea about the right k in DT,k as follows: if P is elliptical,
DT (·, P ), is a monotone function of DM(·, P ). Thus, from (3), the larger the k, the larger
the resemblance between DT,k(·, P ) and a monotone function of DM(·, P ). However, there
should exist a value k0 from which this resemblance starts to stabilize. This is the value
for k we are looking for.

Taking into account that depths only try to rank points according to their closeness
to the center of P , it is reasonable to measure the resemblance between DT,k(·, P ) and
DM(·, P ) looking only at the ranks of the points. This is equivalent to employing the
Spearman correlation coefficient, ρ. Thus, the resemblance that we handle here is

rk,P := ρ (DT,k(X, P ), DM(X, P )) , (5)

where X is a random variable with distribution P .
If P is an elliptical distribution, then the function k → rk,P is strictly increasing. We

try to identify the point k0 from which the increments become negligible.
However, in practice, we will not have a distribution P , but a random sample x1, ..., xn

taken from P . This leads us to replace P in (5) by the empirical distribution P n.
To illustrate the behavior of the function k → rk,Pn , we have represented it in Figure

1 for different distributions, sample sizes and dimensions. In this figure, the first column
corresponds to centered Gaussian distributions with covariance matrices with ones on the
diagonal and 0.9 in all positions off-diagonal. Remaining columns in Figure 1 represent,
from left to right, standard Gaussian distributions, distributions with independent double
exponential marginals and with independent Cauchy marginals.

Dimensions and sample sizes vary in rows. We consider, from top to bottom, sample
sizes n = 25, 100 for R2, n = 50, 100 for R8 and n = 100, 500 for R50. Thus, the case
n = 100 (second, fourth and fifth rows) can be used to see how the dimension affects the
function for a fixed sample size.

The last row is different. In this row we take advantage of the fact that we know the
exact covariance matrix of the theoretical distribution, so, in row number seven Maha-
lanobis depth is computed with the exact value of Σ. In this case, we have taken n = 500
in R50.

A last comment is related to the computation of the location center and the dispersion
matrix (except in the last row) of P n, to be employed in DM . Those parameters should
depend on the distribution which generated the sample. What we mean is the following:
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the covariance matrix is an appropriate parameter in the Gaussian and exponential case.
But it is not adequate for the Cauchy distribution, where we have identified Σ with the
robust covariance matrix proposed in [14, page 206]. Furthermore, we have replaced
µ by the sample mean in the Gaussian case and by the coordinate-wise median in the
exponential and Cauchy settings.

In the graphs k varies in the set {1, ..., 25} in the first and second rows, in {1, ..., 100}
in third, fourth and fifth rows, and in {1, ..., 500} in last two rows. Moreover, there are no
obvious differences between using the theoretical covariance matrices or their estimation
or between the case of independent marginals and dependent ones. We have checked
more cases (not shown here) with similar results, among which we have analyzed some
intermediate dimensions, other sample sizes, and dispersion matrices with 0.5 in all off-
diagonal elements for the Gaussian, exponential and Cauchy distributions.
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Figure 1: Representation of the function k → rk,Pn defined in (5) for several dimensions, sample sizes
and distributions. The underlying models are described in the text.

It seems that the graphs stabilize for k ≤ 10 if p = 2, k ≤ 60 if p = 8 and k ≤ 250 if
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p = 50 which are suitable values for computations and, of course, well below those usually
employed to compute the Tukey depth.

An important fact which appears only in the graph in the lower-left corner of Figure 1
is that since P n does not follow the model exactly, then the function rk,Pn is not necessarily
increasing and, in fact, sometimes, after an initial increasing part, it starts to decrease.
In our opinion, the reason for this is that limk DT,k(x, Pn) = DT (x, Pn) 6= DM(x, Pn).

3.1 Testing homogeneity

Our goal in this subsection is to show how the random Tukey depth, with values for k of
the order suggested by Figure 1, provides results which are similar to those obtained in
practice with the Tukey depth. In this section we will select k, with bootstrap, between
the values {1, ..., 50}.

To this end, we are going to reproduce the simulation study carried out in [11], where
the authors apply depth measures to test differences in homogeneity between two distri-
butions. Let us begin by giving a brief description of the problem and the procedure.
Additional details can be found in [11].

Assume that we have two random samples {X1, ..., Xn1} and {Y1, ..., Yn2} taken from
the centered distributions P and Q respectively. Let us assume that those distributions
coincide except for a scale factor, i.e., we are assuming that there exists r > 0 such
that the r.v.’s {rX1, ..., rXn1} and {Y1, ..., Yn2} are identically distributed. The problem
consists in testing the hypotheses:

H0 : r = 1 (both scales are the same)

Ha : r > 1 (Q has a larger scale).

The idea is that, under the alternative, the observations in the second sample should
appear in the outside part of the joint sample {X1, ..., Xn1 , Y1, ..., Yn2}, and, consequently,
should have lower depths than the points in the first sample. Thus, it is possible to test
H0 against Ha by computing the depths of the points {Y1, ..., Yn2} in the joint sample,
replacing them by their ranks and rejecting H0 if those ranks are small.

