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Abstract

For a given trimming level α ∈ (0, 1) an α−trimmed version, P ∗, of a probability P is a new
probability obtained by re-weighting the probability of any Borel set, B, according a positive weight
function, f ≤ 1

1−α
, in the way P ∗(B) =

∫
B

f(x)P (dx).
If P, Q are probability measures on an euclidean space, we consider the optimization problem

of obtaining the best L2−Wasserstein approximation between say a fixed probability and trimmed
versions of the other, say trimmed versions of both probabilities. These best trimmed approximations
naturally lead to new perspectives in the theory of Mass Transportation, where a part of the mass
could be not necessarily transported. Since optimal transportation plans are not easily computable,
we provide theoretical support for Monte-Carlo approximations, through a general consistency result.
As a remarkable and unexpected additional result, with important implications for future work, we
obtain the uniqueness of the optimal solution. Notice that such solution involves an optimal map
T transporting some trimmed version P ∗ of P to some other Q∗ of Q, thus for any point x in
the support of P the weight function associated to P ∗ allows to partially or completely avoid the
consideration of x in the transport. Our results show that in fact only the non-trimmed points
(verifying f(x) = 1

1−α
) are transported, while the partially trimmed points (verifying 0 < f(x) < 1

1−α
)

must remain untransported by T .
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1 Introduction

This paper considers a modified version of the classical Mass Transportation Problem
(MTP in the sequel). Broadly speaking, the MTP can be formulated as trying to relocate
a certain amount of mass with a given initial distribution to another target distribution
in such a way that the transportation cost is minimized. This seemingly simple problem
has a long history which dates back to Monge. The initial formulation of the problem
can be summarized in present-day language as follows. Let P1, P2 be two probability
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C02-01 and 02 and by the Consejeŕıa de Educación de la Junta de Castilla y León.
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measures on the Euclidean space Rk with norm ‖ · ‖ and Borel σ−field β. Consider the
set, TT (P1, P2), of maps transporting P1 to P2, that is, the set of all measurable maps
T : Rk → Rk such that, if the initial space is endowed with the probability P1, then the
distribution of the random variable T is P2. Then Monge’s problem consists of finding a
transportation map, T0, from P1 to P2 such that

T0 := arg minT∈TT (P1,P2)

∫
Rk
‖x− T (x)‖P1(dx).

A later, fundamental generalization of this problem is the so-called Kantorovitch-Rubinstein-
Wasserstein (KRW) formulation which consists in finding

W2
2 (P1, P2) := inf

π∈M(P1,P2)

{∫
‖x− y‖2dπ(x, y)

}
, (1)

where M(P1, P2) is the set of finite, positive measures on β × β with marginals P1 and
P2.

Apart from the consideration of different cost functions, the main difference between
the Monge and the KRW problem is that the later is not related to transportation maps.
We mean that in the KRW formulation masses sharing the same initial position may
end up in different locations. The KRW minimization allows also to consider the L2-
Wasserstein distance, W2(P1, P2), between probability measures with finite moment of
order two (see e.g. Bickel and Freedman [3] for details and properties ofW2). Remarkably,
the Monge and the KRW formulations turn out to be equivalent under some smoothness
assumptions.

Existence, uniqueness or regularity of mappings T ∈ TT (P1, P2) satisfying
∫
Rk ‖x −

T (x)‖2dP1(x) = W2
2 (P1, P2) are problems that have attracted the attention of mathemati-

cians from very different points of view. Fluid Mechanics, Partial Differential Equations,
Optimization, Probability Theory and Statistics are in the very broad range of applica-
tions of this and related MTP’s justifying the interest and also the different technical
approaches for their study. To avoid a formidable amount of references we refer to the
books by Rachev and Rüschendorf [16] and by Villani [19] for an updated account of
the interest and implications of the problem, as well as to recent works illustrating the
permanent actuality of the topic, as Ambrosio [2], Caffarelli et al. [4], or Feldman and
McCann [12].

Here we will analyze a variant of the KRW problem involving incomplete mass trans-
portation. Let us introduce it through a motivating example. Gangbo and McCann
consider in [13] the problem of identifying a leaf l0 by comparing it with a catalog. They
analyze the approach based on minimizing the transportation cost between the uniform
distribution on the outline of l0 and its couterparts in the catalog. To avoid technicali-
ties, we assume that we are dealing with black and white pictures of l0 and the leaves in
the catalog, rather than their outlines. We identify the grey-levels with the density of a
measure, compute the associated L2-Wasserstein distances and identify l0 with the closest
leaf in the catalog.

Now, let us assume that, as it often happens, the picture of l0 is corrupted at some spots.
It seems reasonable to delete those spots before making the comparisons. However, it is
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not always easy to tell a corrupted spot from a distinctive feature. A reasonable procedure
would be to transport only a part of the initial mass, dismissing a small fraction, to
minimize the transportation cost. If the leaves in the catalog are also corrupted by noise,
then we should also allow some fraction of the target picture to remain unmatched.

In a natural way we end up in the problem of dismissing a (usually small) fraction of
the masses represented by P1 and P2. This process resembles the trimming procedures
employed in Statistics where, very often, outlying observations have to be deleted.

Trimming procedures are a common practice in Statistics. In the general setting con-
sidered here, the more suitable approach seems to be the one in Gordaliza [14]. If P(Rk)
denotes the set of all Borel probability measures on Rk, the definition of a trimming of a
probability which we employ here is the following:

Definition 1.1 Given 0 ≤ α ≤ 1 and P ∈ P(Rk), we say that P ∗ ∈ P(Rk) is an α-
trimming of P if P ∗ is absolutely continuous with respect to P , and dP ∗

dP
≤ 1

1−α
. The set

of all α-trimmings of P will be denoted by Rα(P ).

