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1 Introduction.

Let (U,L) be a measure space and let σ : U × U → <+ denote a product
measurable function. The Kantorovich-functional induced by σ (which we also
denote by σ) on the set M1(U) of all probability distributions on L is defined
by

σ(P,Q) = inf
{∫

σdµ;µ ∈M(P,Q)
}
,

where M(P,Q) is the set of all probability measures on L ⊗ L with marginals
P and Q. Note that σ(P,Q) is a measure of the proximity betwen P and Q.
A probability µ∗ ∈ M(P,Q) is called an optimal coupling with respect to σ
(o.c.(σ)) if

σ(P,Q) =
∫
σdµ∗.

Similarly a pair, (X,Y), of U × U -valued random variables (r.v.’s) on a
common probability space, (Ω,A, λ), is called an o.c.(σ) between P and Q if

X
d
=P , Y

d
=Q (

d
= means equality in distribution) and
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σ(P,Q) =
∫
σ(X, Y )dλ.

The existence of o.c.(σ)’s in the case of tight measures P and Q and σ lower
semicontinuos follows from the weak compactness of M(P,Q) (cf. [10, 16]).

The most interesting case concerns the situation where (U,d) is a metric

space with Borel σ-algebra, L, and σ = dr, r > 0. In this case [σ(P,Q)](1/r)∧1 =:
lr(P,Q) is a probability metric, the minimal Lr-metric (cf. [13]). In this paper
we shall consider in particular the determination of o.c.’s for the L2-metric,
which we denote ”Wasserstein Distance”, W, as do most articles on this subject
in spite of the fact that the priority in the definition belongs to Kantorovich
[9] (see [13]). This metric is defined as the square root of

W 2(P,Q) = inf
{∫

d2(x, y)dµ(x, y);µ ∈M(P,Q)
}
.

While for the real line, U = <, there are a lot of results on o.c.’s, there are
for the euclidean spaces, U = <n, or even more general spaces, only very few
explicit results available (cf. [7, 13, 18, 21, 19, 22] and the references therein).
In the case of a Hilbert space, U = H, with inner product, 〈·, ·〉, and P and
Q with finite second moments the following result (cf.[11, 19]) is basic for the

determination of the Wasserstein distance. Let X
d
=P , Y

d
=Q and let P and

Q have finite second moments. Then (X,Y) is an o.c. with respect to the
Wasserstein distance if and only if

Y ∈ ∂f(X), λ-a.s. (1.1)

for some closed (= lower semicontinuous) convex function f, where ∂f(x) de-
notes the subgradient of f in x:

∂f(x) = {y : f(x′)− f(x) ≥ 〈y, x′ − x〉, ∀x′ ∈ domf}.

In particular, in the case U = <n, if φ is continuously differentiable, then
(X,φ(X)) is an o.c.(W) for all X in the domain of φ if and only if :

a) φ is monotone (i.e. 〈x− y, φ(x)− φ(y)〉 ≥ 0, ∀x, y); and

b) Dφ =
(
∂φi
∂xj

)
is symmetric

(
i.e. ∂φi

∂xj
= ∂φj

∂xi

) (1.2)

(cf. [20, page 162]).
That φ is PX × PX-a.s. monotone if (X,φ(X)) is an o.c.(W) was shown in

[3] for every Hilbert space.
An interesting consequence of (1.1) is the fact that independently of the

distribution of X certain functions (as specified in (1.2)) have the optimal cou-
pling property w.r.t. W. In particular one obtains that for any symmetric,

2



positive semidefinite matrix A, (X,AX) is an o.c.(W). This applies to the nor-
mal case in the following way: Given two multivariate normal distributions,
P = N(0,Σ1) and Q = N(0,Σ2), with regular covariance matrices Σ1 and Σ2;

if X
d
=N(0,Σ1) and A = Σ

−1/2
1

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
Σ
−1/2
1 then (X,AX) is an o.c.(W)

between N(0,Σ1) and N(0,Σ2) (cf. [6, 11, 12, 19, 20, 22]). This fact was es-
tablished without (1.2), only by some involved calculations, but in Section 2
we shall give a surprisingly simple proof of this result based on the fact that X
and AX have the same dependence structure. Moreover, our proof will allow
us to prove also some far reaching extensions of the o.c. property of positive
semidefinite functions which also apply to stochastic processes. We furthemore
consider monotone transformations of the components (in the case U = <T ).
In this way we obtain optimal couplings between distributions with the same
dependence structure.

In Section 3 we propose a new class of functions with a general strong
optimal coupling property, the radial transformations. These transformations
give optimal couplings not only with respect to W but also with respect to
a wide class of Kantorovich functionals induced by σ(X;Y ) = φ(‖X − Y ‖).
We prove that radial transformations always give o.c.’s and that if φ(x) =
δ(x)x gives an o.c., then, under some restrictions on δ, φ must be a radial
transformation. We also obtain in this way an o.c. for spherically equivalent
distributions.

For general references to the problem of o.c.’s we refer to the recent con-
ference volume: ”Advances in Probability distributions with given marginals”
edited by G. Dall’Aglio, S.Kotz and G. Salinetti, to the book of Rachev [14]
and the dissertation of Tuero [24].

2 Distributions with the same dependence structure.

Let Xi be real r.v.’s defined on the probability space (Ω,A, λ) with distribution
functions (d.f.’s) Fi and corresponding distributions Pi, 1 ≤ i ≤ n, and let
{Vi}1≤i≤n be i.i.d. r.v.’s uniformly distributed on (0,1) also defined on (Ω,A, λ)
and independent of {Xi}1≤i≤n. Define for x ∈ <, α ∈ (0, 1)

F i(x, α) := λ(Xi < x) + αλ(Xi = x) and Ui := F i(Xi, Vi), 1 ≤ i ≤ n,

then (cf. [17])

Ui
d
=U(0, 1) and Xi = F−1i ◦ Ui, λ-a.s., 1 ≤ i ≤ n, (2.1)

where U(0,1) is the uniform distribution on the interval (0,1) and F−1i (u) =
inf{y : Fi(y) ≥ u} is the generalized inverse of Fi.

Define, furthermore, that X1, X2 are similarly ordered (X1
s.o.∼ X2) if

(X1(w)−X1(w
′)) (X2(w)−X2(w

′)) ≥ 0, λ⊗ λ-a.s.
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Next we include a proposition concerning the optimal couplings of real r.v.’s.
In it we assume, without loss of generality, that the probability space is rich
enough to allow us to define on it a r.v. with distribution U(0,1).

Proposition 2.1 Let X1 and X2 be real, square integrable r.v.’s with d.f.’s F1

and F2. Then:

a) Equivalent are:

a.i) (X1, X2) is an o.c.(W).

a.ii) F(X1,X2)(x, y) = min{F1(x), F2(y)}, ∀x, y.

a.iii) There exists a r.v. U
d
=U(0, 1), such that for some nondecreasing

functions φ1, φ2:

X1 = φ1(U) and X2 = φ2(U), λ− a.s.

a.iv) X1
s.o.∼ X2.

b) The functions φi in a) are essentially unique, φi = F−1i a.s. with respect
to Lebesgue measure.

c) The pairs
(
X1, F

−1
2 ◦ F1(X1, V1)

)
and

(
F−11 ◦ F2(X2, V2), X2

)
are o.c.(W).

d) If P1 is nonatomic and (X1, Y1) is an o.c.(W) between P1 and P2 then

Y1 = F−12 ◦ F1(X1), λ-a.s.

e) If Y1 = φ1(X1) with φ1 non-decreasing, then (X1, Y1) is an o.c.(W).