The Wilcoxon rank-sum test can be used to test when the ranks of the points {Y1, ..., Yn2}
are small. In [11] several possibilities to break the ties are proposed. We have tried all
of them, with no relevant differences. Thus, we have chosen random tie-breaking as the
only method to be shown here.

Concerning the selection of the number of random projections, we have employed
bootstrap as follows. Let us assume that we want to carry out the homogeneity test at
the level α = .05 and that we have the samples X := {X1, ..., Xn1} and Y := {Y1, ..., Yn2}.
We begin by selecting 50 vectors at random and fixing rb = 1.2 as the first value of r > 1
that we consider interesting to be identified. Next, we apply bootstrap, 100 times, to the
joint sample Z := {X1, ..., Xn1 , Y1, ..., Yn2} as follows:

We take, from Z, two bootstrap samples, I and J, respectively with sizes n1 and and
n2. We center both in mean or median depending on the distribution we employed to
generate the samples X and Y, and, then, multiply the vectors in J by rb.
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Now we compute the random Tukey depth of this new joint sample using the first of
the 50 vectors selected and check if the null hypothesis is rejected. If not, we continue
adding the following vector to the calculation of the random Tukey depth until the null
hypothesis is rejected, and keep record of the number of vectors needed.

If the null hypothesis is not rejected despite using 50 vectors, we forget those samples
and start with the following bootstrap couple. Remember that, the random Tukey depths
are approximations of the Tukey depth. Since the Tukey depth is only able to detect the
differences in homogeneity around 18% of times when r = 1.2 and n1 = n2 = 20 (see
Table 3.1), we should expect that the random depths fails to reject 82% of times, and
those cases are useless to determine k0.

At the end of the bootstrap step, we have some values of k, which correspond to the
cases in which we have rejected the homogeneity hypothesis. We have taken its 80%
percentile as k0 to be used in DT,k0 to test the homogeneity in the sample at hand, Z.
Notice that the value rb is fixed at 1.2 in every case, independently of when the null
hypothesis or the alternative holds.

In Table 3.1 we show the rate of rejections under the exposed conditions when we carry
out the test for dimension p = 2 at the significance level α = .05. The reason for doing
the simulations only in dimension p = 2 is that our goal is to compare the results of the
random Tukey depth with those of the Tukey depth, which can only be computed quite
quickly when p = 2. Thus, the table also includes, between parenthesis, the rejection rates
when the random depth is replaced by the Tukey depth computed using 1,000 directions
uniformly scattered on the upper halfspace.

The distributions used in the simulations are the 2-dimensional standard Gaussian,
and the double exponential and Cauchy with independent marginals. We have centered
the samples from the Gaussian distribution in mean, and in component-wise median the
samples from the double exponential and the Cauchy distributions. We have considered
the values r = 1, 1.2, 2, and n1 = n2 = n with n ∈ {20, 30, 100}, and have done 5,000
simulations for each combination of distribution, sample size and r.

As explained, the values of k depend on the samples we have each time. However,
the medians of the obtained values along the repetitions have been k = 2, for all three
distributions for sample size n = 100 and respectively k = 3 for n = 30 and k = 4 for
n = 20, thus reinforcing the impression provided by Figure 1 that k should be well below
10 for dimension p = 2.

In [11] previous ideas are also applied to check the homogeneity between K sam-
ples, K > 2. The problem is the following. Let {X1,1, ..., X1,n1}, ..., {XK,1, ..., XK,nK

} be
random samples obtained, respectively, from the distributions P1, ..., PK and let us as-
sume that there exist r1, ..., rK−1 > 0 such that the random vectors r1X1,1, ..., r1X1,n1 ,...,
rK−1XK−1,1, ..., rK−1XK−1,nK−1

, XK,1, ..., XK,nK
are identically distributed.

We are interested in testing the following hypotheses:

H0 : ri = 1, i = 1, ..., K − 1 (all scales are the same)

Ha : there exists ri 6= 1 (scales are different).

If we center each sample separately, join all the observations in a single sample, compute
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the depths of all the points and transform those depths in ranks, then, we can apply the
Kruskal-Wallis test [9] to check if there are lacks of homogeneity between the ranks in
each sub-sample.

Table 3.1 Rate of rejections in 5,000 simulations using the random Tukey depth (between
parenthesis, the rate with DT ) for the considered distributions, sample sizes and values of
r. The dimension is p = 2. The significance level is .05.