This definition of trimming is more general than other usual alternatives in that it
allows points to be partially trimmed. Cascos and López-Dı́az [6] and [7] and our work
[1] analyze some properties of these trimmings.

With this definition, the above outlined problem can be stated as follows. Consider
P1, P2 ∈ P(Rk) with finite second order moment. Given α ∈ (0, 1), we define the following
measures of dissimilarity between P1 and P2 at level α:

T1(P1, P2) := min
P ∗2 ∈Rα(P2)

W2(P1, P
∗
2 ),

T2(P1, P2) := min
P ∗1 ∈Rα(P1),P ∗2 ∈Rα(P2)

W2(P
∗
1 , P ∗

2 ),

Note that P1 and P2 do not play symmetric roles in T1 in applications. For instance,
P2 plays the role of l0 and P1 the role of one of the standards in the catalog in the case
of a perfect, noise-free catalog. In the case of a noisy catalog T2 is the right choice.

An interesting feature of T1 and T2 is that the noisy spots do not have to be fixed in
advance. In fact, the only requirement is to take α as an upper bound of the proportion of
corrupted spots in the pictures; then, the procedure automatically determines the spots
in the picture being noise by minimizing the transportation cost.

An analysis of similarity of distributions based on the comparison of trimmed versions
of them has recently been developed in Álvarez-Esteban et al [1]. In fact, this paper
can be considered as a generalization of [1]. The novelty of the approach in [1] consists
in considering that two distributions are similar at level α whenever suitable chosen α-
trimmed versions of such distributions coincide. The proposal focused on probability
measures on the real line, and the same trimming pattern on both probabilities (see
precise definitions in Remark 2.5). The measures T1 and T2 can also be employed in this
setting. For instance, let us assume that we have a sample which we suspect that has been
generated from a probability distribution P . If we compute the empirical distribution, Pn,
associated to the sample at hand, then T1(P, Pn) is appropriate to analyze if the sample
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has been obtained from P plus a contamination. In problems where some observations
have been censored, the right measure of closeness is T1(Pn, P ). If both facts are present,
then the measure of choice is T2(Pn, P ). The statistical applications of these measures of
similarity are the object of current research. In particular, the results in this paper are
essential in the design and analysis of a similarity test to be reported soon.

The main results in this paper are given in Section 2. We show that, as in the classical
optimal transportation problem, the MKW and Monge problems are equivalent under
absolute continuity. We also prove the uniqueness of the optimal transportation plan.
From the technical point of view, the most remarkable (and difficult) result concerns the
uniqueness of the best pair of trimmed probabilities solving the corresponding minimiza-
tion problems (Theorems 2.11 and 2.15). Remember that the trimmings that we employe
allow to partially trim some points. In fact Theorem 2.14 shows that only the mass
placed on non-trimmed points is transported, while the mass on partially trimmed points
must remain fixed. Once this work was completed we learned about a recent paper by
Caffarelli and McCann [5] where the problem of transporting a fraction of whole mass is
also considered. Although their motivation and approach are very different, a main goal
of that work is th analysis of the uniqueness of the optimal transportation plan. Our
uniqueness result greatly improves the one obtained there, where disjoint supports for the
initial measures is imposed.

Since there are not general explicit expressions for the solutions of the mutidimensional
KRW problem, it is of primary interest to analize the possibilities of Monte-Carlo approx-
imations and this will be also analyzed in Section 2 where we obtain a simple result that
allows to represent the trimmings of any probability in terms of those of another (see
Corollary 2.4). By handling these representations it is easy to prove the convergence of
trimmings of convergent sequences (Lemma 2.7), which allows to obtain the consistency
of the introduced dissimilarity measures (Theorem 2.17).

Finally Section 3 explores, through an example, the possibilities in descriptive analysis
of probability measures that arise from this approach.

The notation to be employed in this paper is the following. The Lebesgue measure on
the space (Rk, β) will be denoted by `k, while F2(R

k) will denote the set of distributions
in P(Rk) with finite second moment.

Given P, Q ∈ P(Rk), by P � Q we will denote absolute continuity of P with respect
to (w.r.t) Q, and by dP

dQ
the corresponding Radon-Nykodym derivative. By supp(P ) we

will denote the support of P and by P (·|B) the conditional probability distribution given
the set B. With a slight abuse of notation, given P ∈ F2(R

k) and Θ, Θ∗ ⊂ F2(R
k), we

will often denote

W2(P, Θ) = inf
Q∈Θ

W2(P, Q) and W2(Θ, Θ∗) = inf
(P,Q)∈Θ×Θ∗

W2(P, Q).

Unless otherwise stated, the random vectors will be assumed to be defined on the same
probability space (Ω, σ, ν). Weak convergence of probabilities will be denoted by →w and
L(X) will denote the law of the random vector X.

4



2 Trimmings and Best Trimmed Approximations

We begin collecting some notation and properties of trimmed probabilities. A more
detailed analysis can be found in [7]. From the definition of Rα(P ) it is obvious that
P ∗ ∈ Rα(P ) if and only if P ∗ � P and dP ∗

dP
= 1

1−α
f with 0 ≤ f ≤ 1. Thus, the trimmings

that we are handling allow to reduce the weight of some regions of the measurable space
without completely removing them from the feasible set.

The following propositions contain some useful facts about trimmings that can be easily
obtained (see also [7]).

Proposition 2.1 For any probability measure, P ∈ P(Rk),

(a) If α < 1 then Rα(P ) is compact for the topology of weak convergence.