PROOF.- The first equivalence in a) follows, e.g., from the Hoeffding represen-
tation

EX1X2 =
∫ (

F(X1,X2)(x, y)− F1(x)F2(y)
)

dx dy + (EX1)(EX2) (2.2)

together with the Fréchet bounds saying that the class of d.f.’s with marginals
P1 and P2, F(P1, P2), has a largest element F and a smallest element F (the
upper and lower Fréchet bounds)

F (x, y) = min{F1(x), F2(y)} and F (x, y) = (F1(x) + F2(y)− 1)+.

It is evident that iii) implies ii). That iv) is obtained from i) was proved in
[23]. Therefore, to show a), we only have to prove that iv) implies iii).

Let us consider the real r.v.’s U1 = F1(X1, V1) and U2 = F2(X2, U1) where
V1 is a r.v. with distribution U(0,1) and independent from X1 and X2.

First we are going to prove that the distribution of U2 is absolutely con-
tinuous. To this end let ω, ω′∈Ω such that U2(ω) = U2(ω

′) and let us denote
x1 = X1(ω), x′1 = X1(ω

′), x2 = X2(ω) and x′2 = X2(ω
′).
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Note that U1(ω) = U1(ω
′) if x2 = x′2, and that λ[X2 < x2] = λ[X2 <

x′2] and λ[X2 = x2] = λ[X2 = x′2] = 0 if x2 < x′2 and U1(ω) and U1(ω
′) belong

to (0,1). So we have proved that

λ⊗ λ{(ω, ω′) : U2(ω) = U2(ω
′)} ≤ λ⊗ λ{(ω, ω′) : U1(ω) = U1(ω

′)}+

λ⊗ λ{(ω, ω′) : X2(ω), X2(ω
′) ∈ A}+ 2λ{ω : U1(ω) 6∈ (0, 1)}

where A is the P2-probability zero set defined as the union of all nontrivial,
non-empty and closed intervals with P2-probability zero.

The second summand in the last term is zero by definition of A. The other
ones are also zero because the distribution of U1 is U(0,1). Therefore we have
proved that the distribution of U2 is continuous.

On the other hand, let ω, ω′∈Ω and let us use the same notation as above. If
x2 < x′2 then, by construction, U2(ω) ≤ U2(ω

′) and, by hypothesis, x1 ≤ x′1, λ-
a.s. If x2 = x′2 and x1 < x′1 then, by construction, U2(ω) ≤ U2(ω

′). Therefore

we have shown that X1
s.o.∼ U2. This and the fact that the distribution of

U2 is absolutely continuous, permit us to apply the reasoning developed in
Theorem 1 in [23] to obtain the existence of an increasing function, φ1, such
that X1 = φ1(U2), λ-a.s.

Finally, the same argument which conducts to (2.1) gives us that X2 =
F−12 (U2), λ-a.s. and the proof ends because U2 can be written as an increasing
function of a r.v. with distribution U(0,1).

b) If X1 = Φ1(U), Φ1 nondecreasing, then

F1(x) = λ(X1 ≤ x) = λ(Φ1(U) ≤ x) = λ(U ≤ Φ−11 (x)) = Φ−11 (x)

and, therefore, Φ1 = F−11 . Cf. also Lemma 2.3 in [2].
c) and e) follow from a) since

X1
s.o.∼ F−12 ◦ F1(X1, V1), X2

s.o.∼ F−11 ◦ F2(X2, V2)

and X1
s.o.∼ φ1(X1) if φ1 is nondecreasing.

Alternatively, define α(s) := F−12 ◦ F1(s) and F (t) :=
∫ t
0 α(s)ds. Then α

is monotonically nondecreasing and so F is convex. Furthermore, ∂F (s) =
[α(s−), α(s+)] (c.f. [15, Th. 24.2]) .

Since P (X1 < x1) ≤ F1(x1, v1) ≤ F1(x1) for all x1 ∈ <1, v1 ∈ (0, 1), we
obtain

α(s−) ≤ F−12 ◦ F1(s, v1) ≤ α(s+)

Therefore,
F−12 ◦ F1(X1, V1) ∈ ∂F (X1) a.s.

and, by (1.1),
(
X1, F

−1
2 ◦ F1(X1, V1)

)
is an optimal coupling. e) can be proved

similarly.
d) follows from b) and the fact that if F1 is continuous, then F1◦F−11 (u) = u.
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Remark 1

1. We remark that a.ii), a.iii) and a.iv) in Proposition 2.1 are equivalent
and imply a.i) without any assumption on the square integrability of X1

and X2.

For the proof note that the statement ”a.ii) implies a.i)” follows from
Theorem 1 in [1] and that the proof that a.iv) (resp. a.iii)) implies a.iii)
(resp. a.ii)) that we have proposed in Proposition 2.1 does not use any
integrability argument. So we have only to prove that a.ii) implies a.iv).

To prove this let us assume that a.ii) is verified but a.iv) does not hold.
In this case the reasoning in Theorem 1 in [23] permits us to conclude that
there exist two real numbers j and k such that

λ⊗ λ{(ω, ω′) : X(ω) ≤ j, X(ω′) > j, Y (ω′) ≤ k and Y (ω) > k} > 0.

Therefore

λ ({X ≤ j} ∩ {Y > k}) > 0 and λ ({Y ≤ k} ∩ {X > j}) > 0

and we have that λ ({X ≤ j} ∩ {Y ≤ k}) < inf (λ{X ≤ j}, λ{Y ≤ k})
which contradicts a.ii).

2. The arguments in [23] to prove that a.i) implies a.ii) hold under the weaker
assumption that W (F1, F2) is finite. Then we see that, under this assump-
tion, statements a) to e) in Proposition 2.1 are equivalent.

3. In a) we have proved the existence and the uniqueness of the joint optimal
d.f. (namely F ) for the o.c.(W). It is well-known that F is optimal for
σ a quasi-monotone, right-continuous function, e.g. σ(x, y) = φ(x − y),
φ convex (cf. [5]). The uniqueness property holds also for all lp-distance,
p > 1 (see [5]) and for strictly convex φ but not for the l1-distance. This
can be seen from the formula (analogous to (2.2))

E | X1 −X2 |=
∫ (

F1(u) + F2(u)− 2F(X1,X2)(u, u)
)

du.

Therefore, (X1, X2) is an o.c.(l1) if and only if

F(X1,X2)(u, u) = min{F1(u), F2(u)}, ∀u.

For this and related results cf. the recent survey article [5].

In the multivariate case there is not a similar complete result as Proposition
2.1. For instance, in the real case, according to b), each probability measure
P on < has associated a function ΦP in such a way that an o.c.(W) between

P and Q is given by (ΦP (U),ΦQ(U)) where U
d
=U(0,1). This kind of universal

representation does not exist in <n as the following example (proposed in [4])
shows.
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Example 2.2 Let us consider the points mi in <2:

m0 = (0, 0), m1 = (1, 0), m2 = (
√

2/2,
√

2/2), m3 = (−1/2,
√

3/2).

and the probabilities Pi, i=1,2,3, which give probability 1/2 to each one of
m0, and mi, i=1,2,3, respectively.