Distribution
Sample size Scale factor Cauchy Gaussian D. exponential

n = 20 r = 1 .051 (.055) .061 (.055) .049 (.057)
r = 1.2 .124 (.125) .254 (.240) .177 (.174)
r = 2 .547 (.539) .959 (.960) .819 (.824)

n = 30 r = 1 .056 (.049) .051 (.060) .055 (.050)
r = 1.2 .143 (.146) .314 (.322) .217 (.223)
r = 2 .706 (.704) .995 (.995) .938 (.943)

n = 100 r = 1 .047 (.048) .054 (.049) .053 (.048)
r = 1.2 .290 (.291) .664 (.725) .473 (.495)
r = 2 .992 (.991) 1 (1) 1 (1)

We have carried out a simulation study applying previous procedure to the Tukey depth
and to the random Tukey depth in the 2-dimensional case with Gaussian distributions,
K = 3 and sample sizes n1 = n2 = n3 = n, where n ∈ {20, 30}. We have carried out
5,000 replications in each case at the significance level α = .05.

To select k, we have applied bootstrap in a similar way to that employed previously.
The only difference is that now we have taken three bootstrap samples and that, after
centering, we have multiplied just one of them by rb = 1.2. On the other hand, the Tukey
depth has been computed similarly to the previous case.

Results are shown in Table 3.2, where the results obtained applying the same procedure
with the Tukey depth appear between parenthesis.

In this case, the median of k have been 4 for all cases with n = 20 and for r1 = r2 =
1, 1.2 and sample size n = 30. It was 3 when n = 30 and r1 = r2 = 1.2, r1 = 2, r2 = 1.2.

Table 3.2 Rate of rejections in 5,000 simulations using DT,k (between parenthesis the
rate with DT ) to test the homogeneity in three samples of Gaussian distributions with
independent, identically distributed marginals and the exposed values of r. The dimension
is p = 2. The significance level is .05.

Sample sizesCovariance matrices
n = 20 n = 30

r1 = r2 = 1 .05 (.05) .05 (.06)
r1 = r2 = 1.2 .15 (.15) .20 (.21)

r1 = 2, r2 = 1.2 .89 (.89) .98 (.98)
r1 = r2 = 2 .96 (.97) 1 (1)
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The results of both studies in this subsection are quite encouraging, because there
are no important differences between the rejection rates with both depths in spite of the
comparatively low number of directions employed to compute the random Tukey depth.

3.2 Computational time

We end this section by paying some attention to the required computational time to
compute the random Tukey depth. As a comparison we have selected the time to compute
the Mahalanobis depth, which is one of the quickest depths according to Table 1 in [15].

In Table 3.3 we present the mean time, obtained from 200 simulations, employed to
compute the random Tukey and Mahalanobis depths for all points in a sample with the
shown sizes and dimensions. The numbers of employed random directions correspond
with those obtained in Figure 1.

To make a reliable comparison between the computational times it is necessary to
compare the time needed to compute the random Tukey depth on a sample with the one
to compute the Mahalanobis depth on the same sample. The problem is, the first depth
to be computed may have an advantage as the RAM memory may be cleaner than when
the second depth is computed. In order to avoid this, we have computed the random
Tukey depth first 100 times and the Mahalanobis depth first 100 times.

The computations have been carried out on a computer Xserve G5, PowerPC G5 Dual
2.3 GHz and 2Gb of RAM memory.

Table 3.3 Time, in seconds, to compute the random Tukey and the Mahalanobis depths
of all points in a sample with size n taken from a standard Gaussian distribution.

Random SampleDimension Random Tukey Mahalanobis
vectors size

p = 2 k = 10 n = 25 4.349 · 10−4 .0014
n = 100 6.322 · 10−4 .0024

p = 8 k = 60 n = 50 .0047 .0017
n = 100 .0105 .0028

p = 50 k = 250 n = 100 .1153 .0047
n = 500 .5596 .0158

It can be observed that the time needed to compute the random Tukey depth is ac-
ceptable in every case. Moreoever, it is better than the one needed to compute the
Mahalanobis depth for low dimensions like p = 2, of the same order for p = 8 and worse
for dimensions around 50.

4 Functional random Tukey depth. Functional classification

An interesting possibility of the random Tukey depth is that it can be straightforwardly
extended to functional spaces. The only requirement of the main result in [4] is that the
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sample space be a separable Hilbert space. Thus, in this section we will assume that we
are considering a distribution P defined on this kind of space.

To fix ideas, we will handle the space, IH, of square-integrable functions in a given
interval which, after re-scaling, we can assume to be [0, 1]. Thus, IH = L2[0, 1] and given

f, g ∈ IH we have that 〈f, g〉 =
∫ 1

0
f(t)g(t)dt and ‖f‖ = 〈f, f〉1/2.

The random Tukey depth is not a statistical depth in the functional case. The proofs
for items 1-3 in Definition 2.2 (with obvious modifications such as replacing matrices with
linear operators) are the same as in Theorem 2.3. However, the following example shows
that item 4 fails in this case even for statistical convergences.

Example 4.1 Let {δn}n ⊂ R+ with limn δn = 0. Let xn ∈ IH such that xn(t) = 1/δn if

t ∈ [0, δn) and zero otherwise. Obviously, ‖xn‖ = δ
−1/2
n and, then limn ‖xn‖ = ∞.