(b) If α < 1, {Pn}n in P(Rk) is a tight sequence and P ∗
n ∈ Rα(Pn) for every n, then

{P ∗
n}n is tight. Moreover, if Pn →w P and P ∗

n →w P ∗, then P ∗ ∈ Rα(P ).

Proposition 2.2 Let Q ∈ P(Rk). If T transports Q to P , then

Rα(P ) =
{
P ∗ ∈ P(X , β) : P ∗ = Q∗ ◦ T−1, Q∗ ∈ Rα(Q)

}
.

PROOF.- If α = 1 and Q∗ is any probability absolutely continuous with respect to Q,
then P ∗ := Q∗ ◦ T−1 � P , because P (B) = 0 implies Q(T−1(B)) = 0, thus P ∗(B) =
Q∗(T−1(B)) = 0. On the other hand, if P ∗ � P , we can define w(y) = dP ∗

dP
(T (y)) and

Q∗(B) =
∫
B w(y)Q(dy), hence, the change of variable formula shows for any set B in β:

Q∗ ◦ T−1(B) =
∫

T−1(B)

dP ∗

dP
(T (y))Q(dy)

=
∫

B

dP ∗

dP
(x)P (dx) = P ∗(B).

Let us assume that α < 1. If Q∗ ∈ Rα(Q), then for any B in β:

Q∗ ◦ T−1(B) =
∫

T−1(B)

dQ∗

dQ
(x)Q(dx)

≤ 1

1− α
Q
(
T−1(B)

)
=

1

1− α
P (B),

thus Q∗ ◦ T−1 ∈ Rα(P ).
If we assume that P ∗ ∈ Rα(P ), by defining Q∗ as above: Q∗(B) =

∫
B

dP ∗

dP
(T (y))Q(dy),

we have Q∗ � Q, and, Q∗ ◦ T−1 = P ∗. Moreover, since dP ∗

dP
(x) ≤ 1

1−α
a.s. (P ) and

P = Q ◦ T−1, also dP ∗

dP
(T (y)) ≤ 1

1−α
a.s.(Q) hence Q∗ ∈ Rα(Q). •

Regarding the L2−Wasserstein distance, it is well known (see e.g. [3]) that when
P, Q ∈ F2(R

k) the infimum in (1) is attained, so that to find W2
2 (P, Q) it is enough to
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obtain a pair (X, Y ) of random vectors with distributions laws L(X) = P and L(Y ) = Q
and satisfying∫

‖X − Y ‖2 dν = inf
{∫

‖U − V ‖2 dν, L(U) = P, L(V ) = Q
}

.

Such a pair (X, Y ) is called an L2-optimal transport plan (L2-o.t.p.) for (P, Q). (L2-
optimal coupling for (P, Q) is an alternative, sometimes used, terminology).

In Cuesta-Albertos and Matrán [8] (see also Rüschendorf and Rachev [17] and McCann
[15]) it was proved that, under continuity assumptions on the probability P , the L2-o.t.p.
(X, Y ) for (P, Q) can be represented as (X, T (X)) for some suitable optimal map T . This
map coincides with the (essentially unique) cyclically monotone map transporting P to
Q (see [15]). In the sequel we will use the term o.t.p. for the pair (X, Y ) which will
also apply to the map T. For posterior use we summarize some properties in the following
statement. The interested reader can find the proofs in Cuesta-Albertos et al. [8], [9], [10],
and Tuero [18]. A different approach, involving more analytical proofs, is summarized in
[19].

Proposition 2.3 Assume that P, Q ∈ F2(R
k), and that P � `k, and let (X, Y ) be an

o.t.p. for (P, Q) defined on some (irrelevant) probability space (Ω, σ, ν). Then we have:

(a) The cardinal of the support of a regular conditional distribution of Y given X = x is
one, P -a.s.

(b) There exists a P -probability one set D and a Borel measurable cyclically monotone
map T : D → Rk such that Y = T (X), ν−a.s.

(c) If T is an o.t.p. for (P, Q), then T is a.e. continuous on supp(P ).

(d) Let Qn ∈ F2(R
k) such that Qn →w Q, and P � `k, and let Tn be o.t.p.’s for (P, Qn).

Then Tn → T , P -a.s.

Now let us return to the consideration of trimmed probabilities. From Proposition 2.2
and Proposition 2.3 (b) it obviously arises the following characterization.

Corollary 2.4 If P0, Q ∈ F2(R
k), and P0 � `k, then Rα(Q) coincides with the set of all

probabilities which can be written as P ∗
0 ◦T−1 where P ∗

0 ∈ Rα(P0) and T is the (essentially)
unique o.t.p. between P0 and Q.

Remark 2.5 Once we have chosen a particular probability measure P0 ∈ F2(R
k), P0 �

`k, Corollary 2.4 allows to induce trimmed versions similarly tailored according to the
shape of P0: If P1, P2 ∈ F2(R

k) and T1, T2 are the respective o.t.p. between P0 and P1

and between P0 and P2, any P ∗
0 ∈ Rα(P0) determines the pair (P ∗

1 , P ∗
2 ) where P ∗

1 =
P ∗

0 ◦ T−1
1 , P ∗

2 = P ∗
0 ◦ T−1

2 and P ∗
1 ∈ Rα(P1), P ∗

2 ∈ Rα(P2) and we call them similarly
tailored because they depend on the same trimming of P0.
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This representation of the trimmed versions of two probabilities through those of an-
other permits the consideration of a new measure of dissimilarity between P1 and P2

according to the shape of P0 through the relation

T3(P1, P2) = min
P ∗0 ∈Rα(P0)

d(P ∗
0 ◦ T−1

1 , P ∗
0 ◦ T−1

2 ).