If we suppose that there exist Xi, i=1,2,3, defined on some probability space,
such that (Xi, Xj) is an o.c.(W) between Pi and Pj, ∀i, j, then it is easy to show
that (X1, X2, X3) has the following incompatible two-dimensional marginals:

λ{(X1, X2) = (m0,m0)} = λ{(X1, X2) = (m1,m2)} =
1

2
,

λ{(X2, X3) = (m0,m0)} = λ{(X2, X3) = (m2,m3)} =
1

2
,

λ{(X1, X3) = (m0,m3)} = λ{(X1, X3) = (m1,m0)} =
1

2
.

The following proposition shows the difference with respect to the general-
ization of the Fréchet bounds. Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be
r.v.’s in <n with d.f.’s F and G and distributions P and Q. Let F(P,Q) be
the class of d.f.’s on <2n with marginal d.f.’s F, G. Let Pi and Qi denote the
marginals of P and Q and Fi and Gi the marginals of F and G, i=1,...,n.

Proposition 2.3

a) max{H(x, y);H ∈ F(F,G)} = min{F (x), G(y)} =: F (x, y), ∀x, y ∈ <n.

b) min{H(x, y);H ∈ F(F,G)} = (F (x) +G(y)− 1)+ =: F (x, y), ∀x, y ∈ <n.

c) If F is a d.f. and (X, Y )
d
=F , then Xi

s.o.∼ Yj for all i,j. If P1 is nonatomic,
then Yj = φj(X1) for some nondecreasing functions φj. If P1 and Qi, for
some i, are nonatomic, then additionally Xj = ψj(X1) for some nonde-
creasing functions ψj.

PROOF.- a) and b) are consequences of Theorem 6 in [16] on the sharpness of
Fréchet bounds.

Let us see c). If F is a d.f., then (with an obvious notation) F ij(xi, yj) =

min{Fi(xi), Gj(yj)} and, therefore, by Proposition 2.1,a) for (X, Y )
d
=F one

obtains Xi
s.o.∼ Yj, ∀i, j. If P1 is nonatomic, by Proposition 2.1,d), Yj = G−1j ◦

F1(X1) = φj(X1). If Qi also is nonatomic, then from Xj
s.o.∼ Yi, Xj = φ̃j(Yi)

with φ̃j nondecreasing and, therefore, Xj = φ̃j[φi(X1)] = ψj(X1) and ψj is
nondecreasing.
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Remark 2

1. Similarly, if F (x, y) is a d.f., then for any (X, Y )
d
=F , we have that Xi

o.o.∼
Yj (

o.o.∼ means oppositely ordered). If P1 is nonatomic, then Yj = φj(X1), φj
decreasing. If additionally Qi is nonatomic, then also Xj = ψj(X1), ψj in-
creasing. This shows that only in very exceptional cases there exist a
smallest or a largest d.f. in F(F,G) for n ≥ 2.

2. If P1 is continuous and Q = ε{a}, the one point measure in the point a ∈

<n, if X
d
=P and Y

d
=Q, then F(X,Y )(x, y) = min{F (x), G(y)} = F (x, y)

holds. Obviously, Xj = ψj(X1) with ψj increasing does not hold generally
so that the condition of a nonatomic marginal Qi can not be omitted in

c) of Proposition 2.3. This is related to the fact that
s.o.∼ is not transitive

(generally), i.e. X1
s.o.∼ Y1 and Y1

s.o.∼ Z1 does not imply X1
s.o.∼ Z1.

In spite of the previous considerations, a simple positive optimal coupling
result holds for translations.

Lemma 2.4 Let X
d
=P and for some a ∈ <n, let X+a

d
=Q. Let ‖ ·‖ denote the

euclidean norm on <n and let φ : <+ → <+ be a convex, increasing function.
Then (X,X+a) is an o.c.(σ) between P and Q for σ = φ◦‖ ‖, i.e. translations
are o.c.(σ)

PROOF.- Let (X,Y) be a pair of r.v.’s with marginal distributions P and Q
respectively. Then by Jensen’s inequality and the increasing character of φ we
have that

E (φ‖X − Y ‖) ≥ φ (E‖X − Y ‖) ≥ φ (‖E[X − Y ]‖) =

= φ (‖a‖) = Eφ (‖X − (X + a)‖) .
So (X,X+a) is an o.c.(σ).

Note that the proof of the preceeding lemma remains valid for every normed
linear space. But it does not hold necessarily in any metric space or even if φ
is not convex as the following example shows.

Example 2.5 Let P
d
=U(0,1) and take a = 1

2
and

σ(x, y) =

{
1, if x 6= y
0, if x = y.

A transformation which behaves better than the translation is the following
one:

T (x) =

{
x, if 1

2
≤ x ≤ 1

x+ 1, if 0 ≤ x ≤ 1
2
.
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On the other hand translations are special cases of monotonic, component
to component transformations. Optimality of these transformations is a con-
sequence of the next result.

Proposition 2.6 Let σ(x, y) =
∑n
i=1 σi(xi, yi), where σi are quasimonotone

and right-continuous. Let P,Q ∈ M1(<n,Ln) with marginal distributions Pi,

Qi, 1 ≤ i ≤ n, and let X
d
=P , Y

d
=Q, then

a) σ(P,Q) ≥ ∑n
i=1 σi(Pi, Qi).

b) If Xi
s.o.∼ Yi, 1 ≤ i ≤ n, then (X,Y) is an o.c.(σ) and Eσ(X, Y ) =∑n

i=1 σi(Pi, Qi).

c) If σi(xi, yi) = φi(xi − yi), φi strictly convex, then the converse in b) holds
also, i.e. given the r.v.’s X and Y, then

(X,Y) is an o.c.(σ) and σ(P,Q) =
n∑
i=1

σi(Pi, Qi)⇐⇒ Xi
s.o.∼ Yi, 1 ≤ i ≤ n.

PROOF.- With respect to a), it is evident that

σ(P,Q) = inf

{∫ n∑
i=1

σi(xi, yi)dµ(x, y) ; µ ∈M(P,Q)

}

≥
n∑
i=1

inf
{∫

σi(xi, yi)dµ(x, y) ; µ ∈M(P,Q)
}

=
n∑
i=1

inf
{∫

σi(xi, yi)dµi(xi, yi) ; µi ∈M(Pi, Qi)
}

=
n∑
i=1

σi(Pi, Qi).

On the other hand, equality holds in a) if and only if there exists an o.c.(σ),
(X,Y), between P and Q such that Eσi(Xi, Yi) = σi(Pi, Qi), 1 ≤ i ≤ n.

A sufficient condition is Xi
s.o.∼ Yi, 1 ≤ i ≤ n, which is also necessary for φi

strictly convex functions (cf. Proposition 2.1 and Remark 1).

From the previous Proposition and Proposition 2.1 we obtain:

Corollary 2.7 Let σ(x, y) =
∑n
i=1 φi(xi − yi), φi strictly convex. Let P,Q ∈

M1(<n,Ln) with marginal distributions Pi, Qi, where Pi are nonatomic, and

marginal d.f.’s Fi and Gi, 1 ≤ i ≤ n, and let X
d
=P , Y

d
=Q; then equivalent are:

1. (X,Y) is an o.c.(σ) and σ(P,Q) =
∑n
i=1 σi(Pi, Qi).

