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Abstract

We consider the Wasserstein distance between a sample distribution and the set of normal
distributions as a measure of non-normality. By considering the standardized version of this
distance we obtain a version of Shapiro-Wilk’s test of normality. The asymptotic behaviour
of the associated statistic is studied through approximations to the quantile process by
Brownian bridges. This method differs from the available “ad hoc” method by de Wet and
Venter and permits a similar analysis for testing fit to location and scale families.
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1 Introduction

Goodness of fit tests are often based on some distance between distribution functions (d.f.’s)
or between probability laws (p.l.’s). In this work we follow this methodology, through the L2-
Wasserstein distance, by analyzing the distance between a fixed distribution and a location and
scale family of probability distributions in R. We focus on the (more interesting) normal case,
but our approach can be used to cover different distribution types (we refer to [1] for details).

Let P2(R) be the set of probabilities on the line with finite second order moment. For
probabilities P1 and P2 in P2(R) the L2-Wasserstein distance between P1 and P2 is defined as
the lowest L2-distance between random variables (r.v.’s), defined in any probability space, with
these distribution laws:

W(P1, P2) := inf

{[
E (X1 −X2)2

]1/2
,L(X1) = P1,L(X2) = P2

}
.
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A fact that makes W useful in statistics on the line is that it can be explicitely obtained in
terms of quantile functions. If P1 and P2 have distribution functions F1 and F2 and quantile
functions F−1

1 and F−1
2 , then (see e.g. [2])

W(P1, P2) =

[∫ 1

0

(
F−1

1 (t)− F−1
2 (t)

)2
dt

]1/2

(1)

(recall that F−1 is defined on (0, 1) by F−1(t) = inf{s : F (s) ≥ t} and verifies that its distribu-
tion function is F when considered as a r.v. defined on the unit interval).

To ease the notation we will often identify a probability law with its distribution function
(d.f.). In particular Φ will denote the d.f. of the standard normal law and φ will denote its
density function, while HN := {H : H(x) = Φ

(x−µ
σ

)
, µ ∈ R, σ > 0} will be the set of normal

laws on the line.
Now, observe that if P ∈ P2(R) has d.f. F , mean µ0 and standard deviation σ0, then

W2(P,HN ): = inf{W2(P,H), H ∈ HN }= inf
σ>0

{∫ 1

0

(
F−1(t)− µ0 − σΦ−1(t)

)2
dt

}
=σ2

0−
(∫ 1

0
(F−1(t)− µ0)Φ−1(t)dt

)2

=σ2
0−
(∫ 1

0
F−1(t)Φ−1(t)dt

)2

. (2)

Thus, the normal law closest to P is given by µ = µ0, and σ =
∫ 1

0 F
−1(t)Φ−1(t)dt. Note

also that the ratio W2(P,HN )/σ2
0 is not affected by location or scale changes on P . Hence, it

can be considered as a measure of non-normality.
Now let X1, X2, ..., Xn be a simple random sample with underlying d.f. F and let Fn denote

the associated sample d.f.. It is natural to try to employ the sample version based on Fn and
the sample variance S2

n:

Rn :=
W2(Pn,HN )

S2
n

= 1−

(∫ 1
0 F

−1
n (t)Φ−1(t)dt

)2

S2
n

(3)

to test the hypothesis of normality. In fact Rn is connected with the so-called correlation tests,
whose interest is largely motivated by Shapiro-Wilk’s test of normality [13]. This has been
noted, in the context of normal probability plots, looking for the best choice for the plotting
positions, by Brown and Hettmansperger in [3].

Additional relevant literature concerning the family of statistics related to Shapiro-Wilk’s
W statistic includes (or can be obtained in) [9], [11], [14], [12], but the only direct proof of the
asymptotic behaviour of any of these statistics is that one in [9].