That was the kind of trimming adopted in [1] for probabilities on the real line with the
U(0,1) law as distribution of reference.

From the definition of trimming, if P ∈ F2(R
k) and P ∗ ∈ Rα(P ) then∫

‖x‖2dP ∗(x) ≤ 1

1− α

∫
‖x‖2dP (x).

This shows that Rα(P ) ⊂ F2(R
k) if P ∈ F2(R

k). Our next result is a version of Propo-
sition 2.1 (a) for the metric W2.

Proposition 2.6 If 0 < α < 1 and P ∈ F2(R
k), then Rα(P ) is compact in the W2

topology.

PROOF.- Convergence inW2 is equivalent to weak convergence plus convergence of second
order moments (Bickel and Freedman [3], Lemma 8.3). Since Rα(P ) is tight (Proposition
2.1 (a)), given an infinite set R ⊂ Rα(P ) we can extract a sequence {Qn}n ⊂ R that
converges weakly. Let Q be its weak limit. Then W2(Qn, Q) → 0 iff ‖x‖2 is uniformly
Qn-integrable. Fix t > 0. Then∫

‖x‖>t
‖x‖2dQn(x) =

∫
‖x‖>t

‖x‖2dQn

dP
(x)dP (x) ≤ 1

1− α

∫
‖x‖>t

‖x‖2dP (x),

from which the uniform integrability of ‖x‖2 is immediate. •

Proposition 2.3 (d) and Corollary 2.4 allow also to show that any trimmed version of
a probability in F2(R

k), which is the limit of probabilities in F2(R
k), can be obtained as

the limit of trimmed versions of these probabilities.

Lemma 2.7 Let 0 < α < 1, {Qn}n and Q be in P(Rk), and assume that Qn →w Q.
Then, if Q∗ ∈ Rα(Q), there exists a sequence {Q∗

n}n such that Q∗
n ∈ Rα(Qn), for all n,

and Q∗
n →w Q∗.

PROOF.- Let P ∈ P(Rk) such that P � `k, and consider the sequence {Tn}n of o.t.p.’s
between P and Pn. If T is the o.t.p. between P and Q, Proposition 2.3 (d) implies that
Tn → T , P−a.s.

By Corollary 2.4 Q∗ = P ∗ ◦ T−1 for some Q∗ ∈ Rα(Q). Define now Q∗
n = P ∗ ◦ T−1

n ,
that belongs to Rα(Qn) by the characterization in Corollary 2.4. Since Tn → T , P−a.s.,
and P ∗ � P , also Tn → T , P ∗−a.s. Therefore Q∗

n = P ∗ ◦ T−1
n →w P ∗ ◦ T−1 = Q∗. •
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Regarding the convexity of the W2−metric we have a nice property. It is easy to check
that the Wasserstein metric always satisfies the inequality W2

2 (γP1 + (1 − γ)P2, Q) ≤
γW2

2 (P1, Q)+(1−γ)W2
2 (P2, Q), γ ∈ (0, 1), but when Q � `k, property (a) in Proposition

2.3 leads to more:

Theorem 2.8 Let Pi, Qi, i = 1, 2, be probability measures in F2(R
k) such that Pi �

`k, i = 1, 2. If Q1 6= Q2 and there is not a common o.t.p. T such that Q1 = P1 ◦ T−1 and
Q2 = P2 ◦ T−1, then, for every γ in (0, 1),

W2
2 (γP1 + (1− γ)P2, γQ1 + (1− γ)Q2) < γW2

2 (P1, Q1) + (1− γ)W2
2 (P2, Q2).

PROOF.- Assume that fi is the density function of Pi, and let (Xi, Ti(Xi)), i = 1, 2 be
o.t.p.’s for (Pi, Qi), i = 1, 2. If Pγ := γP1 + (1 − γ)P2 and Qγ := γQ1 + (1 − γ)Q2, then
fγ := γf1 + (1− γ)f2 is a density function for Pγ. Let us define on the support of Pγ the
following random function:

T (x) =

 T1(x) ith probability γf1(x)/(γf1(x) + (1− γ)f2(x))

T2(x) ith probability (1− γ)f2(x)/(γf1(x) + (1− γ)f2(x))

If Xγ is any r.v. with probability law L(Xγ) = Pγ, we have:

ν[T (Xγ) ∈ A] =
∫

µ[T (Xγ) ∈ A|Xγ = x]γ(dx)

=
∫

IA[T1(x)]
γf1(x)

γf1(x) + (1− γ)f2(x)
Pγ(dx)

+
∫

IA[T2(x)]
(1− γ)f2(x)

γf1(x) + (1− γ)f2(x)
Pγ(dx)

= γ
∫

IA[T1(x)]f1(x)dx + (1− γ)
∫

IA[T2(x)]f2(x)dx

= γν[T1(X1) ∈ A] + (1− γ)ν[T2(X2) ∈ A]

= γQ1(A) + (1− γ)Q2(A) = Qγ(A).

Since L(T (Xγ)) = Qγ, by the same argument, we have:

W2
2 (Pγ, Qγ) ≤

∫
‖Xγ − T (Xγ)‖2 dν

= γ
∫
‖X1 − T1(X1)‖2 dν + (1− γ)

∫
‖X2 − T2(X2)‖2 dν

= γW2
2 (P1, Q1) + (1− γ)W2

2 (P2, Q2).