2. Yi = G−1i ◦ Fi(Xi), λ-a.s., 1 ≤ i ≤ n.
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An inmediate consequence of Proposition 2.6 is:

Corollary 2.8 If the function F defined in Proposition 2.3.a) is a d.f., then
F gives an o.c.(σ) for σas in Proposition 2.6.

As is well-known, for any n-dimensional d.f., F, there exists a d.f. C ∈
M(U(0, 1), ..., U(0, 1)), such that

F (x1, ..., xn) = C (F1(x1), ..., Fn(xn)) . (2.3)

We call any C as in (2.3) a dependence function of F (copula). If Fi are
continuous, 1 ≤ i ≤ n, then C is uniquely determined (cf., for instance, the
review article [22]).

A natural construction of C is given by

C∗(u1, ..., un) = λ(U1 ≤ u1, ..., Un ≤ un) (2.4)

where (X1, ..., Xn)
d
=F , Ui = F i(Xi, Vi), {Vi} are i.i.d., U(0,1)-distributed r.v.’s

(cf. [17]). Note that C∗ depends on the choice of {Vi}).
If Fi are continuous then C∗ coincides with the structure function

D(u1, ..., un) = λ {F1(X1) ≤ u1, ..., Fn(Xn) ≤ un} .

We say that P and Q have the same dependence structure, if there exists a
common dependence function of P and Q; or equivalently, if

C∗X = C∗Y for some X
d
=P, Y

d
=Q (with the same choice of {Vi}).

As the main result of this section we now can state:

Theorem 2.9 Let P,Q ∈M1(<n,Ln) and X
d
=P , then:

a) Equivalent are:

a.i) W (P,Q) =
∑n
i=1W (Pi, Qi).

a.ii) P and Q have the same dependence structure.

a.iii) (X, Y ) is an o.c.(W) between P and Q where Y i = G−1i ◦F i(Xi, Vi),

{Vi} i.i.d., independent of X, Vi
d
=U(0, 1).

a.iv) There exists Y
d
=Q, such that Xi

s.o.∼ Yi, 1 ≤ i ≤ n.

b) The same characterization as in a) also holds for

σ(x, y) =
n∑
i=1

φi(xi − yi)

with φi strictly convex.
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PROOF.- By Proposition 2.6,c) W (P,Q) =
∑n
i=1W (Pi, Qi) is equivalent to iv).

It is obvious that iii) implies iv).
Let us see that ii) implies iii). In effect, if P and Q have the same dependence

structure and Fi, Gi are the marginal d.f.’s of P and Q respectively, then for

some X
d
=P , Y

d
=Q, Ui = F i(Xi, Vi), Ũi = Gi(Yi, Vi), we have

U = (U1, ..., Un)
d
=Ũ = (Ũ1, ..., Ũn)

and, therefore,

Q
d
=Y =

(
G−11 (Ũ1), ..., G

−1
n (Ũn)

) d
=
(
G−11 (U1), ..., G

−1
n (Un)

)
= Y

In other words Y
d
=Q and, by c) in Proposition 2.1 and Remark 1 we have

obtained iii).

To end let us show that iv) implies ii). If X
d
=P , Y

d
=Q, Xi

s.o.∼ Yi then by
Proposition 2.1,a) and b), there exist U1, ..., Un such that Xi = F−1i (Ui), Yi =
G−1i (Ui). Let C(x1, .., xn) = λ(U1 ≤ x1, ..., Un ≤ xn), then

F (x1, ..., xn) = C (F1(x1), ..., Fn(xn))

and
G(x1, ..., xn) = C (G1(x1), ..., Gn(xn))

where F = FP and G = FQ, and P and Q have the same dependence structure.

From Theorem 2.9 we obtain in particular that affine transformations like
T (x1, ..., xn) = (a1 + λ1x1, . . . , an + λnxn), ai, λi ∈ <, λi > 0 give an o.c.(W).
This gives in particular an o.c.(W) between uniform distributions on ellipses.

We note that the preceeding ideas can be extended to cover some infinite
dimensional cases. For instance, let us suppose that U = <T . Then, if P
and Q are two probability measures on LT , we say that P and Q have the
same dependence structure if there exist two U-valued stochastic processes
X = (Xt, t ∈ T ) and Y = (Yt, t ∈ T ), such that

a) X
d
=P and Y

d
=Q, and

b) Xt
s.o.∼ Yt, for every t ∈T.

The equivalence between a.ii) and a.iv) in the Theorem 2.9 guarantees that
this definition generalizes the previous one.

Now let x = (xt, t ∈ T ), y = (yt, t ∈ T ) ∈ <T and σt : < × < −→ <+ be
quasimonotone, right-continuous functions. Let us define

σ(x, y) =

{ ∑
t∈T σt(xt, yt), if T is denumerable∫

T σt(xt, yt)dt, if T is an interval.

11



All results which we have stated in the finite-dimensional case, remain valid
in the new situation with the only additional assumption that there exist X
d
=P and Y

d
=Q such that Eσ(X, Y ) <∞.

This include some interesting cases. For instance, suppose that {ht, t ∈
[0, 1]} is a family of one-dimensional increasing functions. Then the stochastic
processes {Xt, t ∈ [0, 1]} and {ht(Xt), t ∈ [0, 1]} are an o.c.(σ). This gives an
o.c.(σ) between a stochastic process and its modification by some coordinate-
weight strategies.

On the other side, if U = <n, A is a positive semidefinite matrix and X is a
r.v., then the pair (X,AX) is an o.c.(W) with respect to the euclidean norm (cf.
Section 1). This result, which was proved before by other involved procedures,
is a simple consequence of Theorem 2.9 and of the fact that X and AX have the
same dependence structure if we choose the right basis on U . More generally,
based on the discussion above we have the following result:

Theorem 2.10 Let us suppose that (H, 〈·, ·〉) is a real, separable Hilbert space,
let X be an H-valued r.v. and let A be a self-adjoint and positive operator with
purely discrete spectrum. Then, (X,AX) is an o.c.(W).

PROOF.- Let {en}n∈N be an orthonormal basis forH consisting of eigenvectors
of A. Then

X =
∞∑
n=1

〈X, en〉 en =
∞∑
n=1

Xnen,

AX =
∞∑
n=1

δn 〈X, en〉 en =
∞∑
n=1

δnXnen

where δn ≥ 0 are the eigenvalues of A. Since E‖X − AX‖2 =
∑∞
n=1E(Xn −

δnXn)2 and Xn = 〈X, en〉
s.o.∼ δn 〈X, en〉 = 〈AX, en〉, the above remark applies

if we identify X with (Xn).
X and AX (considered in the basis {en}) have the same dependence structure

and (X,AX) is an o.c.(W).