Let us take ν equal to the distribution of the standard Brownian motion and let P = ν.
Obviously Theorem 4.1 in [4] works with this distribution.

If X is a random element with distribution ν, then 〈xn, X〉 converges to zero in prob-
ability because

E|〈xn, X〉| = E

∣∣∣∣∫ δn

0

X(t)δ−1
n dt

∣∣∣∣
≤

∫ δn

0

E|X(t)|δ−1
n dt =

∫ δn

0

(2t/π)1/2δ−1
n dt ≤ (2δn/π)1/2, (6)

where the last equality holds because the distribution of X(t) is N(0, t). Thus, if v1, ..., vk ∈
IH are randomly chosen with distribution ν, we have that

lim
n

D1(< vi, xn >,P ◦ Π−1
vi

) = D1(0, P ◦ Π−1
vi

) = max
x

D1(x, P ◦ Π−1
vi

) = 2−1,

because P ◦ Π−1
vi

is a centered Gaussian distribution.

Thus, in this setting the following results hold. Their proofs appear in the Appendix.

Theorem 4.2 The random Tukey depth is a bounded and non-negative mapping which
satisfies items 1, 2 and 3 in Definition 2.2.

Theorem 4.3 Let v1, ..., vk ∈ IH. Let P be a probability distribution on IH, and let {Pn}
be a sequence of empirical distributions computed on a random sample taken from P which
is independent of the vectors v1, ..., vk.

Then, conditionally on v1, ..., vk, we have that

sup
x∈Rp

|DT,k(x, Pn)−DT,k(x, P )| → 0, almost surely [P].

Concerning the number of random directions to take, we follow the same procedure as
in the finite dimensional case, i.e., the choice of method depends on the kind of problem
at hand, for instance with bootstrap or cross-validation.
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However, in this setting we have an additional problem. In the finite dimensional case,
it seems reasonable to choose the random directions employing the uniform distribution
on the sphere because of its invariance properties. Regrettably, in infinite dimensional
spaces, there is no distribution with those nice properties, which makes the selection of
the random directions more arduous.

An interesting possibility is to choose the distribution depending on the problem. This
would lead designing a procedure which, given the problem, selects a distribution with
some optimality properties.

In the subsection which follows we only try to give some hints as to what results
could be obtained with a complete development of the theory, since the work required
to do this exceeds the limits of this paper. There, we have taken first ν equal to the
distribution of the standard Brownian motion. Then, we have tried some modifications
of this distribution, which have improved the behavior of the procedure. Moreover, since
those modifications are, in fact, parameter-dependent, we have chosen the values of the
parameters with cross-validation.

4.1 Application to classification

Here we study a real example. To compare our depth with some other functional depth,
we have repeated the classification problem carried out in [12], where the authors handle
a data set consisting of the growth curves of a sample of 39 boys and 54 girls, the aim
being to classify them, by sex, using just this information. Heights were measured in me-
ters at 31 times in the period from one to eighteen years. The data were taken from the file
growth.zip, downloaded from ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab. We
represent the data in Figure 4.1.
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Figure 2: Growth curves of 54 girls (left-hand side) and 39 boys (right-hand side) measured 31 times
each between 1 and 18 years of age.

Additionally, we have compared our results with those obtained with some other proce-
dures. We have chosen two functional ones: the k-NN, and a kernel procedure to estimate
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the probability that an observation belongs to a group conditional to the height curve. In
the last procedure, we have employed two kernels, the indicator of the interval [0, 1] and
the quadratic kernel.

Since we only have 31 observations for each individual, we can also consider the data
as multidimensional ones and so, it is of some interest to make a comparison with a
multidimensional classification procedure. To this end, we have used the Random Forest
procedure.

It is well known that when handling this kind of data, it is useful to consider not only
the growth curve but also accelerations of height (see, for instance, [16]). However, since
we are mainly interested in comparing our results with those obtained in [12], where only
growth curves were considered, here we will do the same.

The classification procedure can be extended to an arbitrary number of groups, but,
merely to keep the notation as simple as possible, we will assume that we have just two
groups. Thus, let us assume that we have two samples X1, ..., Xn and Y1, ...., Ym in IH
selected from two populations and that we are interested in classifying another curve
Z ∈ IH in one of those groups using a depth D to be chosen later. Three classification
methods are proposed in [12]:

1.- Distance to the trimmed mean (Mα,β)
Compute the depths of the points in the sample X1, ..., Xn. Choose α ∈ [0, 1). The

α-trimmed mean of this sample, µα(X), is the mean of the n× (1− α) deepest points.
Given β ∈ [0, 1), compute similarly µβ(Y ), the β-trimmed mean of the sample Y1, ...., Ym.
Now, we classify Z in the first group if

‖Z − µα(X)‖ < ‖Z − µβ(Y )‖.

Otherwise, we classify Z in the second group.

2.- Weighted average distance (AM)
In some sense, in method M, each group is represented by its trimmed mean. Here,

we compute the distance between Z and the group as a weighted mean of the distances
between Z and the members of the group where the weights are the depths of the points.