This shows that W2
2 (Pγ, Qγ) < γW2

2 (P1, Q1) + (1− γ)W2
2 (P2, Q2) unless T is an o.t.p.

for (Pγ, Qγ). But (a) in Proposition 2.3 implies that a random map cannot be an o.t.p,
thus T should be non-random, leading to

T (x) =


T1(x) f x ∈ Supp(P1)− Supp(P2)

T1(x) (= T2(x)) f x ∈ Supp(P1) ∩ Supp(P2)

T2(x) f x ∈ Supp(P2)− Supp(P1)
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This fact would contradict our hypothesis because it implies that T would be an o.t.p.
common for (P1, Q1) and (P2, Q2). •

Taking P1 = P2 in Theorem 2.8, we obtain the following corollary, stating the strict
convexity of W2

2 (P, ·), leading to a trivial proof for the convergence results in Theorem
2.12.

Corollary 2.9 Let P, Q1, Q2, be probability measures in F2(R
k) and assume that P � `k.

If Q1 6= Q2, then, for every γ in (0, 1),

W2
2 (P, γQ1 + (1− γ)Q2) < γW2

2 (P, Q1) + (1− γ)W2
2 (P, Q2).

Proposition 2.6 implies that there always exists a best trimmed approximation in
Wasserstein metric and the set of best trimmed approximants is compact. From the
convexity of the metric the set of best approximations is convex. The following example
shows that the best trimmed approximation is not always unique.

Example 2.10 Set P = 1
2
δ{−1} + 1

2
δ{1} and Q = δ{0}. Obviously, every P ∗ ∈ Rα(P )

satisfies that W2(P
∗, Q) = 1, and, then, the set of best trimmed approximations is Rα(P ).

Of course, under the absolutely continuity hypothesis, the strict convexity property in
Corollary 2.9 ensures the uniqueness of the best trimmed approximation.

Theorem 2.11 Assume that P and Q, belong to F2(R
k) and that P � `k. Then, for

every 0 < α < 1, there exists an unique Qα ∈ Rα(Q), verifying:

W2(P, Qα) = W2(P,Rα(Q)).

This uniqueness result shows that in the measure of dissimilarity T1(P, Q) = W2(P,Rα(Q)),
considered in the introduction, the minimum is attained by just a trimmed probability if
P is absolutely continuous.

Theorem 2.12 Let {Pn}n, P and Q be in F2(R
k), such that W2(Pn, P ) → 0. Let 0 <

α < 1, then

a) If Q � `k and Pn,α := arg minP ∗n∈Rα(Pn)W2(P
∗
n , Q), then

W2(Pn,α, Pα) → 0, where Pα := arg minP ∗∈Rα(P )W2(P
∗, Q).

b) If P � `k and Qn,α ∈ Rα(Q) satisfies that W2(Pn, Qn,α) = W2(Pn,Rα(Q)), then

W2(Qn,α, Qα) → 0, where Qα := arg minQ∗∈Rα(Q)W2(P, Q∗).

PROOF.- Both statements have similar proofs, so let us consider only statement a). By
Proposition 2.1 (a) the sequence {Pn,α}n is tight and by the same argument that in the
proof of Proposition 2.6, the function ‖x‖2 is uniformly integrable for {Pn}n thus also for
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{Pn,α}n. Therefore to show W2(Pn,α, Pα) → 0 it suffices to guarantee that if {Prn,α}n is
any weakly convergent subsequence then Prn,α →w Pα.

By Proposition 2.1 (b), if Prn,α →w P ∗, then P ∗ ∈ Rα(P ) and, therefore

W2(Pα, Q) ≤ W2(P
∗, Q) = limW2(Prn,α, Q) ≤ lim infW2(P

∗
rn,α, Q), (2)

for any choice P ∗
rn,α ∈ Rα(Prn). Lemma 2.7 and the uniform integrability argument

allow to choose this last sequence verifying W2(P
∗
rn,α, Pα) → 0, hence W2(P

∗
rn,α, Q) →

W2(Pα, Q), which joined with (2) and with the uniqueness of the best trimmed approxi-
mation Pα given by Theorem 2.11 shows that P ∗ = Pα. •

2.1 Trimming in both probabilities

To state the uniqueness of the best trimmed approximations we will use some additional
notation and basic results. Given v0 ∈ Rk with ‖v0‖ = 1, we will consider H0 an hyper-
plane orthogonal to v0. The orthogonal projection on H0 will be denoted by π0 and for
every y ∈ Rk, we will denote ry = 〈y − π0(y), v0〉. Given a measurable set B ⊂ Rk, and
z ∈ H0, we will also denote

Bz := {y ∈ B : π0(y) = z}, and zv0 := {ry : y ∈ Bz},

Given the probability distribution P , we will denote with P ◦ the marginal distribution
of P on H0 and with Pz a regular conditional distribution given z, where z ∈ H0. This
conditional probability induces in an obvious way a probability on the real line through
the isometry Iz between (Rk)z and R, given by y → ry. This probability will be denoted
λz and its distribution (resp. quantile) function will be denoted F (x|z) (resp. qz(t). We
stress on the joint measurability of these functions in the following lemma, that we include
for future reference.

Lemma 2.13 The maps (x, z) → F (x|z) and (t, z) → qz(t) are jointly measurable in
their arguments.