This result has some new consequences. For instance, if T is a denumerable

set, PXt is nonatomic, t ∈T, Y
d
=AX and (X,Y) is an o.c.(W), then, by Corollary

2.7, Y = AX, λ-a.s., i.e., we have the uniqueness of optimal couplings.
In particular if P and Q are Gaussian measures on <n with mean vector

zero and regular variance-covariance matrices Σ1 and Σ2, and X
d
=P, then BX

d
=Q, where

B = Σ
−1/2
1

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
Σ
−1/2
1 ,

(see the introduction) and therefore the o.c.(W) between two Gaussian distri-
butions is unique.
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As a new application, let (T,A, µ) be a measure space, let H = L2(T,A, µ)
and let A be a positive semidefinite, selfadjoint L2-operator given by a L2-kernel
(which we denote by Ã)

AX(s) :=
∫
Ã(s, t)Xtdµ(t), s ∈ [a, b];

we have the following corollary:

Corollary 2.11 If X is a continuous, Gaussian L2-process with mean zero and
covariance function R1 and A is a positive semidefinite, selfadjoint L2-operator

given by the kernel Ã, then (X,AX) is an o.c.(W) w.r.t. ‖x‖ = (
∫
x2sdµ(s))

1/2
.

AX is a Gaussian process with mean zero and covariance function

R2(s, t) =
∫ ∫

Ã(s, u)R1(u, v)Ã(v, t)dµ(u)dµ(v).

Finally:

Corollary 2.12 If P is orthogonally invariant, if A is a n × n matrix and

AX
d
=Q for X

d
=P then, the pair (X,A+X) is an o.c.(W) of P and Q, where

A = A+O is the polar decomposition of A.

PROOF.- Since A+ is positive semidefinite and AX
d
=A+X, the result follows

from Theorem 2.10.

Remark 3 If Q is an orthogonal matrix, then typically (X,QX) is not an
o.c.(W). If, e.g., X is uniformly distributed in <2 on [−1, 1] × {0} and Tα is
the rotation by the angle α, then for α ∈ [−π/2, π/2], (X,TαX) is an optimal

coupling. For α ∈ [−π/2, 3π/2] the pair
(
X,Tα−π/2

)
is an optimal coupling

(but not (X,TαX) ). For α ∈ {π/2,−π/2} we do not have uniqueness of an
optimal coupling.

Moreover, in [24] it is proved that, in <n, if P is uniform on a set A with
finite Lebesgue measure and such that it contains a ball then (X,Tα(X)) is not
an optimal coupling for every α 6= 0.

Based on the more involved criterion (1.1) we can omit the assumption of
discrete spectrum of A in Theorem 2.10.

Theorem 2.13 Let (H, 〈·, ·〉) be a real, separable, Hilbert space, let X be an
H-valued r.v. and let A be a selfadjoint, positive operator. Then (X,AX) is an
o.c.(W).

PROOF.- The function f(x) = 1
2
〈x,Ax〉 is closed convex. By (1.1) we have to

show that AX ∈ ∂f(X) a.s., i.e. ∀z ∈ H holds: f(z) ≥ 〈z − x,Ax〉 (c.f. [8]).
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Equivalent to this inequality is

〈z, Az〉+ 2〈x,Ax〉 − 2〈z, Ax〉 ≥ 0, ∀z ∈ H

and this inequality is a consequence of

0 ≤ 〈z − x,A(z − x)〉 = 〈z, Az〉+ 〈x,Ax〉 − 2〈x,Az〉.

3 Optimality of radial transformations.

Let U = <n with euclidean norm ‖ · ‖ = ‖ · ‖2 and let φ : <n → <n be a
transformation of the form

φ(x) =

{
α(‖x‖)
‖x‖ x, if x 6= 0

0 if x = 0

with α monotonically nondecreasing; then φ is called a radial transformation.

If φ is a radial transformation and X
d
=P and φ (X)

d
=Q, then we say that

P and Q are of the same radial type. If Y
d
=φ(X) then ‖φ(X)‖ = α(‖X‖) and

α is determined by the equation

F‖Y ‖(y) = λ{α(‖X‖) ≤ y} = F‖X‖
(
α−1(y)

)
(3.1)

i.e. α maps the p-quantile of ‖X‖ on the p-quantile of ‖Y ‖, p ∈(0,1).

Proposition 3.1 Let X
d
=P and φ(X)

d
=Q for a radial transformation φ, then

(X,φ(X)) is an o.c.(W).

PROOF.- Define F (t) :=
∫ t
0 α(s) ds, and f(x) := F (‖x‖). Then f(x) is convex

because it is of the form ϕ[h(x)] with h convex, and ϕ convex and nondecreas-
ing.

If we show that for every x, x′

f(x′)− f(x) ≥ 〈φ(x), x′ − x〉

then by (1.1), (X,φ(X)) is an o.c.(W) for P,Q. The increasing character of α
ensures that:

f(x′)− f(x) ≥ (‖x′‖ − ‖x‖)α(‖x‖)
On the other hand

〈φ(x), x′ − x〉 =
α(‖x‖)
‖x‖

〈x, x′ − x〉

=
α(‖x‖)
‖x‖

(
‖x‖‖x′‖cos (ang(x, x′))− ‖x‖2

)
≤ (‖x′‖ − ‖x‖)α(‖x‖).
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Alternatively, since ∂F (t) = [α(t−), α(t+)] and ∂‖x‖ = ∇(‖x‖) = x
‖x‖ for

x 6= 0, while ∂‖0‖ is the unit ball, we obtain for x 6= 0, φ(x) = α(‖x‖)
‖x‖ x ∈ ∂f(x)

(c.f. [8]). For x = 0, φ(x) = 0, this is obvious.

The result of Proposition 3.1 can be generalized to much more general sit-
uations and it turns out that radial transformations have very general optimal
couplings properties.

Theorem 3.2 Let (U, ‖·‖) be any normed space with Borel σ-algebra L. Define
for ϕ : <+ → <+ convex, increasing, the distance σϕ by σϕ(x, y) := ϕ(‖x−y‖).

If X
d
=P , Y

d
=Q satisfy

Y =
‖Y ‖
‖X‖

X, λ-a.s. (3.2)

and
‖X‖ s.o.∼ ‖Y ‖; (3.3)

then (X,Y) is an o.c.(σϕ).

PROOF.- Since ϕ is nondecreasing, ϕ(‖x− y‖) ≥ ϕ(|‖x‖ − ‖y‖|) with equality

if y = ‖y‖
‖x‖x.

Since ϕ is convex it follows from (3.3), Proposition 2.1 and Remark 1, that
(‖X‖, ‖Y ‖) is an o.c.(ϕ̃) where ϕ̃(a, b) = ϕ(|a− b|) and, therefore, (X,Y) is an
o.c.(σϕ).

Corollary 3.3 If Y = φ(X) λ-a.s. with φ a radial transformation on a normed
space (U, ‖ · ‖), then (X,φ(X)) is an o.c.(σϕ).

Corollary 3.4 If U = H is a Hilbert space, ϕ is strictly convex and X
d
=P, Y

d
=Q, then

a)

Eσϕ(X, Y ) ≥ ϕ̃
(
P ‖ ‖, Q‖ ‖

)
, (3.4)

and we have equality if and only if (3.2) and (3.3) hold.

b) If φ is a radial transformation, Y
d
=φ(X) and P ‖ ‖ is nonatomic, then

(X,Y) is an o.c.(σϕ), if and only if

Y = φ(X), λ-a.s.

PROOF.- Note that if (X,Y) is an o.c.(σϕ), then

σϕ(P,Q) = E [ϕ‖X − Y ‖] ≥ Eϕ [|‖X‖ − ‖Y ‖|] ≥ ϕ̃
(
P ‖ ‖, Q‖ ‖

)
(3.5)
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and (3.4) is proved.
Moreover, ϕ strictly convex implies that ϕ is strictly increasing. So the

first inequality in (3.5) is an equality if and only if (3.2) holds and the second
inequality is another equality if and only if (3.3) is verified (Proposition 2.1,
Remark 1). So a) is proved.