The purpose of this paper is to analyze the asymptotic behaviour of Rn through approxi-
mations of quantile processes by Brownian bridges, B(t). This approach was also used in [4] to
obtain the law of a simplified version, but the proof depends heavily on the previous results in
[9] because it requires to give a sense to the limit expression

Z :=

∫ 1

0

B2(t)− EB2(t)

(φ(Φ−1(t)))2
dt. (4)
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This difficulty will be circumvented in Theorem 4, where we will show that, although the set

of trajectories of a Brownian bridge B(t) for which the function t 7→ B2(t)−EB2(t)
(φ(Φ−1(t)))2

is integrable

has zero probability, the sequence{∫ 1− 1
n

1
n

B2(t)− EB2(t)

(φ(Φ−1(t)))2
dt

}
n

is an L2-Cauchy sequence, whence we can give an adequate sense to Z as an L2-limit.
We should remark that the ambitious program on the convergence of integrals of empirical

and quantile processes developed in [6], [7] and [8] does not cover our results.
We would also like to notice that, with the present approach, we have not only been able

to obtain the asymptotic distributions of those statistics belonging to the Shapiro-Wilk family
under normality, but we have also found (see [1] for details) limit laws in a more general setup,
including heavier tailed distributions, which had not been previously reported in the literature
concerning the correlation tests (see [12]).

2 The results

The normal law closest to the sample d.f. Fn, based on X1, X2, ...Xn, is given by the sample
mean, µ̂n = µ(Fn) = X̄n, and (denoting the ordered statistic by Xkn, k = 1, 2, ...n)

σ̂n =
n∑
k=1

Xkn

∫ k
n

k−1
n

Φ−1(t)dt.

Our measure of non-normality is then

Rn =
W2(Pn,HN )

S2
n

= 1− σ̂2
n

S2
n

,

where S2
n = 1

n

∑n
i=1(Xi − X̄n)2 is the variance of the sample distribution. We will study Rn

under the hypothesis F (x) = Φ
(
x−µ0
σ0

)
.

The invariance of Rn with respect to location or scale changes, allows us to assume F = Φ
and, by the convergence S2

n → σ2(Φ) = 1 a.s., we can study the asymptotic behaviour of Rn
through that of S2

nRn which, in turns, admits the following decomposition

0 ≤ R∗n := S2
nRn =

∫ 1

0
(F−1

n (t)− Φ−1(t))2dt−
(∫ 1

0
(F−1

n (t)− Φ−1(t))dt

)2

−
(∫ 1

0
(F−1

n (t)− Φ−1(t))Φ−1(t)dt

)2

:= R(1)
n −R(2)

n −R(3)
n . (5)

Observe that nR(2)
n = (n1/2X̄n)2, which has a χ2

1 asymptotic law. On the other hand

nR(3)
n =

(
n1/2

(∫ 1

0
F−1
n (t)Φ−1(t)dt− 1

))2

= (n1/2(σ̂n − 1))2,
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which has a scaled χ2
1 asymptotic law. Finally note that nR(1)

n is the statistic L0
n of De Wet

and Venter. However, we need a joint treatment of (R(1)
n ,R(2)

n ,R(3)
n ).

This joint treatment can be handled in terms of the quantile process ρn defined by

ρn(t) := n1/2φ(Φ−1(t))
(
Φ−1(t)− F−1

n (t)
)
, 0 ≤ t ≤ 1,

which, as can be easily showed, verifies the regularity conditions introduced in [5]. Thus,

Theorem 1 (see Theorem 6.2.1 in [7]) We can define in a rich enough probability space a
sequence of Brownian bridges {Bn(t), 0 ≤ t ≤ 1}n such that

n(1/2)−ν sup
1

n+1
≤t≤1− 1

n+1

|ρn(t)−Bn(t)|
(t(1− t))ν

=

{
OP (log n), if ν = 0,

OP (1), if 0 < ν ≤ 1
2 .

Theorem 1 allows to consider jointly the three integrals in (5) because, in terms of the
general quantile process, decomposition (5) is equivalent to

n
(
S2
n − σ̂2

n

)
=

∫ 1

0

(
ρn(t)

φ(Φ−1(t))

)2

dt−
(∫ 1

0

ρn(t)

φ(Φ−1(t))
dt

)2

−
(∫ 1

0

ρn(t)Φ−1(t)

φ(Φ−1(t))
dt

)2

.