Thus, we would classify the function Z in the first group only if∑n
i=1 ‖Z −Xi‖DX(Xi)∑n

i=1 DX(Xi)
<

∑m
j=1 ‖Z − Yj‖DY (Yj)∑n

j=1 DY (Yj)
, (7)

where the subscripts in DX and DY mean that the depths are computed with respect to
the empirical distribution associated to the corresponding sample.

3.- Trimmed weighted average distance (TAM)
In the AM method, the result of the classification could be affected by the number of

elements in each sample if n 6= m. The solution for this consists in taking a third value
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l ≤ min(n,m) and replacing (7) by∑l
i=1 ‖Z −X(i)‖DX(X(i))∑l

i=1 DX(X(i))
<

∑l
i=1 ‖Z − Y(i)‖DY (Y(i))∑l

i=1 DY (Y(i))
,

where X(1) is the deepest point in the X-sample, X(2) is the second deepest point in the
X-sample,... and similarly for the Y -sample. When handling this procedure, we take
l = min(n,m).

We have also included two additional procedures not considered in [12]:

4.- Maximum Depth (MD)
This has been used, for instance, in [5]. It consists, simply, of the following: If we try

to classify the observation Z, then add it to the two training samples, compute its depth
in each one and classify this point in the sample in which its depth is greater.

5.- Mixture (MiA and MiT)
The idea is to try to compensate the misclassifications of one method with the remain-

ing ones. To do this, we apply to a given observation all previous methods and classify it
in the group where it has been classified most often.

There is a technical problem because we have four methods and even cases may occur.
Taking into account that the procedures AM and TAM are very close, we have decided to
employ only one of them. And, to avoid biases in the selection we have, in fact, divided
this method in two: the method MiA (resp. MiT) classifies the new observation in the
group which obtain two votes between the procedures Mα,β, AM (resp. TAM) and MD.

In [12] the authors consider three possibilities to split the sample into training and val-
idation sets. In order to shorten the exposition we only present the results corresponding
to the leave-one-out cross-validation setting.

Regarding the selection of the distribution ν used to select the directions to project,
we have tried several procedures. The first one is to choose ν as the distribution of
the standard Brownian motion. The remaining possibilities are intended to try to take
advantage of the differences which appear between the training samples.

To do this, we first compute the functions containing the point-wise medians of the
trajectories in both training samples. I.e., for every t ∈ [0, 1] we compute

mX(t) = median{X1(t), ..., Xn(t)}, and mY (t) = median{Y1(t), ..., Ym(t)}.

Now, we take for ν the distribution of the solution of the following stochastic differential
equation

Sa,c(0) = c and dSa,c(t) = |mX(t)−mY (t)|adB(t),

where B is a standard Brownian motion. Here we choose a ∈ {0, 1}. In the first case,
the difference between the functions mX and mY has no influence on ν. The constant c
specifies the initial value for the solution. We have tried the values c = 0, 1, 5. The reason
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for introducing c is that the Brownian motion always starts at 0 and is continuous, thus
erasing the differences in the early states of the process. In particular, the distribution of
S0,0 is the standard Brownian motion.

Given a, c, to simulate the random trajectories, first we have taken the values ti =
i/31, i = 1, ..., 31 in [0, 1] because we have only 31 measurements for each growth curve.
Then we have defined

Sa,c(t1) = c

Sa,c(ti) = Sa,c(ti−1) + |mX(ti)−mY (ti)|aZi, i = 2, ..., 31,

where Zi are independent, identically distributed N(0, 1/31) random variables.
Concerning k, the simulations in Section 3 suggest that not too high values for k are

required. In particular, the results which follow have been obtained by selecting k between
1 and 100. In spite of this value perhaps looking too low, we have repeated the process
replacing 100 by 1000 and the results have been similar. The right value of k has been
obtained by leave-one-out cross validation.

Let us explain, briefly, how the whole process continues. Note first that we have a
sample with size 93. In order to check our procedure, we have repeated 1,000 times the
following: for each observation in the sample, we consider the training sample composed
by the remaining 92 observations. Then, we have generated at random 100 vectors with
each of the distributions of the random variables Sa,c for a = 0, 1 and c = 0, 1, 5, which
gives 6 different samples of random directions with size 100 each.

First, we have focused our attention on the S0,0 distribution. Here we only have to select
the value of k. This value is chosen by leave-one-out cross-validation. This procedure is
called S0,0 in what follows.

Then, we have applied the procedure, allowing variations in a and c. Here we have
chosen, also using leave-one-out cross-validation, the best combination of k, a and c. This
is the procedure denoted as Sa,c in what follows.

4.1.1 Comparison with the results in López-Pintado, S. and Romo, J., 2006.

In this section we compare our depth with those proposed in [12]. To do this, we have
repeated the study [12] with only three differences:

1. Most importantly, we have replaced the functional depths handled there by the ran-
dom Tukey depth.

2. In [12] the authors consider the curves as elements in L1[0, 1], which is not possible
here, because we need a separable Hilbert space. As stated, we take IH = L2[0, 1].