PROOF.- Note that if F (x, y) is a joint distribution function on R × Rk−1 and G(z) is
the marginal on Rk−1, then they are measurable (for probabilities supported on finite sets
it is obvious and the generalization carries over through standard arguments). On the
other hand, let us consider the measures ηx and µ respectively associated to the increasing
functions F (x, ·) and G(·). As a consequence of the Differentiation Theorem for Radon
Measures (see e.g. Sections 1.6.2 and 1.7.1 in Evans and Gariepy [11]), if we consider for
any z = (z1, ..., zk−1) ∈ Rk−1, the sequence of rectangles An(z) := {(y1, ..., yk−1) : zi− 1

n
<

yi ≤ zi + 1
n
, i = 1, ..., k − 1}, we have the following a.s. convergence, leading to the

measurability:

F (x|z) = lim
n→∞

ηx(An(z))

µ(An(z))
.
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The measurability of qz(t) follows from the key property x ≤ qz(t) if and only if
F (x|z) ≤ t. •

Theorem 2.14 gives a nice property of the best trimmed approximations of two proba-
bilities when trimming is allowed in both probabilities. According to this result, the best
trimming functions involved in this problem are basically indicator functions of appro-
priate sets with, may be, the exception of points that remain fixed in the transport. In
particular, partial trimming is impossible on supp(P )−supp(Q).

Theorem 2.14 Let α > 0, and let P, Q ∈ P(Rk). Assume that P � `k has density f
w.r.t. `k. If P1 ∈ Rα(P ) and Q1 ∈ Rα(Q) verify that

W2
2 (P1, Q1) = W2

2 [Rα(P ),Rα(Q)] > 0,

and T is an o.t.p. for (P1, Q1), then T (x) = x P -a.s. on the set A := {x ∈ Rk : a1(x) ∈
(0, 1)}, where a1 := (1− α)f1 and f1 is the density function of P1 with respect to P .

PROOF.- Assume, on the contrary, that P (A ∩ {x ∈ Rk : ‖T (x)− x‖ > 0}) > 0 and let

us denote by P̂ the conditional distribution of P given this set.
From (c) in Proposition 2.3 we have that T is a.e. continuous. Let x0 be a point in

the support of P̂ in which T is continuous. Then, for every ε > 0 there exists δ > 0 such
that T (B(x0, δ)) ⊂ B(T (x0), ε). Let us denote A = B(x0, δ) ∩ A.

Let v0 = (T (x0)− x0)/‖T (x0)− x0‖ and H0 be the hyperplane orthogonal to v0 which
contains x0. With the notation at the beginning of this subsection, taking ε small enough,
we can assume that m := infy∈B(T (x0),ε) ry is greater than M := supy∈B(x0,δ) ry. Therefore,

‖T (y)− π0[T (y)]‖ > ry, for every y ∈ A. (3)

On the other hand, we have

P [A] =
∫

H0

Pz(Az)P
◦(dz) =

∫
H0

λz(zv0)P
◦(dz). (4)

Since x0 belongs to the support of P̂ , then P [A] > 0, thus

P ◦{z ∈ H0 : λz(zv0) > 0} > 0. (5)

Let z ∈ H0 such that λz(zv0) > 0. If y1, y2 ∈ Az satisfy that ry1 < ry2 , the orthogonality
between (π0(y)− x0) and (y − π0(y)) for every y ∈ Rk and (3) lead to

‖y1 − T (y1)‖2 = ‖T (y1)− π0[T (y1)] + π0(y1)− y1 + π0(T (y1))− π0(y1)‖2

=
(
rT (y1) − ry1

)2
+ ‖π0[T (y1)]− z‖2

>
(
rT (y1) − ry2

)2
+ ‖π0[T (y1)]− π0(y2)‖2 (6)

= ‖y2 − T (y1)‖2.
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Now, we consider the partition of the set A = A− ∪ A+ given by

A− := {y ∈ A : F (ry|π0(y)) ≤ 1/2}, and

A+ := {y ∈ A : F (ry|π0(y)) > 1/2}.

From Lemma 2.13 we have that these sets are measurable. For almost every z ∈ H0

satisfying λz(zv0) > 0 they define a value Rz, such that the sets

A−
z := {y ∈ Az : ry < Rz},

z−v0
:= {ry : y ∈ A−

z },
A+

z := {y ∈ Az : ry > Rz},
z+

v0
:= {ry : y ∈ A+

z }

verify λz[z
−
v0

] = λz[z
+
v0

] > 0. Let λ−z and λ+
z be the probability λz conditioned to the sets

z−v0
and z+

v0
respectively, and let their corresponding distribution (resp. quantile) functions

be F−(x|z) and F+(x|z) (resp. q−z (t) and q+
z (t)). Then, recalling the isometry Iz and the

way to obtain o.t.p.’s in the real line, the map Γ : A− → A+ defined by

Γ(y) = I−1
π0(y)

[
q+
π0(y)

[
F− (ry |π0(y))

]]
is an o.t.p. between P−

z and P+
z for almost every z ∈ H0 satisfying Pz(zv0) > 0. To end

the construction, let us consider the function a∗ : Rk → R defined as follows:

a∗(y) =


a1(y) if y /∈ A

a1(y)−min{1− a1[Γ(y)], a1(y)} if y ∈ A−

a1(y) + min{1− a1(y), a1[Γ
−1(y)]} if y ∈ A+.

From this point, the proof involves three steps:

Step 1. f ∗ := a∗/(1 − α) is a density with respect to P that defines a probability P ∗ ∈
Rα(P ).

Obviously a∗(Rk) ⊂ [0, 1]. On the other hand∫
Rk

a∗(y)P (dy) =
∫

Rk
a1(y)P (dy)

−
∫

A−
min {1− a1[Γ(y)], a1(y)}P (dy)

+
∫

A+
min

{
1− a1(y), a1[Γ

−1(y)]
}

P (dy). (7)

For almost every z ∈ H0 satisfying Pz(Az) > 0, by construction, the law of a1 under
P+

z , P+
z ◦ a−1

1 , coincides with the law P−
z ◦ (a1(Γ))−1, while P+

z ◦ (a1(Γ
−1))−1 = P−

z ◦ a−1
1 .