To carry out our program we begin by considering the behaviour of the integrals at the
extremes and then (Proposition 3) we show that the approximation given by Theorem 1 reduces
the problem to the corresponding one in terms of a Brownian bridge.

Proposition 2 If {Xin, i = 1, ..., n} is the ordered sample obtained from an i.i.d. random sam-
ple of a standard nornal law, then:

n

∫ 1
n

0

(
X1n − Φ−1(t)

)2
dt

p→ 0 and n

∫ 1

1− 1
n

(
Xnn − Φ−1(t)

)2
dt

p→ 0.

PROOF: By simmetry it suffices to consider the behaviour of {X1n}n. It is well known (see e.g.

[10]) that an (X1n − bn)
L→ for some an →∞ and bn = Φ−1(1/n). Hence

n

∫ 1/n

0
(X1n − bn)2 dt = (X1n − bn)2 p→ 0.

Then, by Schwarz’s inequality and the following decomposition:

n

∫ 1/n

0

(
X1n − Φ−1(t)

)2
dt = n

∫ 1/n

0
(X1n − bn)2 dt+ n

∫ 1/n

0

(
bn − Φ−1(t)

)2
dt

+2n (X1n − bn)

∫ 1/n

0

(
bn − Φ−1(t)

)
dt,
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we only need to prove that the second summand on the right hand side converges to 0. But this is
an easy consequence of L‘Hôpital’s rule and the well known equivalence φ(Φ−1(x)) ≈

∣∣Φ−1(x)
∣∣x

as x→ 0:

lim
x→0

1

x

∫ x

0
(Φ−1(x)− Φ−1(t))2dt= lim

x→0

2
∫ x

0 Φ−1(x)− Φ−1(t)dt

φ(Φ−1(x))
= lim
x→0

−2x

Φ−1(x)φ(Φ−1(x))
=0.

2

Proposition 3 There exists, on an adequate probability space, a sequence {Bn(t)}n of Brown-
ian bridges such that the statistic nR∗n = n

(
S2
n − σ̂2

n

)
verifies

nR∗n−
(∫ n

n+1

1
(n+1)

(
Bn(t)

φ(Φ−1(t))

)2

dt−
(∫ n

n+1

1
(n+1)

Bn(t)

φ(Φ−1(t))
dt

)2

−
(∫ n

n+1

1
(n+1)

Bn(t)Φ−1(t)

φ(Φ−1(t))
dt

)2)
p→0.

PROOF: From Proposition 2 and the obvious inequality (valid for every Borel set A)∫
A

(F−1
n (t)− Φ−1(t))2dt≥

(∫
A

(F−1
n (t)− Φ−1(t))dt

)2

∨
(∫

A
(F−1

n (t)− Φ−1(t))Φ−1(t)dt

)2

,

it follows that

nR∗n−
(∫ n

n+1

1
(n+1)

(
ρn(t)

φ(Φ−1(t))

)2

dt−
(∫ n

n+1

1
(n+1)

ρn(t)

φ(Φ−1(t))
dt

)2

−
(∫ n

n+1

1
(n+1)

ρn(t)Φ−1(t)

φ(Φ−1(t))
dt

)2)
p→0.

Therefore, our claim reduces to showing that (on an adequate space)

L(1)
n :=

∫ n
n+1

1
(n+1)

(
ρn(t)

φ(Φ−1(t))

)2

dt−
∫ n

n+1

1
(n+1)

(
Bn(t)

φ(Φ−1(t))

)2

dt
p→ 0,

L(2)
n :=

(∫ n
n+1

1
n+1

ρn(t)

φ(Φ−1(t))
dt

)2

−
(∫ n

n+1

1
n+1

Bn(t)

φ(Φ−1(t))
dt

)2
p→ 0 and (6)

L(3)
n :=

(∫ n
n+1

1
n+1

ρn(t)Φ−1(t)

φ(Φ−1(t))
dt

)2

−
(∫ n

n+1

1
n+1

Bn(t)Φ−1(t)

φ(Φ−1(t))
dt

)2
p→ 0.