3. In [12], the authors smoothed the original data using a spline basis. We have skipped
this step because it did not seem necessary to us.

The results of the comparison appear in Table 4.4, which includes the obtained failure
rates using the methods proposed in [12] when applied to the random Tukey depth and to
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the depths proposed in [12]. Thus, only the classification methods Mα,β, AM and TAM
are employed here. Moreover, we have chosen α = β = 0.2 as done in [12] .

The last three columns contain the error rates obtained with the depths handled in [12].
They are the band depth determined by three different curves (DS3), by four different
curves (DS4) and the generalized band depth (DGS). Their values have been taken from
Tables 1-3 in [12]. The first column includes the failure rates when using the distribution
of S0,0 and the second one when using the distribution of Sa,c, a = 0, 1, c = 0, 1, 5 where
a and c are chosen with cross-validation.

Table 4.4 Rate of mistakes when classifying the growth curves by sex for the shown
methods and depths.

Classification Random Tukey Depths proposed in [12]
method S0,0 Sa,c DS3 DS4 DGS

Mα,β .1368 .1339 .1828 .1828 .1613
AM .1398 .1248 .2473 .2473 .1935

TAM .1538 .1359 .2436 .2436 .1690

According to Table 4.4, the random Tukey depth provides better results than those
depths proposed in [12] and even better when parameters a, c in Sa,c are chosen with
cross-validation. The medians of the number of random vectors used have been 1 for each
of the three methods with the standard Brownian motion and 2 for each of the methods
with Sa,c.

4.1.2 Comparison with other classification procedures

Here we compare our results with other classification methods. Concerning the random
Tukey depth, we use all methods: Mα,β, AM, TAM, MD, MiA and MiT. We combine
them with the two methods to select the random directions which we have presented:
methods S0,0 and Sa,c, where the values of a and c are chosen by cross-validation. The
results for methods Mα,β, AM and TAM appear in Table 4.4 and in Table 4.5 for MD,
MiA and MiT. The median of the number of employed random directions is 20 for the
MD method when combined with S0,0 and 10 when combined with Sa,c.

The conclusion is that the MD method is slightly better than Mα,β, AM and TAM and
that the combined methods provide better results than each method alone.

Table 4.5 Rate of mistakes when classifying the growth curves by sex for the shown meth-
ods and the random Tukey depth.

Classification method S0,0 Sa,c

MD .1255 .1131
MiA .1024 .0976
MiT .1010 .0972
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One possibility which we have not pursued is to modify α and β in Mα,β. The reason
for this is that, in this section, we are mostly interested in comparing our depth with those
proposed in [12]. However, we have tried the values α = 1/38 and β = 1/53 (I.e., we look
for the deepest point in each training sample and classify the point under consideration
according to its closeness to them) lowering the rate of mistakes to around .105 for the
Mα,β method, which has given rised to rates even slightly below .09 when joined in the
MiA and MiT methods.

The next step is to classify the same data using a multidimensional procedure (the
random forest) and three functional ones (the k-NN and two kernel methods).

As for the random forest, we only wish to state here that this is a procedure which
is a combination of tree predictors in which each tree is determined by the values of a
random vector which has the same distribution for all the trees in the forest. See [3] for
more details. We have employed a random forest with 100 trees.

Concerning the k-NN method (see, for instance, [2]), we have used three possibilities
for selecting the number of nearest neighbors. The first two have consisted in fixing k = 1
and 3 respectively. In the last one we have chosen k between 1, 3, ..., 91 with leave-one-out
cross-validation. It so happened that in the last possibility, the chosen value was 3 every
time. This explains that the rates of failures were the same in both cases (see Table 4.6).

Finally, we have applied two kernel methods (see [1] and [7]). The idea is that, if
we consider a new random variable Z ∈ {0, 1} which contains the group to which the
observation belongs, and x0 is the observed curve, it is possible to apply a kernel method
to estimate the conditional probability P[Z = i/X = x0] for i = 0, 1 and, then, to classify
the observation in the group in which this probability is highest.

The first kernel tried is K(u) = 1[0,1](u) and the second one is the quadratic one,
K(u) = (1− u2)1[0,1](u). The selection of the window was accomplished as follows: given
the training sample X1, ..., X92, we have considered the values

hm = min{‖Xi −Xj‖, i 6= j, i, j = 1, ..., 92},
hM = max{‖Xi −Xj‖, i, j = 1, ..., 92}.

We have chosen the window applying leave-one-out cross-validation to the grid of values
hm + i(hM − hm)/50, i = 0, 1, ..., 50. The rates of mistakes appear in Table 4.6.