With respect to b), as the pair (X,φ(X)) verifies (3.2) and (3.3), then

(X,φ(X)) is an o.c.(σϕ), the pair (‖X‖, ‖Y ‖) is an o.c.(φ̃) and (3.5) is an equal-

ity in this case. Therefore, if (X,Y) is an o.c.(σϕ), then Y = ‖Y ‖
‖X‖X because ϕ

is strictly increasing.
But the o.c.(ϕ̃) is unique (Proposition 2.1 and Remark 1). So ‖Y ‖ =

‖φ(X)‖ = α (‖X‖) λ−a.s., and the proof ends.

Example 3.5 Here we propose three examples of applications of Theorem 3.2.

1. Spherically invariant distributions.
P ∈ M1(<n,L) is called spherically invariant if P is invariant with respect

to orthogonal transformations on <n. It is well-known that P is spherically
invariant if and only if the conditional distributions

P (· | ‖x‖ = t) = Ut

are the uniform distribution on {x : ‖x‖ = t}, (‖ ‖ denotes the euclidean norm
on <n). Typical examples of spherically invariant distributions are those which
admit a density with respect to the Lebesgue measure which only depends on
x through ‖x‖.

Since

P =
∫
UtdP

‖ ‖(t), Q =
∫
UtdQ

‖ ‖(t)

if P and Q are spherically invariant distributions, there exist r.v.’s X
d
=P and

Y
d
=Q with ‖X‖ s.o.∼ ‖Y ‖ and Y = ‖Y ‖

‖X‖X and, therefore, (X,Y) is an o.c.(σϕ).

A direct argument is as follows. If X
d
=P, then with U := X

‖X‖ (assuming

X 6= 0, λ-a.s.) we have X = U · ‖X‖ and U, ‖X‖ are independent. Define

Y := Z · U , where Z
d
=Q‖ ‖, ‖X‖ s.o.∼ Z and Z, U are independent. Then Y

d
=Q

and Y = ‖Y ‖
‖X‖X.

Moreover if ϕ is strictly convex and P ‖ ‖ is non-atomic, then the o.c.(σϕ) is
unique and is given by the radial transformation Y = φ(X), where

φ(x) =
α (‖x‖)
‖x‖

x, α(t) := F−1‖Y ‖ ◦ F‖X‖(t). (3.6)

In this way we obtain, for instance, an o.c.(σϕ) between the uniform dis-
tribution on the unit ball B(0, 1) = {x ∈ <n : ‖x‖ ≤ 1}, U(B(0,1)) and the
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normal distribution with covariance matrix In = I, N(0, I) = ⊗ni=1N(0, 1), by
a radial transformation with α determined from (3.1) which is independent of
ϕ. Note that F‖Y ‖2 is a χ2

n-distribution and that

F‖X‖(t) =
Volume (B(0; t))

Volume (B(0, 1))
= tn, 0 < t < 1.

So we obtain that the

W 2(U(B(0, 1)), N(0; I)) = E‖X − φ(X)‖2 =

E |‖X‖ − α(‖X‖)|2 =
∫ 1

0
|t− α(t)|2ntn−1dt,

where, from (3.6), we have that

α(t) = F−1χ2
n

[F 2
‖X‖(t)] = F−1χ2

n
(t2n), 0 < t < 1.

2. Spherically equivalent distributions.
Given P,Q ∈M1(U,L) where L is the Borel σ-algebra in the normed space

(U,‖ · ‖) we denote by pt and qt, t∈(0, 1) a t-quantile of the distributions P ‖ ‖

and Q‖ ‖ respectively. Then we call P and Q spherically equivalent, if

P (A | ‖x‖ = pt) = Q

(
qt
pt
A | ‖x‖ = qt

)
, ∀t

where A is any Borel set.
In particular, two spherically invariant distributions are spherically equiva-

lent.
First we show that Theorem 3.2 applies to spherically equivalent distribu-

tions.

Proposition 3.6 Let P and Q be spherically equivalent distributions. Then,

there exist X
d
=P and Y

d
=Q such that ‖X‖ s.o.∼ ‖Y ‖ and Y = ‖Y ‖

‖X‖X.

PROOF.- Let X
d
=P and let us denote by F1 and F2 the d.f.’s of P ‖ ‖ and Q‖ ‖

respectively.

Let U
d
=U(0, 1) be independent from X and define:

α(‖X‖, U) := F−12 (F1(‖X‖, U)) and Y :=
α(‖X‖, U)

‖X‖
X

where F−12 and F are defined as in Section 2.

Then ‖Y ‖d
=Q‖ ‖ and ‖X‖ s.o.∼ ‖Y ‖.

Let t∗ ∈ (0, 1). If we show that

λ {Y ∈ A | ‖Y ‖ = qt∗} = Q(A | ‖x‖ = qt∗) (3.7)
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the proposition will be proved. To this end let t∗0, t
∗
1 be such that [t∗0, t

∗
1] = {t :

qt = qt∗}. If this interval is degenerated (i.e. t∗0 = t∗1 = t∗) and if we denote
[t0, t1] = {t : pt = pt∗}, then

{‖Y ‖ = qt∗} =
{
‖X‖ = pt∗ ; U =

t∗ − t0
t1 − t0

}
and for every A ∈ L:

λ {Y ∈ A | ‖Y ‖ = qt∗} = λ

{
α(‖X‖, U)

‖X‖
X ∈ A

∣∣∣∣‖X‖ = pt∗ ; U =
t∗ − t0
t1 − t0

}

= λ

{
qt∗

pt∗
X ∈ A

∣∣∣∣∣ ‖X‖ = pt∗

}
= Q(A | ‖x‖ = qt∗)

where the second equality holds because X and U are independent.
Then, let us suppose that t∗0 < t∗1 and let [t0, t1] = {t : pt ∈ [pt∗0 , pt∗1 ]}.

It is evident that t0 ≤ t∗0 , t1 ≥ t∗1 , pt0 = pt∗0 , pt1 = pt∗1 and that there exist
a, b ∈ (0, 1) such that

(1− a)λ {‖X‖ = pt0}+ λ {‖X‖ ∈ (pt0 , pt1)}+ bλ {‖X‖ = pt1} = t∗1 − t∗0.