We will study first the asymptotic behaviour of L
(1)
n . Theorem 1 guarantees the existence

of a sequence of Brownian bridges such that, for every ν ∈ (0, 1/2):

∣∣∣∣∣
∫ n

n+1

1
n+1

(
ρn(t)

φ(Φ−1(t))

)2

dt−
∫ n

n+1

1
n+1

(
Bn(t)

φ(Φ−1(t))

)2

dt

∣∣∣∣∣
≤

∫ n
n+1

1
n+1

(
ρn(t)−Bn(t)

φ(Φ−1(t))

)2

dt+ 2

∫ n
n+1

1
n+1

|ρn(t)−Bn(t)||Bn(t)|
φ(Φ−1(t))2

dt

≤ Op(1)n2ν−1

∫ n
n+1

1
n+1

(t(1− t))2ν

φ(Φ−1(t))2
dt+Op(1)nν−

1
2

∫ n
n+1

1
n+1

(t(1− t))ν |Bn(t))|
φ(Φ−1(t))2

dt

:= A(1)
n +A(2)

n
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But if 0 < α < 1, then

lim
n→∞

nα−1

∫ n
n+1

1
n+1

(t(1− t))α

φ(Φ−1(t))2
dt = 0 (7)

because the equivalence |x|Φ(x) ≈ φ(x), as x→ −∞, easily shows that

nα−1

∫ 1
2

1
n+1

tα

φ(Φ−1(t))2
dt

=
−nα−1

(n+ 1)α
Φ−1( 1

n+1)

φ(Φ−1( 1
n+1))

− nα−1

∫ 1
2

1
n+1

αtα−1φ(Φ−1(t)) + tαΦ−1(t)

φ(Φ−1(t))2
Φ−1(t)dt→ 0.

Therefore A
(1)
n

p→ 0. On the other hand, also for ν ∈ (0, 1/2) (taking α = ν + 1
2 in (7))

E

[
nν−

1
2

∫ n
n+1

1
n

(t(1− t))ν |Bn(t))|
φ(Φ−1(t))2

dt

]
= nν−

1
2

∫ n
n+1

1
n

(t(1− t))ν+ 1
2

φ(Φ−1(t))2
dt→ 0,

thus A
(2)
n

p→ 0, which shows that L
(1)
n

p→ 0.

Let us consider now L
(2)
n . We can rewrite it as follows:

L(2)
n =

(∫ n
n+1

1
n+1

ρn(t)−Bn(t)

φ(Φ−1(t))
dt

)(∫ n
n+1

1
n+1

ρn(t) +Bn(t)

φ(Φ−1(t))
dt

)
. (8)

The first factor on the right hand side of (8) is bounded by[∫ n
n+1

1
n+1

(
ρn(t)−Bn(t)

φ(Φ−1(t))

)2

dt

]1/2
p→ 0, (9)

where the last convergence is a consequence of the convergence A
(1)
n

p→ 0 showed above. More-
over, it is well known that the law of ∫ n

n+1

1
n+1

Bn(t)

φ(Φ−1(t))
dt

is N(0, σ2
1(1/(n+ 1))), with

σ2
1(x) :=

∫ 1−x

x

∫ 1−x

x

u ∧ v − uv
φ(Φ−1(u))φ(Φ−1(v))

dudv.

It is easy to verify that σ2
1(x)→ 1 as x→ 0, from which∫ n

n+1

1
n+1

Bn(t)

φ(Φ−1(t))
dt = Op(1),
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and, therefore, also ∫ n
n+1

1
n+1

ρn(t)

φ(Φ−1(t))
dt = Op(1),

which, combined with (9), shows L
(2)
n

p→ 0. Similarly,∣∣∣∣∣
∫ n

n+1

1
n+1

(ρn(t)−Bn(t)) Φ−1(t)

φ(Φ−1(t))
dt

∣∣∣∣∣≤
[(∫ 1

0
(Φ−1(t))2dt

)∫ n
n+1

1
n+1

(ρn(t)−Bn(t))2

(φ(Φ−1(t)))2
dt

]1/2
p→ 0.