Table 4.6 Rate of mistakes when classifying the growth curves by sex using cross valida-
tion for the shown methods.

k-NN Kernel
Random Forest

1-NN 3-NN cross-val. Indicator Quadratic
.0968 .0753 .0323 .0323 .0645 .0430

Therefore, the rate of mistakes of both random Tukey procedures is well above those
obtained with the k-NN and the kernel method. However, it is similar to the one obtained
with Random Forests.
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5 Discussion

We introduce the random Tukey depth, which can be considered as a random approxima-
tion of the Tukey depth. The new depth is interesting because of the little effort required
in its computation and because it can be extended to cover Hilbert valued data.

This depth, in the finite dimensional case is, in fact, a depth according to the definition
in [18]. In the infinite dimensional case, only the first three properties of a depth are
fulfilled. Moreover, both in the finite as well as in the infinite dimensional settings this
depth can be consistently estimated from a random sample.

The interest of the random Tukey depth lies in the fact that by taking only a few
one-dimensional projections, it is possible to obtain similar, or even better, results than
those obtained with more involved depths, even in the infinite dimensional setting. The
number of required projections is surprisingly low, indeed.

This is shown in the comparisons with some other depths that we have carried out.
Those studies do not show relevant differences between the results obtained with the
considered depths and with the random Tukey depth. Thus, we conclude that, at least
under the considered conditions, the random Tukey depth is an alternative which is worth
considering because of the little time required to compute it.

However, when this depth is applied to classification problems, the results are similar
to those obtained with random forests but worse than those obtained with k-NN or kernel
methods. But, the improvement which appears between the first and the second row in
Table 4.5, added to the one obtained when changing α and β in the Mα,β procedure,
makes us relatively optimistic about the results which could be obtained if an optimal
procedure to select the distribution ν were applied.

There exists the possibility to extend the results of this paper to more general spaces
due to the generalization of the main results in [4], which appears in [6].

Appendix. The proofs

The proofs are identical for finite or infinite dimensional spaces (excepting, of course, the
proof of item 4 in Theorem 2.3, which only works for the finite dimensional case). Then,
in this appendix the symbol X will refer here, indistinctly, to Rp or IH.

Given a set B ⊂ X , Bc and ∂B will respectively be their topological complement and
boundary. If x, v ∈ X and P ∈ P , we will denote

SP
x,v :=

{
{y : 〈y − x, v〉 ≤ 0} if P{y : 〈y − x, v〉 ≤ 0}] ≤ P [y : 〈y − x, v〉 ≥ 0]

{y 〈y − x, v〉 ≥ 0} otherwise
.

To simplify, if there is no risk of confusion, the super-index P will be omitted. With
this notation, we have that D1(Πv(x), P ◦ Π−1

v ) = P (Sx,v).

Proof of Theorems 2.3 and 4.2. Clearly, the random Tukey depth is bounded and
nonnegative because it is a minimum of probabilities. To check the remaining properties,
let ν be an absolutely continuous distribution on X , k > 0 and P ∈ P .
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1. Affine invariance. It is straightforward due to the linearity of the projections.

2. Maximality at center. First remember that a distribution P is halfspace symmetric
about θ if P [H] ≥ 1/2 for every closed halfspace H containing θ. Assume that θ ∈ X is
the center of P , and that there exists x ∈ X satisfying that

DT,k(x, P ) > DT,k(θ, P ). (8)

By definition, there exists v ∈ {v1, . . . , vk} such that DT,k(θ, P ) = D1(Πv(θ), P ◦Π−1
v ) =

P (Sθ,v) ≥ 1/2, due to the halfspace symmetry. Thus, from (8) we get

P (Sx,v) > 1/2. (9)

We have three possibilities for the sets Sx,v and Sθ,v. The first one is that Sx,v ⊆ Sθ,v.
But, then DT,k(x, P ) ≤ P (Sx,v) ≤ P (Sθ,v) = DT,k(θ, P ) which contradicts (8).

The second one is Sθ,v ⊂ Sx,v. From here and P (Sθ,v) ≥ 1/2, we obtain that P (Sc
x,v ∪

∂Sx,v) ≤ 1/2. By (9), min(P (Sc
x,v ∪ ∂Sx,v), P (Sx,v)) = P (Sc

x,v ∪ ∂Sx,v), which contradicts
the definition of Sx,v.

The final possibility is that Sθ,v ⊂ Sc
x,v. Thus, P (Sc

x,v) ≥ 1/2. Therefore, by (9)
1 = P (Sx,v) + P (Sc

x,v) > 1.

3. Monotonicity relative to deepest point. Let assume that P has a deepest point θ and
there exist x ∈ X and α ∈ [0, 1] with

DT,k(x, P ) > DT,k(θ + α(x− θ), P ). (10)

Obviously, cases α = 0 and α = 1 are not possible. Then, α ∈ (0, 1).
Since θ is the deepest point, we have that

DT,k(θ, P ) ≥ DT,k(y, P ), for all y ∈ X . (11)

Let v ∈ {v1, ..., vk} such that DT,k(θ + α(x − θ), P ) = P (Sθ+α(x−θ),v). From (10) and
(11) it is inferred that

P (Sθ,v) > P (Sθ+α(x−θ),v). (12)

Since α ∈ (0, 1), we have that the point θ + α(x− θ) lies in the open segment joining
the points x and θ. Then, from (11) and (12), following a reasoning similar to the final
part of the proof of Statement 2, we have that Sx,v ⊂ Sθ+α(x−θ),v. Thus,

DT,k(θ + α(x− θ), P ) = P (Sθ+α(x−θ),v) ≥ P (Sx, v) ≥ DT,k(x, P ),

which contradicts (10).