Moreover, if we fix a and b through the relation

λ {‖X‖ < pt1}+ bλ {‖X‖ = pt1} = t∗1

we obtain that
{‖Y ‖ = qt∗} =

{‖X‖ = pt0 ; U ≥ 1− a} ∪ {‖X‖ ∈ (pt0 , pt1)} ∪ {‖X‖ = pt1 ; U ≤ b}

Therefore, if A ∈ L:

λ {Y ∈ A | ‖Y ‖ = qt∗} =
1

t∗1 − t∗0
λ {Y ∈ A ; ‖Y ‖ = qt∗}

=
1

t∗1 − t∗0

[
λ

{
qt∗

pt0
X ∈ A ; ‖X‖ = pt0 ; U ≥ 1− a

}

+λ

{
qt∗

‖X‖
X ∈ A ; ‖X‖ ∈ (pt∗0 , pt∗1)

}
(3.8)

+λ

{
qt∗

pt1
X ∈ A ; ‖X‖ = pt1 ; U ≤ b

}]

where we have used that pt0 = pt∗0 and pt1 = pt∗1 . Now we consider each term
separately

λ

{
qt∗

‖X‖
X ∈ A ; ‖X‖ ∈ (pt∗0 , pt∗1)

}
=
∫
(pt∗

0
,pt∗

1
)
λ

{
qt
pt
X ∈ A

∣∣∣∣∣ ‖X‖ = pt

}
dP ‖X‖(pt)

=
∫
(pt∗

0
,pt∗

1
)
Q(A | ‖x‖ = qt)P

‖X‖d(pt) = Q(A | ‖x‖ = qt)λ {‖X‖ ∈ (pt0 , pt1)}
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The first term gives:

λ

{
qt∗

pt0
X ∈ A ; ‖X‖ = pt0 ; U ≥ 1− a

}

= (1− a)λ

{
qt∗0
pt∗0
X ∈ A

∣∣∣∣∣ ‖X‖ = pt∗0

}
λ {‖X‖ = pt0}

= (1− a)Q(A | ‖x‖ = qt∗)λ {‖X‖ = pt0}

A similar reasoning with the last term and (3.8) gives us (3.7) and the proof
ends.

Therefore, if P and Q are spherically equivalent, then Theorem 3.2 yields
optimal couplings uniformly for all distances σϕ. If P ‖ ‖ is continuous, an
optimal coupling is obtained by a radial transformation as in (3.6). Moreover,
according with (3.1), if φ is a radial transformation, X and φ(X) are spherically
equivalent.

The following example shows that the spherically equivalent distributions
are not the only ones to which Theorem 3.2 is applicable.

Example 3.5.1 Suppose that U = <2 is supplied with the euclidean norm and
that P and Q are uniform distributions on a circumference and on an ellipse
respectively. Then, an o.c(W) between P and Q can be written as (X,A(X)X),
with A(X) ∈ <+, but P and Q are not spherically equivalent in spite of the

fact that ‖X‖ s.o.∼ ‖A(X)X‖.

In the n-dimensional case, if ‖ ‖ is the euclidean norm, there exists a very
simple characterization of spherically equivalence.

Proposition 3.7 Let X
d
=P and Y

d
=Q and denote ψ(X) = (‖X‖, φ1, ..., φn−1)

and ψ(Y ) = (‖Y ‖, ψ1, ..., ψn−1) the transformations of X and Y to polar coordi-
nates respectively. Then P and Q are spherically equivalent if and only if ψ(X)
and ψ(Y ) have the same dependence structure and

φi
d
=ψi, 1 ≤ i ≤ n− 1. (3.9)

This Proposition can be used to construct examples of spherically equivalent
distributions. It also gives the following corollary. Note that we obtain as
consequence of the proposition that if P and Q are spherically equivalent and

X
d
=P and Y

d
=Q then there exists increasing functions, T, f1, ..., fn−1 : < → <

such that

ψ(Y )
d
=(T (‖X‖) , f1(φ1), ..., fn−1(φn−1)).

By (3.9), we can assume that fi = Id, i = 1, ..., n−1. So, if we consider polar
coordinates in <n, and we assume that the distribution of ‖X‖ is continuous,
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we have the following characterization of the class of the distributions which
are spherically equivalent to a given one.

Corollary 3.8 Let X
d
=P and let (‖X‖, φ1, ..., φn−1) be the representation of X

in polar coordinates. If P ‖ ‖ is continuous, we have that P and Q are spherically
equivalent if and only if there exists an increasing function T : < → < such

that (T (‖X‖) , φ1, ..., φn−1)
d
=Q.

It is not difficult to find examples of spherically equivalent distributions
which are not related through radial transformations and viceversa; but in the
next proposition we prove that there exists a strong link between both notions.

Proposition 3.9 Let P and Q be two probability distributions and let X
d
=P.

Then:

1. If P and Q are spherically equivalent and the distribution of ‖X‖ is con-

tinuous,then there exists a radial transformation φ such that φ(X)
d
=Q.

2. If φ is a radial transformation such that φ(X)
d
=Q and α is strictly increas-

ing, then P and Q are spherically equivalent distributions.

PROOF.- Item 1 is a consequence of the Proposition 3.6 because in this case
the function α(‖X‖, U) in the proof of this Proposition does not depend on U .

With respect to 2 note that ‖Y ‖ = α(‖X‖) and that for q ∈Im(α) there
exists an unique p such that q = α(p). So we have that

λ

{
Y ∈ q

p
A |‖Y ‖ = q

}
= λ

{
α(‖X‖)
‖X‖

X ∈ q

p
A |α(‖X‖) = q

}
=

λ

{
X

‖X‖
∈ 1

p
A |α(‖X‖) = α(p)

}
= λ {X ∈ A|‖X‖ = p} .

As an application consider the p-norms on <n

‖x‖p =

{
(
∑ | xi |p)1/p , if 1 ≤ p <∞

max{| xi |}, if p =∞.

Let P be the uniform distribution on the p-ball of radius 1 in <n+,

Bp(0, 1) = {x ∈ <n+ : ‖x‖p ≤ 1}

for 0 < p <∞, let Qλ,p := ⊗ni=1Wλ,p, where Wλ,p is a Weibull-distribution with
density

fλ,p(x) =
λ1/pp

Γ(1/p)
e−λx

p

, x ≥ 0,
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and for p = ∞, let Qλ,∞ := ⊗ni=1U(0, λ) denote the uniform distribution on
(0, λ)n. Then an o.c.(σϕ), σϕ(x, y) = ϕ(‖x − y‖p), between P and Qλ,p is
obtained by a radial transformation.

3. Norm weighted processes.
LetX = {Xt}t∈[0,1] be a stochastic process in Lp([0, 1]), respectivelyD([0, 1]),

with norm ‖·‖p, resp. ‖·‖∞, and define Y = {Yt}t∈[0,1] by Yt = ‖X‖rpXt, r > −1.
So each path of X is weighted by its norm. From Theorem 3.2, (X,Y) is an op-
timal coupling between PX and PY with respect to σϕ(x, y) = ϕ(‖x−y‖p), 0 <
p ≤ ∞. In particular, in this way one obtain optimal couplings between spher-
ically invariant processes and more generally spherically equivalent processes.

Next we analyze some possible generalizations of the preceeding results.
The first conclusion is negative but, in some way, surprising. In a Hilbert

space, if φ(x) = α(A(x))
B(x)

x, the only possibility to assure that (X,φ(X)) is an o.c.

is to take A(x) = f(‖x‖) if we restrict the selection of A to a suitable class.
The key is the following proposition:

Proposition 3.10 Let (H; 〈·, ·〉) be a Hilbert space and let A : H → <+ be a
continuous function such that there exist two points x and y verifying that

A(y) < A(x) and 〈x, y − x〉 > 0.

If B : H → <+ is continuous, then there exist an increasing map α : <+ →
<+ such that for every r.v., X, with support equal to H,

(
X, α(A(X))

B(X)
X
)

is not

an o.c.(W).

PROOF.- Trivially〈
α(A(y))

B(y)
y − α(A(x))

B(x)
x, y − x

〉
=
α(A(y))

B(y)
〈y, y − x〉 − α(A(x))

B(x)
〈x, y − x〉.