Therefore the last term verifies

∫
A+

min
{
1− a1(y), a1[Γ

−1(y)]
}

P (dy)

=
∫

H0

(∫
A+

z

min
{
1− a1(y), a1[Γ

−1(y)]
}

Pz(dy)
)

P ◦(dz)
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=
∫

H0

(∫
A−z

min {1− a1(Γ(y)), a1(y)}Pz(dy)
)

P ◦(dz)

=
∫

A−
min {1− a1[Γ(y)], a1(y)}P (dy), (8)

what, joined to (7) leads to
∫
Rk a∗(y)P (dy) =

∫
Rk a1(y)P (dy) = 1 − α, which proves this

step.

Step 2. There exists a random map, T ∗, transporting P ∗ to Q1.

Let us consider the random map T ∗ defined by T ∗(y) = T (y) on the complementary of
A+ and, for y ∈ A+, taking the values T (y) or T [Γ(y)] with probabilities f1(y)/f∗(y)
(= a1(y)/a∗(y)) and [f ∗(y) − f1(y)]/f∗(y) (= [a∗(y) − a1(y)]/a∗(y)) respectively. These
values are positive because, by construction, a∗(y) > a1(y) on A+.

The argument to show that T ∗ transports P ∗ to Q1 is analogous to that developed in
Theorem 2.8, taking into account that P+

z ◦ a−1
1 = P−

z ◦ (a1(Γ))−1.

Step 3. W2
2 (P1, Q1) > W2

2 (P ∗, Q1).

By construction of T ∗ and inequality (6), we have

W2
2 (P ∗, Q1) ≤

∫
Rk
‖y − T ∗(y)‖2P ∗(dy)

=
∫
(A+)c

‖y − T (y)‖2P ∗(dy)

+
∫

A+

(
‖y − T (y)‖2 f1(y)

f ∗(y)
+ ‖y − T [Γ−1(y)]‖2f ∗(y)− f1(y)

f ∗(y)

)
f ∗(y)P (dy)

<
∫
(A−∪A+)c

‖y − T (y)‖2f1(y)P (dy) +
∫

A−
‖y − T (y)‖2f ∗(y)P (dy)

+
∫

A+

(
‖y − T (y)‖2f1(y) + ‖Γ−1(y)− T [Γ−1(y)]‖2(f ∗(y)− f1(y))

)
P (dy).

Moreover, by construction of the map Γ, recalling the relation P+
z ◦ (a1(Γ

−1))−1 =
P−

z ◦ (a1)
−1, we obtain that∫

A+
‖Γ−1(y)− T [Γ−1(y)]‖2(f ∗(y)− f1(y))P (dy)

= −
∫

A−
‖y − T (y)‖2(f ∗(y)− f1(y))P (dy),

what, by construction of f ∗, gives

W2
2 (P ∗, Q1) < W2

2 (P1, Q1),

contradicting the optimality of the pair (P1, Q1). •
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Theorem 2.15 (Uniqueness) Let α > 0 and let P, Q ∈ P(Rk, β), with P � `k. If
W2

2 [Rα(P ),Rα(Q)] > 0, then there exists a unique pair of probability distributions P1 ∈
Rα(P ) and Q1 ∈ Rα(Q) such that

W2
2 (P1, Q1) = W2

2 [Rα(P ),Rα(Q)]. (9)

PROOF.- Assume that (P1, Q1) and (P2, Q2) are two different pairs fulfilling (9), and let
ai := (1−α)fi, i = 1, 2, where fi is the density function of Pi with respect to P . By using
convex combinations Pδi

= δiP1 + (1− δi)P2 and Qδi
= δiQ1 + (1− δi)Q2, i = 1, 2, with

δ1 6= δ2, from Theorem 2.8, we can assume that P1 and P2 have common support, and that
T is the common o.t.p. for both solutions. That is, Qi = Pi ◦ T−1, for i = 1, 2. Moreover,
in the set {a1 6= a2} it is satisfied that 0 < a1(y) < 1, so that Theorem 2.14 implies that
T (x) = x on this set. But then it is easy to show that there exist sets A ⊂ {a1 = a2} and
B ⊂ {a1 < a2} such that, defining

a∗(x) =


0 if x ∈ A

a2(x) if x ∈ B

a1(x) if x /∈ A ∪B,

thus, f ∗ := a∗/(1 − α) is the density function of a probability, say P ∗, in Rα(P ), Q∗ :=
P ∗ ◦ T−1 belongs to Rα(Q) and:

W2
2 (P ∗, Q∗) =

∫
Rk
‖x− T (x)‖2f ∗(x)P (dx)

=
∫
{a1=a2}−A

‖x− T (x)‖2f1(y)P (dx)

<
∫
{a1=a2}

‖x− T (x)‖2f1(x)P (dx) = W2
2 (P1, Q1).

•

Once we have the uniqueness result given in Theorem 2.15, the generalization of The-
orem 2.12 to this framework of double trimming is straightforward.

Theorem 2.16 Let {Pn}n , {Qn}n, P and Q be in F2(R
k), satisfying

W2(Pn, P ) → 0, W2(Qn, Q) → 0, and P � `k.

If P ∗
n ∈ Rα(Pn) and Q∗

n ∈ Rα(Qn) satisfy

W2(P
∗
n , Q∗

n) = W2(Rα(Pn),Rα(Qn)),

then W2(P
∗
n , P ∗) → 0 and W2(Q

∗
n, Q

∗) → 0, where P ∗ ∈ Rα(P ), Q∗ ∈ Rα(Q) and
W2(P

∗, Q∗) = W2(Rα(P ),Rα(Q)).