Since
∫ n

n+1
1

n+1

Bn(t)Φ−1(t)
φ(Φ−1(t))

dt has a N(0, σ2
2( 1
n+1)) law, where

σ2
2(x) :=

∫ 1−x

x

∫ 1−x

x

u ∧ v − uv
φ(Φ−1(u))φ(Φ−1(v))

Φ−1(u)Φ−1(v)dudv → 1/2 as x→ 0,

we can use the reasoning employed for L
(2)
n to show that also L

(3)
n

p→ 0, completing the proof
of (6). 2

Now, showing convergence and describing the limit law are easier tasks. In the next theorem
we obtain the asymptotic law ofRn through its equivalent version based on the Brownian bridge.
Note that the main dificulty is to give sense to expression Z, defined by (4), because, as stated
in the Introduction, the function involved is a.s. not integrable (see Lemma 2.2 in [8]). Thus,
we cannot assume the existence of

lim
n

∫ n
n+1

1
n+1

B2(t)− EB2(t)

(φ(Φ−1(t)))2 dt.

But it turns out that this limit does exist in L2-sense and we can define Z as this L2-limit.
This process is carried out in the next theorem.

Theorem 4 Let {Xn}n be a sequence of i.i.d. normal random variables. Then

n(Rn − an)
L→
∫ 1

0

B2(t)− EB2(t)

(φ(Φ−1(t)))2 dt−
(∫ 1

0

B(t)

φ(Φ−1(t))
dt

)2

−
(∫ 1

0

B(t)Φ−1(t)

φ(Φ−1(t)
dt

)2

,

where

an =
1

n

∫ n
n+1

1
n+1

t(1− t)
[φ(Φ−1(t))]2

dt.

PROOF: By the invariance of Rn we can assume, without loss of generality, that Xn has a
standard normal law. Then, by the asymptotic normality of S2

n, we have

n(Rn− an)− n(R∗n− an) =
n

S2
n

R∗n(1− S2
n) = Op(1)

√
n(R∗n− an + an)

p→0 (10)

provided n(R∗n − an) = Op(1). In particular this shows that we can prove the theorem by
showing that the asymptotic law of n(R∗n−an) is that of the functional of the Brownian bridge



Goodness of fit and Wasserstein distance 8

involved in the statement of the theorem and, by Proposition 3, it even suffices to give a limit
sense to ∫ 1

0

B2(t)− EB2(t)

(φ(Φ−1(t)))2
dt.

If

An :=

∫ n
n+1

1
n+1

B2(t)− EB2(t)

(φ(Φ−1(t)))2
dt,

then it can be shown that

EA2
n =

∫ n
n+1

1
n+1

∫ n
n+1

1
n+1

2(s ∧ t− st)2

(φ(Φ−1(s))(φ(Φ−1(t)))2
dsdt→

∫ 1

0

∫ 1

0

2(s ∧ t− st)2

(φ(Φ−1(s))φ(Φ−1(t)))2
dsdt <∞.

From this it is easy to see that E(An −Am)2 → 0 as n,m→∞ and, hence, that An converges
in L2. 2

The next theorem provides the known (see [9]) explicit expression for the limit law just
obtained. Its proof, which will not be detailed here, relies on a careful principal components
expansion (see [1] for details) based on the eigenfunctions of the operator

Lf(t) :=

∫ 1

0

s ∧ t− st
φ(Φ−1(s))φ(Φ−1(t))

f(s)ds.

Theorem 5 Let {Xn}n be a sequence of i.i.d. normal random variables. Then

n(Rn − an)
L→ −3

2
+

∞∑
j=3

Z2
j − 1

j
,

where {Zn}n is a sequence of independent N(0, 1) random variables and

an =
1

n

∫ n
n+1

1
n+1

t(1− t)
[φ(Φ−1(t))]2

dt.

Remarks: Recall decomposition (5). It can be shown that the only distribution for which the

asymptotic terms corresponding to nR(2)
n and nR(3)

n just cancel out some terms of the principal

components expansion of the limit law of nR(1)
n is the normal.

The asymptotic equivalence of Rn with the statistics of Shapiro-Wilk, Shapiro-Francia or
De Wet-Venter can be obtained through the available results in [11] or in [14].

Acknowledgement. Part of the present ideas are the final result of helpful conversations with
Prof. Evarist Giné, while carrying out other joint work with him.
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