4. Vanishing at infinity (only for Theorem 2.3). We will show this property for the case
in which ν is not a probability, but the Lebesgue measure. The proof for probabilities
follows the same steps till statement (15) below. From this point on, only some additional
technicalities are required.
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Let ε > 0. Since limH→∞ P{y : ‖y‖ ≤ H} = 1, we have that there exists Hε > 0 such
that P{y : ‖y‖ ≤ Hε} > 1− ε.

Furthermore, if v ∈ Rp then Π−1
v [−Hε‖v‖, Hε‖v‖] ⊃ {y : ‖y‖ ≤ Hε}. Thus, P ◦

Π−1
v [−Hε‖v‖, Hε‖v‖] > 1− ε, for all v ∈ Rp. In consequence, if we have

sup
(
D1(−Hε‖v‖, P ◦ Π−1

v ), D1(Hε‖v‖, P ◦ Π−1
v )

)
< ε, for all v ∈ Rp. (13)

Let M > 0 and let x ∈ Rp with ‖x‖ ≥ M . We have that

νk
{
(v1, ..., vk) ∈ (Rp)k : DT,k(x, P ) < ε

}
≥ νk

{
(v1, ..., vk) ∈ (Rp)k : DT,1(x, P ) < ε

}
= ν {v ∈ Rp : DT,1(x, P ) < ε} , (14)

where we assume that DT,1 is computed using v1.
If v ∈ Rp satisfies that |〈x, v〉| ≥ Hε‖v‖, then by (13), it happens that D1(Πv(x), P ◦

Π−1
v )) < ε. Therefore, from (14),

νk
{
(v1, ..., vk) ∈ (Rp)k : DT,k(x, P ) < ε

}
≥ ν {v ∈ Rp : |〈x, v〉| ≥ Hε‖v‖}

≥ ν

{
v ∈ Rp :

| < x, v > |
‖x‖‖v‖

≥ Hε

M

}
(15)

= ν

{
v ∈ Rp :

| < e1, v > |
‖v‖

≥ Hε

M

}
,

where (15) comes from ‖x‖ > M . In the last equality, e1 denotes the first element in a
fixed orthonormal base of Rd and the equality holds because ν is rotationally invariant.
Therefore, from this chain we have that

inf
x:‖x‖≥M

νk
{
(v1, ..., vk) ∈ (Rp)k : DT,k(x, P ) < ε

}
≥ ν

{
v ∈ Rp :

| < e1, v > |
‖v‖

≥ Hε

M

}
,

and the proof ends because, trivially,

lim
M→∞

ν

{
v ∈ Rp :

| < e1, v > |
‖v‖

≥ Hε

M

}
= 1.

•

Proof of Theorems 2.4 and 4.3. Let k > 0 and v1, ..., vk ∈ X , which will remain
fixed during the proof. Let P be a probability distribution on X , let x1, ..., xn ∈ X be a
random sample taken from P and let Pn be the associated empirical distribution.

Let v ∈ {v1, ..., vk}. It is obvious that Πv(x1), ..., Πv(xn) is a random sample taken
from the distribution P ◦ Π−1

v and that the empirical distribution associated to those
projections coincide with Pn ◦ Π−1

v . Moreover, P ◦ Π−1
v is a distribution on the real line

and, then, the Glivenko-Cantelli theorem gives that

sup
y∈R

sup
(∣∣Pn ◦ Π−1

v (−∞, y]− P ◦ Π−1
v (−∞, y]

∣∣ ,
∣∣Pn ◦ Π−1

v [y,∞)− P ◦ Π−1
v [y,∞)

∣∣) → 0, a.s.
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From here, we obtain that

sup
y∈R

(
|D1(y, Pn ◦ Π−1

v )−D1(y, P ◦ Π−1
v )|

)
→ 0, a.s. (16)

Therefore,

sup
x∈X

|DT,k(x, Pn)−DT,k(x, P )|

= sup
x∈X

| min
i=1,...,k

D1(Πvi
(x), Pn ◦ Π−1

vi
)− min

i=1,...,k
DT,k(Πvi

(x), P ◦ Π−1
vi

)|

≤ sup
x∈X ,i=1,...k

|D1(Πvi
(x), Pn ◦ Π−1

vi
)−D1(Πvi

(x), P ◦ Π−1
vi

)|

= sup
y∈R,i=1,...k

|D1(y, Pn ◦ Π−1
vi

)−D1(y, P ◦ Π−1
vi

)|,

which converges a.s. to zero because of (16). •
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