The second term is negative. So, for a suitable increasing function, α, the
sum is also negative. The continuity of A and B and the asumption on the
support of X, implies that the map x → α(A(x))

B(x)
x is not λ-a.s. increasing, and

then we have the result by Theorem 2.3 in [3].

This result includes a lot of cases, as the next proposition and corollaries
show.

Proposition 3.11 Let A : H → <+ be a continuous function such that

1. The restriction of A to the set {δv : δ ≥ 0} is strictly increasing for every
v ∈ H, and

2. If A(y) < A(x) then 〈x, y − x〉 ≤ 0 .

Then A(x) = f(‖x‖) for some strictly increasing function f.
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PROOF.- In this proof we are going to denote by L[a, b, ..] (resp. L[a, b, ..]⊥) the
linear subspace generated by the vectors {a,b,...} (resp. the ortogonal subspace
to the vectors {a,b,..,}).

Note that if we show that for each x, y ∈ H with A(x) = A(y) holds ‖x‖ =
‖y‖ then we have as consequence A(x) = f(‖x‖) with f strictly increasing by
1.

Therefore, let x, y ∈ H such that A(x) = A(y) and x 6= y. 1. implies
that θ = ang(x, y) 6= 0. Let n ∈ N , and define x0n = x and xin be the vector
in L[x, y] ∩ {xi−1n + L[xi−1n ]⊥} such that ang(xin, x

i−1
n ) = θ/n, 1 ≤ i ≤ n and

xnn = αy; α > 0. Therefore, 〈xi−1n , xin − xi−1n 〉 = 0. This, 2. and the continuity
of A imply that A(xin) ≥ A(xi−1n ). So, A(y) ≤ A(xnn), and 1. implies that

‖y‖ ≤ ‖xnn‖. (3.10)

On the other hand, it is evident that ‖xin‖ = ‖xi−1
n ‖

cos θ/n
; therefore, ‖xnn‖ =

‖x‖
(cos θ/n)n

, which jointly with (3.10) gives that

‖y‖ ≤ limn
‖x‖

(cos θ/n)n
= ‖x‖

and the proof ends.

Corollary 3.12 Let φ : H → H be such that φ(x) = α(A(x))
B(x)

x where α, A and B

verify the conditions in Proposition 3.10 and 3.11. If φ verifies that (X,φ(X))
is an o.c.(‖ ‖) for every r.v. X, then φ is a radial transformation with respect
to the norm ‖ ‖.

With this corollary we obtain that the condition on the support of X in
Proposition 3.10 can not be deleted. For instance, consider again the example
3.5.1. There an o.c.(W) between P and Q could be written as (X,A(X)X) but
A(X) 6= α(‖X‖).

Corollary 3.13 If ‖ ‖ is a norm on <n different from the euclidean one, there

exists α : <+ → <+, increasing, and a r.v., X, such that
(
X, α(‖X‖)‖X‖ X

)
is not

an o.c.(W) with respect to the euclidean norm.

In particular, if A is a symmetric, positive definite matrix different from the

identity and ‖x‖A = xtAx, then, for some r.v., X, the pair
(
X, α(‖X‖A)

‖X‖A
X
)

is

not an o.c.(W) with respect to the euclidean norm, but, according to Corollary
3.3, it is an o.c.(W) with respect to the norm ‖ ‖A.

The next result is also negative. It could be suspected that the composition

of o.c.(W)’s gives a new o.c.(W). If this were true then,
(
X, α(‖X‖)‖X‖ AX

)
should

be an o.c.(W) because in Proposition 3.1 and Theorem 2.10 we have proved
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that, if α : < → < is increasing and A is a symmetric, positive semidefinite

n × n matrix, then
(
X, α(‖X‖)‖X‖ X

)
and

(
α(‖X‖)
‖X‖ X,

α(‖X‖)
‖X‖ AX

)
are o.c.(W). But,

we have the following proposition.

Proposition 3.14 Let A be a symmetric, positive definite, n×n matrix. There
exists an increasing map α : <+ → <+ such that if X is a r.v. with support

containing <n+, then
(
X, α(‖X‖)‖X‖ AX

)
is not an o.c.(W).

PROOF.- Let H(x) = α(‖x‖)
‖x‖ Ax and {ei}1≤i≤n be an orthonormal basis of eigen-

vectors. Suposse δ1 ≥ δ2 where δ1, δ2 are eigenvalues of A. If x = e1 + e2, y =
1
4
e1 + 6

4
e2 then ‖x‖2 = 2 < ‖y‖2 = 37

16
. Also, 〈y− x,Ax〉 = −3

4
δ1 + 2

4
δ2 < 0. So,

if we fixe α(‖x‖) and take α(‖y‖) big enough then H(y)−H(x) is close to Ax,
and H is not increasing. Therefore, (X,H(X)) is not an o.c. (see Theorem 2.3
in [3]).

In the following propositions we construct some transformations similar to
the radial ones which have the optimal coupling property for W-coupling with
respect to the euclidean distance.

Proposition 3.15 For any symmetric, positive semidefinite matrix A and any
r.v. X on <n, (

X,
α(‖X‖A)

‖X‖A
AX

)
(3.11)

is an o.c.(W) with respect to the euclidean norm, where ‖x‖A = (xtAx)1/2.

PROOF.- Define f(x) := F (‖x‖A), F (t) =
∫ t
0 α(s)ds. Then f is convex and,

similarly to the proof of Proposition 3.1, α(‖x‖A)
‖x‖A

Ax ∈ ∂f(x) which implies

(3.11) by (1.1).

Proposition 3.16 For 1 ≤ p <∞, let

φ(x) =
α(‖x‖p)
‖x‖p

(
x1 | x1 |p−2, . . . , xn | xn |p−2

)
, x ∈ <n

with α increasing. Then, for any r.v. X the pair (X,φ(X)) is an o.c.(W) with
respect to the euclidean norm.

PROOF.- With F (t) =
∫ t
0 α(s)ds define f(x) := F (‖x‖p). Then f is convex and

φ(x) ∈ ∂f(x) which implies Proposition 3.16.
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Remark 4

a) For 0 < p < 1, ‖x‖p =
∑ | xi |p and, therefore, for nondecreasing α

φ(x) = α (‖x‖p)
(
| x1 |p−1 sign(x1), . . . , | xn |p−1 sign(xn)

)
, x ∈ <n

has the o.c. property w.r.t. W and the euclidean distance.

b) For p =∞, ‖x‖∞ = max | xi |, if we consider f(x) = F (‖x‖∞) we obtain
that

φ(x) = α (‖x‖∞) sign(xj)e,

for any e in the convex hull of ej, over all j with | xj |= ‖x‖∞, has the o.c.
property w.r.t. W and the euclidean distance.

Proposition 3.17 The transformation φ(x) =
(

exi∑
exj

)
from <n+ to the unit

simplex {x ∈ <n+ :
∑n
i=1 xi = 1} has the o.c. property w.r.t. W and the

euclidean distance.

PROOF.- Take the convex function f(x) = ln (
∑
exi), then φ(x) = ∇f(x)

which implies optimality.

Note that for differentiable transformations of the form ψ(x) =
(

h(xi)∑
h(xj)

)
in

the unit simplex, the transformation φ of Proposition 3.17 is the only optimal
one. This follows from the symmetry condition ∂ψi

∂xj
= ∂ψj

∂xi
(see (1.2)) which is

satisfied only for φ.
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