The Strong Law of Large Numbers and the Glivenko-Cantelli Theorem assure (through
the uniform integrability argument) that when {P ω

n }n is the sequence of empirical prob-
ability distributions based on a sequence {Xn}n of independent identically distributed
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(i.i.d.) random vectors, with law P ∈ F2(R
k), then W2(P

ω
n , P ) → 0 for a.s. ω. Therefore

the following theorem on the consistency of the trimmed approximations is immediate.
This result allows the use of Monte-Carlo simulations to approximate any of the dissimi-
larity measures T1 and T2 between probabilities.

Theorem 2.17 (Consistency) Let {Xn}n, {Yn}n be two sequences of i.i.d. random
vectors with L(Xn) = P , L(Yn) = Q, P, Q ∈ F2(R

k), and let P ω
n , Qω

n be the empirical
distributions based on the samples {X1(ω), ...Xn(ω)} and {Y1(ω), ...Yn(ω)}.

(a) If Q � `k and P ω
n,α := arg minP ∗∈Rα(P ω

n )W2(P
∗, Q), then

W2(P
ω
n,α, Pα) → 0 ν-a.s., where Pα := arg minP ∗∈Rα(P )W2(P

∗, Q).

(b) If P � `k and Qω
n,α ∈ Rα(Q) verifies W2(P

ω
n , Qω

n,α) = W2(P
ω
n ,Rα(Q)), then

W2(Q
ω
n,α, Qα) → 0 ν-a.s., where Qα := arg minQ∗∈Rα(Q)W2(P, Q∗).

(c) If P or Q � `k and P ω
n,α ∈ Rα(P ω

n ) and Qω
n,α ∈ Rα(Q) satisfy

W2(P
ω
n,α, Qω

n,α) = W2(Rα(P ω
n ),Rα(Q)),

then W2(P
ω
n,α, Pα) → 0 and W2(Q

ω
n,α, Qα) → 0 ν-a.s., where

(Pα, Qα) := arg min{W2(P
∗, Q∗) : P ∗ ∈ Rα(P ), Q∗ ∈ Rα(Q)}.

(d) If P or Q � `k and P ω
n,α ∈ Rα(P ω

n ) and Qω
n,α ∈ Rα(Qω

n) satisfy

W2(P
ω
n,α, Qω

n,α) = W2(Rα(P ω
n ),Rα(Qω

n)),

then W2(P
ω
n,α, Pα) → 0 and W2(Q

ω
n,α, Qα) → 0 ν-a.s., where

(Pα, Qα) := arg min{W2(P
∗, Q∗) : P ∗ ∈ Rα(P ), Q∗ ∈ Rα(Q)}.

3 Example

To end the paper, we present in Figure 3 a display showing different levels of similarity
between a standard normal distribution, P , and a mixture of normal distributions with
variance 1 and means 0 and 4, and respective weights 0.8 and 0.2, Q = 0.8N(0, 1) +
0.2N(4, 1).

From left to right, the columns in the display correspond to respective trimming levels
0, 0.1, 0.15 and 0.2. In descending order, the rows show the results for the best trimming
according to T2(P, Q), T1(P, Q), T1(Q, P ) and T3(P, Q), that is respectively when trimming
is allowed in both probabilities, only in Q, only in P , and in both probabilities but with
the similarly tailored trimming of Remark 2.5 using the U(0, 1) distribution as reference.

A few comments on the similarity shown in these figures are in order. Taking into
account that Q can be considered the result of adding a 20% of contamination to P, it is
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Figure 1: Densities arising from the minimization of the measures of dissimilarity T2(P,Q), T1(P,Q),
T1(Q,P ) and T3(P,Q) (top to bottom) with different trimming levels (α = 0, 0.1, 0.15 and 0.2, left to
right). P is a N(0,1) distribution and Q is the mixture 0.8 N(0,1) + 0.2 N(4,1). The figures show the
densities of the probabilities obtained as best trimmed approximations of P (blue) and Q (red).

obvious that T1(P, Q) and T2(P, Q) should be 0 for every α ≥ 0.2. This is what happens
in the first two rows. In fact, it can be checked that T1(P, Q) > 0 for every α < 0.2.
However, T2 allows to move P a bit closer to Q and then, T2(P, Q) = 0 even at level
0.1909.

On the other hand, it is impossible to obtain Q by simply trimming P . Thus,
T1(Q, P ) > 0 for every trimming level α. The same happens with T3(P, Q) because the
differences between P and Q can not be eliminated through a similarly tailored trimming.

It is also worth to pay some attention to the differences in the o.t.p.’s associated to
the considered trimmings. The small bump in the density of Q is responsible for most of
the dissimilarity between P and Q. Optimal trimming tries to decrease the Q density on
the right tail whenever it is possible, as it is the case in the first two rows. In such cases
there is true trimming (a1 < 1 in Theorem 2.14) and there is no mass transportation in
this range. A secondary source of dissimilarity comes from the different scale between
the P density and the main bump in the density of Q. When trimming is allowed in P ,
the P density is decreased on the left tail and there is no mass transportation on the
left, as in the first and third rows in the display. Note that in the first row, true mass
transportation happens only in the central region. On the opposite, in the fourth row
the trimming function is always zero or one and there is true mass transportation on the
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non-trimmed range (the o.t.p. is a.s. different from the identity).
This example stresses, in a descriptive way, the differences between the measures of

dissimilarity considered through the paper. In particular intuition mostly agrees with the
use of T2, while the right use of T3 should involve some extra caution in practice.
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